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An analylical treatment of the biased proportional navigalion 

(BPN) is carried oul with lhe aim of optimizing lhe bias 

parameter. It is shown lhal optimum biasing may lead to 

significantly more conlrol-effort-efficienl PN guidance in a wide 

variety of engagement situations, especially lhose involving Ngher 
target maneuvers. The performance of the BPN is compared wilh 

lhe standard (unbiased) proporlional navigation (PN) system for 

the general case of a maneuvering target, and the performance 

of the BPN is maximized to obtain the optimum bias value. The 
optimum bias is expressed through a simple algebraic equation 

which can be readily solved For lhe special (and very useful) 
case of the effective navigation constant being equal to 3, the 

equation reduces to a quadratic, leading to an explicil expression 

for lhe oplinium bias. Specilk exaamples are provided to show 

the benefits of the BPN law clearly The higher control efficiency 

of the law is especially useful in extra-atmospheric interception, 

where the savings in control effort directly translales to a saving of 

propellent which forms par1 of the payload. 
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1. NOMENCLATURE 
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Lateral acceleration (normal to velocity vector). 
Acceleration bias coefficient. 
Turn rate of target (ATIVT). 
Rate bias constant. 
Navigation constant. 
Effective navigation constant. 
Bias parameter. 
Range from pursuer to target. 
Time. 
Time to go. 
Velocity. 
Cumulative velocity incremant. 
Angle between pursuer velocity vector and 
reference line. 
Line of sight (LOS) angle relative to reference 
line. 
Angle between target velocity vector and 
reference line. 
Rate bias. 

Subscripts 
B Bias proportional navigation. 
c Constant bearing. 
f Final. 
i Initial. 
M Pursuer. 
ri 
T Brget. 
o Optimum. 

Initial relative (velocity) along line of sight (LOS). 

II. INTRODUCTION 

Proportional navigation (PN) is a commonly 
used pursuit strategy for guided projectiles. In this 
strategy, the projectile turning rate is controlled 
to be proportional to the turn rate of line of sight 
(LOS) from the projectile to the target. Although PN 
guidance results in intercept under a wide variety of 
engagement conditions, its control-effortefficiency is 
not optimum in many situations especially in the case 
of maneuvering targets. Scope remains for improving 
the efficiency. 

Variants have been suggested over the basic PN 
scheme to improve its efficiency. The biased PN (BPN) 
[l, 21 is one such scheme, in which a fixed angular rate 
is superimposed on the measured LOS rate before 
computing the commanded projectile turn rate (or 
lateral acceleration). Because of the introduction of 
an extra control parameter (i.e., the bias value), such 
a BPN may be made to achieve a given intercept 
with reduced total control effort. This is an important 
advantage for operations outside the atmosphere where 
lateral control forces are generated by the operation of 
control rockets, and the total control effort (integrated 
lateral force) determines the fuel requirement of the 
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control engine(s). This fuel forms a part of the orbital 
payload which is at a high premium. For atmospheric 
flights, a reduction in control effort results in smaller 
pressure bottles in case of pneumatic actuators and 
smaller batteries in case of the modern all-electric 
actuators. The resulting space and weight saving could 
be very important in tactical applications. 

To be able to take the best advantage of the 
BPN scheme, it is necessary to optimize the BPN 
performance with regard to the bias parameter. The 
performance of the BPN is maximized here to obtain 
the optimum bias value and the work reported here 
may be considered an extension of the earlier work 
by Brainin and McGhee [2]. The efficiency of BPN 
is explicitly compared relative to the PN which is 
more realistic as compared with normalization (as 
in [2])  with respect to control effort required by a 
single-impulse guidance scheme, which is not practical. 
Further, while a numerical approach was taken for 
the optimization in the earlier work, the optimization 
process here has been carried out analytically to the 
extent of obtaining a simple algebraic equation for 
the optimum bias parameter, which can be solved in 
real time even on small airborne computers. For the 
special and important case of the effective navigation 
constant being equal to 3, the equation is quadratic 
and the optimum bias parameter is obtained in closed 
form. To be able to appreciate the advantages of BPN 
in terms of physical parameters, examples are provided 
which clearly illustrate the savings in total control 
effort achieved by using a properly optimized BPN. 

I l l .  DEFINITION OF BIASED PROPORTIONAL 
NAV I GAT10 N 

REFERENCE LINE 

Fig. 1. Geometry of PN for maneuvering target. 

AT. The governing differential equations of motion, 
considering the geometry only, are obtained by 
resolving velocity components of the target and the 
pursuer along and normal to the LOS. 

L = vT C O q e  - p) - V, C O q e  - @) 

rd = -VT Sin@ - p) + V M  Sin(8 - $) 
(3) 

(4) 

where k = AT/VT represents the turn rate of the 
target, and p = kt .  

The equations (3) and (4) for the pursuer motion 
under PN are not solvable in closed form. Here PN 
equations are linearized to make analytical treatment 
possible. Considering the homing trajectory to be a 
perturbation over a collision course, we can write 
(Fig. 1.) 

@ = @c + A@. (5) 

Assuming A@ and 8 to be small, (3) and (4) may be 
readily combined to yield an equation in 8 only. 

V, VT 
e(tf  - t )  - 24 = -(cos@,) Vri + -(cos~~)/J Vri (6) 

Consider a target T and a pursuer M as points 
in a plane moving with constant speeds VT and v,, 
respectively, as shown in Fig. 1. me line MT from the 
pursuer to the target is the line of sight (LOS) which 
is inclined at an  angle 8 with respect to a reference 

where t is the time from launch, Vri is the initial 
target-pursuer relative velocity along LOS, and tf = 
ri/Vri iS the final intercept time. Using the BF“ law 
(2)s  (6) reduces to 

VT 
Vri 

line. If the pursuer velocity vector V, makes an angle d(tf - t )  - ( 2  - N’)e - N’d, = -(COSpi)p (7) 
@ with the reference line, then the standard PN law is 
defined as where 

where N is called the navigation constant. In this 
work, we use a modified form of (1) as follows [2]: 

N‘ = N v ~  cos@~ = effective navigation constant. 

Equation (7) describes the behavior of the rate of 
change of LOS angle (6) and can be integrated to give 

d = ei - - 1 VT(cospi)b + NtbE] ]  (y) ”-* 

(8) 
4 = N d  (1) 

Vri 

4 = ~ ( 8 - 8 ~ )  (2)  

where 6, is a rate bias on the LOS turn rate. Equation 
(2) defines the BPN law. The BPN law (2)  reduces to 
the standard PN law (1) when 6, equals zero. [ ’  “ - 2  [ V,; 

IV. SOLUTION OF BIASED PROPORTIONAL 
(9) 

NAV I GAT1 0 N 
where di = initial value of LOS angular rate. The 
expression (9) represents the LOS turn rate for pursuit 
against a maneuvering target under the BPN law. 

We consider the case of pursuit against a target 
maneuvering with a constant lateral acceleration 
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V. PURSUER LATERAL ACCELERATION 

The lateral acceleration A M  of the pursuer under 
the BPN law is obtained as 

Substituting (9) in (10) and rearranging, we get 

A M B  = (N‘ - N’ ~ ) c o s # ,  [ a - b  ($ )” - ’ I  
bN‘ - - 

where 

T = time to go = -tf - -t  

Ti = initial value of T = t f  

u = AT + 2 V , ; e ~  

b = AT - (N’ - 2)V,iei + N’V,ie, 

p = a / b  = bias parameter. 

From (12) and (13) and the definition of p ,  the rate 
bias 8, is expressed as 

= KAT/v , ;  +Lei (15) 

where K = acceleration bias coefficient = (1 - p ) /  
N’p  - 2), and L = rate bias coefficient = p(N‘  - 2)/ 
@N’ - 2). 

VI. CONTROL EFFORT 

The cumulative velocity increment AV (which 
determines the total control effort) necessary for 
interception is defined for any pursuer trajectory as 

x 
A V = L  ( A ~ l d d T .  (16) 

Two cases must be considered for computing the 
cumulative velocity increment AV. 

Case I: (0 5 p 5 1). 

In this case exactly one change of sign of AM 
occurs in the interval [O,Z]. This is apparent from (ll), 
since p is a fraction between 0 and 1, and (T/Z)”-2 
decreases monotonically from 1 to 0 for N’ > 2. The 
acceleration reversal occurs at 

Then AVB is given by (see Appendix) 

Mi 2N’ AV, = -- 
Ti ” - 1  

(N’ - 2)p(”-1)/(”’-2)+ 
( 1  + (N’ - 2)p(N1-1)/(N’-2) - (N’ - 1)pJ 

X 
N ‘ p  - 2 

Case 11: p 

Since T / E  has a minimum value of zero and 
maximum value of unity, the right-hand side (RHS) 
of ( 1 1 )  will remain unipolar during the entire pursuit 
if N’ > 2. Thus, the lateral acceleration AM never 
changes sign during the pursuit, and AV, is given by 
(see Appendix) 

0 or p 2 1. 

By making use of (18) or (20), the cumulative 
velocity increment AV, for BPN for any value of the 
bias parameter p and effective navigation constant 
N’ can be readily obtained as long as N’ > 2, which 
includes most useful values of N’. 

VII. OPTIMUM BIASING OF PROPORTIONAL 
N AV I GAT1 0 N 

The foregoing treatment provides a mechanism 
(through the introduction of a rate bias) of controlling 
the total control effort necessary for achieving a 
given mission. To make the best use of this freedom, 
it is necessary to optimize the rate bias to achieve 
a minimum control effort. Such an optimization is 
carried out below for the two cases considered in 
Section VI. 

Case I :  0 5 p 5 1.  

examine the quantity within the inner modulus in (18), 
i.e., 

To minimize AV, with respect to p ,  we first 

It can be seen that F = 1 for p = 0 and F = 0 for 
p = 1, and 

For N’ > 2, the factors (N’ - 1) and (N’ - 2) are 
always positive. Also, since 0 5 p 5 1, the quantity 
P ’ / ( ” - ~ )  is always a fraction and hence @1/N’-2)  - 1) 

SHUKLA & MAHAPATRA: OPTIMIZATION OF BIASED PROPOKI’IONAL NAVIGATION 75 



0 

-‘Z.O -‘1.5 -‘l.O -‘0.5 4.0 01.5 

(N’ - 2)p(Nt-1)/(”-2) + 
1 + (N’ - 2 ) p ( ~ t - 1 ) / ( ~ t - 2 )  - ( N ,  - l ) p  

X 
N’p  - 2 

.o c .5  2.0 2.5 3.0 

For the important special case of N’ = 3, (24) 
reduces to the quadratic form 

6p: - 8po + 1 = 0 (2-9 

2N’ 
P o  - 2- 

(24) 
p,3/2 - 1.5p01/2 + 0.25 = 0 (27) 

. I  

Equation (24) now expresses the optimum bias 
parameter po  as a simple algebraic equation with 
coefficients dependent on N ‘ .  In general, (24) involves 

which is a simple cubic in (po)l j2.  

Case 11: p 5 0 or p 2 1. 
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TABLE I The velocity increment AVg here is given by (20). 
The gradient of AVg is given by 

(24 8 Mi 2N‘ (2-N‘) -(AVg) = -- 
aP z (N’ - 1) ( N ’ p  - 2)2‘ 

For N’ > 2, this gradient is negative for all values of 
p, and hence AVg is a monotonic function and has 
no distinct optimum. However, (28) indicates the 
existence of asymptotic stationary points for p -, foo,  
at which AVB -+ 2Mi/Z, from (20). 

Global Optimum Biasing 

To facilitate visualization of the function behavior, 
the dimensionless quantity AV~(hfi/Ti) is plotted 
in Fig. 2 for N’ = 3 with p varying from -2 to +3. 
For 0 5 p 5 1, the formula (18) is used, and outside 
this domain (20) is used. It is seen that for p 5 0, the 
asymptotic stationary point represents a maximum 
and that for p 2 1, it represents a minimum. Since 
AVg at p = 0 has a value (M;/Z)[N’/(N’ - 2)] 
which is less than the asymptotic value 2Mi/z for 
all N’ > 2, and since the gradient of AVg at p = 0 is 
“’(2 - N’)]/[2(N’ - l)] (from (28)), which is negative 
for all N’ > 2, it is clear from Fig. 2 that the global 
minimum of AV, is within the domain 0 _< p 5 1, and 
occurs at the optimum rate bias parameter po given by 
(24). 

VIII. EXAMPLES 

For reasons of generality, a nondimensional rate 
bias parameter p has been used in the formulation 
of the paper. It has also resulted in improving 
the tractability of the problem. However, the 
transformation used in the nondimensionalization has 
resulted in a certain blurring of the physical insight 
into the behavior of the BPN system. To be able to 
visualize the potential benefits of the biasing in clearer 
focus, two specific examples are provided below. 

The first example considers an air-to-air tactical 
situation with a target speed of 300 m/s, a pursuer 
speed of 900 d s ,  an initial pursuer-target separation 
of 5000 m, and an initial LOS angle of 60 deg. Dble 
I shows the optimum bias parameter po  computed 
from (24) and the optimum rate bias ego from (14) for 
a range of realistic values of the effective navigation 
constant N’. This computation requires knowledge 
of the target maneuver AT and the initial LOS rate 
6; (or, equivalently, initial heading error A&). Here 
two values of target maneuver are considered, 1 g 
and 4 g, and the results are presented, respectively, in 
sections A and B of Bb le  I. An initial heading error of 
15 deg is assumed for both cases, which is equivalent 
to an initial LOS rate of 41 mrad/s. The cumulative 
velocity increment AVB required for intercept using 
BPN is computed from (18). For comparison, the 

N’ p o  8Bo,mrad/s AVB,m/S AVp’p~,ml~ 

21 0.787 8.472 281.532 282.799 
25 0.341 5.326 264.305 265.713 
3.0 0.140 2.939 248.338 256.837 
3.5 0.062 1.437 236.487 252.806 
4.0 0.029 0.515 227.445 250.814 
5.0 0.007 -0.236 214.803 249.398 

A. ’Eirget Maneuver AT = 1.0 g 

B. ’Eirget Maneuver AT = 4.0 g 
21 0.787 6.018 121.122 361.850 
25 0.341 3.027 113.711 355.%5 
3.0 0.140 0.759 106.841 355.238 

4.0 0.029 - 1.488 97.852 360.040 
5.0 0.007 -2.259 92.413 366.412 

Note: Optimum bias parameter and cumulative velocity increment 
requirement for BPN for air-to-air engagement. Requirement for 
standard PN provided for comparison. VT = 300 mb, VM = 900 
mh, ri = 5000 m, 8; = 60 deg, A+; = 15 deg (i.e., 8; = 41 mrads). 

3.5 0.062 -0.669 101.743 357.167 

cumulative velocity increment AVPN for standard PN 
is also obtained from (18) with eg = 0 and is tabulated 
alongside. 

dependence on the effective navigation constant N’ for 
a given level of target maneuver. The most important 
observation from Bble I, however, concerns the 
cumulative velocity increments. At relatively low target 
maneuvers, such as in Bble  IA, the advantage of an 
optimally biased PN over the standard PN is negligible, 
but assumes somewhat greater significance for larger 
values of N’. However, for stronger target maneuvers, 
a dramatic saving in control effort is achievable by 
BPN over standard PN. For example, in Bble  IB, for 
N’ = 2.1 the optimum BPN requires only a third of 
the cumulative velocity increment demanded by the 
standard PN. For N’ = 5.0, the control requirement of 
BPN is only a quarter of that of standard PN. 

The second example corresponds to an engagement 
scenario in extra-atmospheric space. The initial 
target-pursuer separation in 185 km and the relative 
initial closing speed is 9ooo m/s. These values are 
the same as those used for illustration in [l]. Here 
also, an initial LOS angle of 60 deg is assumed, as 
also an initial heading error of 15 deg, corresponding 
to an initial LOS rate of 1.11 mrad/s. In Bble  11, in 
addition to the cumulative velocity increments AVgo 
and AVPN, the quantity of propellent required for 
effecting these velocity increments is also presented. 
The latter quantity is computed assuming, as in 111, 
an initial interceptor weight of 270 kg and a liquid 
propellent with a specific impulse of 300 s. Either 
the cumulative velocity increment or the propellent 
requirement can be taken as a measure of the required 
control effort. 

In Bble  IIA and B, target maneuver AT values 
of 0.5 g and 1.0 g are considered, respectively. It is 
apparent that in space pursuit scenarios, significant 

The optimum rate bias eeo exhibits a strong 
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TABLE I1 

N ’  PO 8Bo,mradk AVB,m/s AVpN,m/S 
A.  Brget Maneuver AT = 0.5 g 

2.1 0.787 0.217 252.618 259.350 
2.5 0.341 0.133 237.160 256.259 
3.0 0.140 0.069 222.833 255.976 
3.5 0.062 0.029 212.199 256.952 
4.0 0.029 0.005 204.085 258.343 
5.0 0.007 -0.016 192.742 261.360 

BPN PN 

Propellant, Kg 
22209 22.775 
20.904 22.516 
19.689 22.492 
18.783 22.574 
18.089 22.691 
17.116 22.944 

B. Brget Maneuver AT = 1.0 g 
Propellant, Kg 

2.1 0.787 0.183 170.233 298.789 15.175 26.066 
2.5 0.341 0.101 159.817 301.038 14.271 26.253 
3.0 0.140 0.039 150.162 305.004 13.431 26.581 
3.5 0.062 -0.001 142.996 309.188 12805 26.927 
4.0 0.029 -0.023 137.529 313.217 12.327 27.259 
5.0 0.007 -0.044 129.884 320.453 11.657 27.855 

C. Brget Maneuver AT = 4.0 g 
Propellant, Kg 

2.1 0.787 -0.021 324.073 12A7.662 28.153 93.295 
2.5 0.341 -0.091 304.243 1113.895 26.518 85.078 
3.0 0.140 -0.143 285.863 1027.031 24.993 79.539 
3.5 0.062 -0.176 272.221 978.743 23.854 76.388 
4.0 0.029 -0.195 261.813 949.254 22982 74.438 
5.0 0.007 -0.213 247.261 917.392 21.758 72.310 

Nore: Optimum bias parameter and cumulative velocity increment 
and propellant requirement for BPN for extra-atmospheric 
engagement. Requirement for standard PN provided for 
comparison. V,; = 9OOO m/s, ri = 185 km, 8; = 60 deg, A $ J ~  = 
15 deg (i.e., 8i = 1.11 rnrad/s). 

control effort can be saved by employing optimum 
BPN even for relatively low target maneuver. Thus, for 
AT = 0.5 g ,  a 25 percent propellent saving is possible 
for N’ = 5.0 and for AT = 1.0 g ,  the saving is as high 
as about 60 percent over the standard PN. In ”hble 
IIC, a high target maneuver of 4 g is deliberately 
included, keeping in view the possible space-based 
pursuit-evasion applications of the near future. For 
such target maneuvers, the propellent saving is by a 
factor better than 1 : 3 for all N’. 

IX. CONCLUSIONS 

In this paper a BPN has been studied from the 
point of view of control effort requirement. It has 
been shown that with optimal choice of the rate bias, 
it is possible to effect large savings in control effort 
required for intercepting maneuvering targets. 

An analytical optimization of the BPN problem 
has been carried out in terms of a nondimensional 
rate bias parameter, resulting in a simple algebraic 
equation for the optimum value of the parameter 
from a minimum-control-effort point of view. The 
equation can be easily solved in real time even in the 
simple on-board computers of small projectiles. For the 
special but very useful case of N’ = 3, the solution for 
the optimum rate bias parameter is explicit. 

Two examples have been provided to concretely 
illustrate the gains possible by using an optimal BPN 

over the standard PN. The examples concern both 
atmospheric and extra-atmospheric pursuits. It has 
been shown that for highly maneuvering targets, the 
optimal BPN may require a total control effort as low 
as a quarter of the effort necessary for PN without 
bias. Such savings can be extremely valuable especially 
in extra-atmospheric engagements where maneuvers 
are carried out at the direct expense of propellent 
which forms part of the precious payload. 

APPENDIX 

The cumulative velocity increment AV is defined as 

where the pursuer lateral acceleration AM is given for 
the biased case by (14) as 

“ - 2  bN‘ 
Aiun = (N’-2)cos$, [‘- (g) ] 

Hence 

J AMndT = (N’-2)cos$, bN’ 
[ p -  ( - E ) N ’ - 2 ]  dT 

- - N’b [pT i7 (T)N‘-l] 
(N’ - 2) cos $c “-1 Ti 

Two cases must be considered. 

Case I: 0 5 p 5 1. 

In this case exactly one change of sign of AYE 
occurs in the interval [O,q]. The acceleration reversal 
occurs at 

T, = Z p 1 / ( N ’ - 2 ]  (A3) 

and AVn is given by 

+ I  N’b [ p T - -  Ti (T)”-’]‘ l 
T, 

(N’ - 2) cos oc “-1 Ti 
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where The parameter b is given by (13) as 

b = AT - (N’ - 2)Vri8i + N’Vr;e, 

N‘ 
2 

= AT - (N’ - 2)Vri8i + -(a -AT) ,  using (12) 

2-  N‘ N‘ 
= -bp - (N’ - 2)Vri8i + A T -  

2 2 , sincep = a / b  

-2(N’ - 2)Vri6i 2- N’ - - + A T -  
(2 - NIP) 2 - N‘p’ 

Substituting the value of b from (A5) in (A4) and 
rearranging, 

2N‘ AVB = 
(N’ - 1) cos @c (N‘p - 2) 

2N’ (9 +vrioi) 
+ I (N’ - 1) cos @c (N’p - 2) 

Case 11: p 2 1 or p 5 0. 

Using (A2) in (Al) 

Using (A5) in (A10) and rearranging, we get 

2N’(N‘p - p - 1)  
AVB = (N’ - l ) (N’p - 2) C O S @ ~  

2N‘(N‘p - p - 1) 1 Mi using ( ~ 8 a )  = I  (N’ - l ) (N’p - 2) F’ 
- Mi 2N‘(N’p - p - 1) -- 

T (N’ - l)(N’p - 2)’ 
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