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neural network to the necessary degree of accuracy, or 1t
cannot do so.

Generality

Some neurocomputers are suitable for implementing
only certain neural-network architectures. Other neuro-
computers can implement essentially any architecture.
Given a specific list of architectures, generality is the
binary measurement of whether the neurocomputer can
or cannot implement those network types.

Software interface provisions

For software programs to be able to call neural networks
as subroutines, it is necessary to have software routines
that can be linked with the user software and then called
whenever needed to control the neurocomputer. The
simplicity and ease of use of these software interface
provisions are of great importance.

Configuration provision

For a computer to be used, it must be configured to run
the desired neural networks. There are two basic
approaches to this problem. First, most of the commonly
used neural networks should be available in highly
efficient (in other words, microcoded or otherwise
optimized) prepackaged form. This coding efficiency

ha used most often execute at
maximum possible speed on the hardware. As with
software interface provisions, configuration provisions
are best judged on a relative-merit basis. The availa-
bility of a general-purpose neural network description
language capable of describing a large percentage of
neural-network architectures efficiently for use with the
neurocomputer is an important consideration

Table 2 shows the different neurocomputers built so
far, their performance in terms of speed and capacity,
and the year introduced.

Conclusions

We discussed here the different approaches for
implementing neurocomputers. The future development
of neurocomputers will be governed by the development
of accurate mathematical models for artificial neurons.
Since it is predicted that the models will involve more
of analog computations, it is hoped that more emphasis
will be laid on analog hardware design and photonic
computing for the design of efficient neurocomputers.
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The basic concepts and techniques involved in the
development and analysis of mathematical models for
individual neurons and networks of neurons are
reviewed. Some of the interesting results obtained
from recent work in this field are described. The
current status of research in this field in India is
discussed.

THE development of an understanding how the human
brain functions is one of the most important and
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challenging tasks faced by modern science. During
recent years, a great deal of progress has been made in
experimental neurobiology. At the same time, efforts

* towards the development of mathematical models for

some of the experimentally observed phenomena have
gained momentum. Neurosciences cover a vast range of
phenomena extending from the molecular to the
behavioural level. In this paper, [ have made an attempt
to provide a brief overview of the concepts and
techniques involved in the development and analysis of
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mathematical models of individual neurons and neural
networks. The molecular biophysical aspects of
neurobiology are not dealt with here. To begin with, the
basic framework for a mathematical description of the
functioning of individual neurons is described and
illustrated with a number of results obtained from recent
studies. The next section is devoted to modelling of
networks consisting of a large number of neurons. This
kind of modelling has attracted a great deal of attention
in the recent years. A large number of researchers from
widely varying disciplines, such as neurobiology,
computer science, electrical engineering, physics and
mathematics, are currently working in this general area.
Instead of trying to provide a comprehensive review of
this newly emerging interdisciplinary field, I have
concentrated in the section on neural networks only on
those aspects which are relevant to neurobiology.
This section contains a description of the basic
ingredients of neural network modelling, a rough
classification of the existing models on the basis of the
degree of ‘biological realism’ incorporated in the
modelling and a review of some of the important results
obtained from recent studies in this area. Finally, the
status of research in this field in India is discussed
briefly.

Modelling of the individual neurons

Although neurons in the central nervous system show a
wide range of variation in their morphology and
function, the basic mechanism underlying their working
is essentially the same for all of them. Neurons function
electrochemically through the passage of different ions
(Na*, K*, Ca¥, CI", etc.) through the cell membrane. It
is, therefore, possible to model a neuron as an electrical
device by constructing an equivalent electrical circuit. A
segment of a cell membrane is represented in this circuit
by several electrical elements. These are: (i) an
electromotive force (or in other words, a battery)
associated with each active ion channel, arising from the
difference in ion concentration maintained across the
membrane; (ii) a membrane conductance associated with
each active ion channel, describing the passage of
specific ions across the membrane; (iii) a leakage
resistance that describes the passive leakage of
unspecified ions across the membrane; (iv) a trans-
membrane capacitor describing the capacitance between
the inner and outer walls of the membrane; and (v)
internal and external resistances describing  the
transport of charge along the inner and outer walls of the
membrane. Thus, a number of parameters are needed to
characterize the electrical properties of a membrane
element. Since these parameters have different values in
different regions of the cell, an equivalent electrical
circuit is usually obtained by dividing the cell into a
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number of compartments and using different sets of
parameters to describe the electrical properties of the
membrane in different compartments. The appropriate
set of circuit equations are then solved to determine the
electrochemical properties of the cell. An important
feature which complicates the analysis of the circuit
equations arises from the fact that the values of some of
the membrane parameters (most importantly, the
membrane conductances) are themselves dependent on
the membrane potential. An example of the kind of
dependence to be incorporated in the model may be
found in the classic work of Hodgkin and Huxley' on the
mechanism of generation of the action potential. Such
dependences make the circuit equations nonlinear and,
therefore, difficult to solve analytically. These equations
are usually solved numerically by using computers. A
good example of this kind of computer modelling may
be found in the work of Traub and Miles? on the
pyramidal cells of the hippocampus. They have
developed a computer model of hippocampal CA;
neurons, in which ionic, ohmic and capacitative currents
are calculated explicitly in 41 compartments repre-
senting the soma, the initial segment and the dendrites.
The dendritic tree is represented in this model as a
collection of equivalent cylinders. Somatic active
currents are modelled using Hodgkin—Huxley-like Na*
and fast K" conductances. Dendritic conductances
include a Ca** conductance and a slow calcium-
activated potassium conductance. This model is found to
reproduce quite accurately the complex slow and fast
spikes observed experimentally during the intrinsic
bursting of the CA5 cells. It is clear from this work and
other studies of a similar nature that the basic processes
involved in the electrochemical behaviour of individual
neurons are fairly well understood now. Packages of
computer programmes for simulating the electrical
properties of isolated neurons are now available® and
integrated circuits which reproduce quite accurately the
electrical characteristics of neurons have recently been
fabricated”.

The models described above are deterministic, in the
sense that they always produce the same outcome for a
given set of parameter values and initial conditions. In
reality, however, the behaviour of neurons is not
completely predictable. The experimentally observed
response of a neuron to a particular set of externally
specified conditions is not always the same. It is,
therefore, necessary to- include an element of
stochasticity (noise) in the dynamics of neurons. An
interesting example that illustrates the importance of
noise in neural dynamics may be found in a recent work
of Longtin ez al.’. They consider an experiment in which
a single auditory nerve fibre of a squirrel monkey is
stimulated with a sinusoidal sound stimulus of period T,
and the time intervals between successive spikes
generated by the neuron are recorded. The histogram of
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the distribution of the interspike interval shows sharp
peaks at integral multiples of 7. The probability of the
interspike interval having a value n7o (n=1,2,3,...) is
found to fall off exponentially with increasing ». In
order to explain these observations, Longtin et al.’
consider a very simple model that involves the motion of
. a particle in a one-dimensional bistable potential in the
presence of a periodic driving force and a Gaussian
white noise. The two minima of the bistable potential
used in the model are supposed to represent the
quiescent and firing states of the neuron. Their
calculations show that the distribution of the time
interval between successive transitions between the two
minima of the potential exhibits all the substantive
features of the experimentally observed interspike
interval distribution. This simple calculation, thus,
illustrates nicely the importance of including a noise
term in the description of neural dynamics. It also
serves the important purpose of showing that simple
models in which many microscopic details are left
out may indeed be adequate for explaining certain
features of the experimentally observed behaviour of
neurons.

It is clear from the discussion above that a lot of
progress has been made in the modelling of the
electrochemical properties of isolated neurons. This,
however, is only a small part of the full story because
neurons in the nervous system do not function in
isolation. They receive inputs from and provide outputs
to many other neurons through synaptic junctions. It is,
therefore, necessary to look at models of the collective
behaviour of networks of neurons in order to develop an
understanding of brain functions. Certain properties of
the individual neurons which govern the mechanism of
communication between different neurons play an
important role in determining the network behaviour.
Although the basic processes involved in synaptic
transmission of signals from one neuron to the other are
fairly well understood now, many details are yet to be
worked out. In particular, many questions related to the
development of the dendritic tree, formation and
subsequent modification (through learning) of synaptic
Jjunctions, specific neurotransmitters/receptors involved
in synaptic plasticity, and so on, remain unanswered at
the present time. This is one of the most active areas of
current research and a lot of new results are expected in
the near future.

Modelling of neural networks

The subject of neural network modelling has witnessed a
spectacular growth in the recent years. It is a truly
interdisciplinary field in which researchers from a wide
range of backgrounds are involved. Since the term
neural network carries different meanings for
researchers from different disciplines, it would be useful
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to begin with a fairly general definition of this term. A
neural network may be defined as a large, highly
interconnected assembly of model neurons which are
computing elements with a specified input—output
relation. Each neuron in the network receives inputs
from and provides output to a large number of other
neurons. The collective dynamics of the network endows
it with nontrivial computing abilities. The connectivity
of the network is specified by a synaptic interaction
matrix. The computations to be performed by the
network are encoded in this matrix through an
appropriate learning process. The time evolution of the
network is governed by an assumed dynamic rule which
specifies how the state of a model neuron depends on
the net input it receives from the other neurons. A time-
persistent state reached by the network in the course of
its time evolution represents the result of the
computation performed by it.

There are several reasons for the current interest in
models of this kind. In the neurobiological context,
these systems serve as models (highly simplified in most
cases) of some of the collective computational
properties of the brain. The properties of the model
neurons and their interconnections assumed in neural
network models do resemble, although in a highly
schematic way in most cases, some of the charac-

" teristics of their biological counterparts. Also, these

models exhibit a number of features (such as parallel
processing, fault tolerance, ability to learn, etc.) which
are believed to be essential elements of biological
computation. Physicists are interested in these models
mainly because they are examples of interacting systems
with complex dynamic behaviour. These models form an
important part of a newly emerging subfield of physics
that involves studies of complexity. At a more practical
level, neural networks provide a new paradigm of
parallel computation with numerous applications in
practical problems involving pattern recognition and
multivariable optimization. This is the primary reason
for the interest of electrical engineers and computer
scientists in this subject.

In this paper, I will concentrate on neural network
modelling of neurobiological phenomena. A question
that arises at the very beginning of any attempt at
developing a model of this kind is that how much
neurobiological detail should one incorporate in the
model. Opinions on this issue vary a great deal. Many
researchers in neurobiology argue that models in which
many biological details are left out are much too simple
to be of any use in the study of real neurobiological
phenomena. On the other hand, many other researchers
in this field feel that some of the microscopic details left
out in the simpler neural network models may not be
crucial in understanding some of the collective
properties of biological networks. The debate on this
issue is continuing. As a result, the existing neural
network models show a great deal of variation in the
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degree of ‘biological realism’ incorporated in the
modelling. Using this aspect as a criterion, one may
roughly classify the existing models into the following
three categories.

Abstract models

In models of this kind, all microscopic details about the
working of the individual neurons are left out. The state
of a neuron in these models is described by a single
variable v which may be interpreted as the firing rate
(the rate at which an action potential is generated). The
value of v for a particular model neuron is supposed to
be a simple sigmoid function of the net input (membrane
potential in the biological interpretation) it receives
from the other neurons in the network. In some models,
a further simplification is obtained by approximating the
sigmoid function by a step function. The variable v in
these models takes only two values, 0 and 1, repre-
senting, respectively, the quiescent and firing states of
the model neuron. The pattern of synaptic connections
and the values of the elements of the synaptic matrix
used in models of this kind bear little resemblance to
what is observed in biological networks. These network
characteristics are usually chosen to maximize the
efficiency of the network in performing the compu-
tational task it is designed for. The main advantage of
networks of this kind is their relative simplicity, which
often makes them amenable to analytic study. Physicists
have played an important role in the development of
analytic theories of such networks. A number of analytic
methods developed by theoretical physicists in studies
of statistical mechanics of disordered systems have been
extremely useful in analysing the behaviour of these
networks®. In cases where analytic treatments are too
difficult, numerical simulations-of the behaviour of such
models can be performed rather easily. Analog imple-

" mentations of networks of this kind are also possible.

Most of the work carried out by physicists and engineers
in the field of neural networks involves models of this
kind. However, the connection of these models with
neurobiology is rather tenuous. The only thing common
between these models and real neuronal networks
existing in the brain is a possible similarity in their basic
working principles. For this reason, abstract models of
this kind are sometimes called artificial neural networks
to distinguish them from biological networks.

Models of this kind may be loosely classified into two
categories: feed-forward networks (sometimes called
multilayer perceptrons) and multiply connected net-
works. Feed-forward networks have a layered structure
in which neurons in the mth layer receive inputs from
those in the (m~1)th layer and provide inputs to those in
the (m+1)th layer. Networks of this kind are primarily
used for tasks involving recognition and classification of
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patterns. A subset of the data to be classified is used
first to ‘train’ the network. The trained network can then
generalize the information contained in the training set
and use this information to classify new data with a high
degree of accuracy’. Multiply connected networks,
which have feedback loops in the synaptic conpections,
are used mostly as models of associative memory. A
system behaves as an associative memory if it can
retrieve patterns stored in it from ‘hints’, representing a
partial knowledge of the stored information. Human
memory is known to be associative in this sense. In
neural network models of associative . memory, the
connection matrix is chosen in such a way that network
states representing the stored memories become locally
stable attractors of the underlying dynamics. An initial
state close to one of these attractors, representing partial
knowledge of the stored information, is driven to the
attractor itself in the course of the collective dynamics
of the network. The complete information is thus
retrieved. The Hopfield model® is perhaps the most well-
known neural network model of this kind. Networks of a
similar nature are also being used® with a considerable
amount of success in finding near-optimal solutions of
complex optimization problems involving many vari-
ables. It is interesting to note that computations which
are performed more efficiently by neural networks than
by conventional digital computers are also the ones at
which the human brain excels. This observation suggests
that the basic principles underlying the functioning of

these models may indeed have some similarities with

those used by the brain for carrying out various
computational tasks.

Intermediate level models

In models belonging to this category, each neuron is still
treated as a simple input—output device with no internal
structure. However, a number of experimentally
observed features are incorporated in the architecture
and synaptic connectivity pattern of the network. The
main advantage of studying models of this kind lies in
the fact that due to their relative simplicity, analytic
treatments are possible in some cases and numerical
simulations can be carried out rather easily. At the same
time, one can make some contact with experiments
because these models are at least plausible biologically.
Of course, comparisons with experimental data can be
carried out only at the qualitative level because these
models are not realistic enough. Also, models of this
kind are obviously not appropriate for descriptions of
neurobiological phenomena, in which properties of
individual neurons play an important role. Nevertheless,

‘many researchers in this field believe that studies of

models of this kind do provide a lot of information and
insight about the collective behaviour of biological
networks.
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Examples of models of this kind may be found in a
large number of recent studies'® of biologically
plausible models of associative memory. These models
go beyond the simple Hopfield model in trying to
incorporate different experimentally observed features
in the structure of the network. The features which have
been incorporated in the modelling include:

1. Neuronal specificity, i.e. the so-called Dale hypo-
thesis, which states that in most cases the efferent
synapses of a particular neuron are either all excitatory
or all inhibitory.

2. The presence of static and dynamic synaptic noises.

3. Limited analog depth of synaptic strengths.

4. Hierarchical (tree-like) structures in the network
architecture and in the stored data.

5. Less-than-full connectivity of the network.

6. Low average (spatial and temporal) level of activity
of the network.

Models which exhibit a selective erasure of old patterns
stored in the memory (forgetting) as new information is
learnt have also been constructed'’. A very interesting
result has emerged from these studies. It has been
established that the basic functional features of the
simple Hopfield model remain, to a large extent,
unaffected by the inclusion of these biological details.
This observation lends support to the expectation that
studies of relatively simple models may indeed lead to
useful insights into some aspects of the functioning of
the brain. '
Another class of models which have received a lot of
attention in the recent years involve the storage and
recall of temporal sequences of patterns. These models
use either a time delay mechanism or the presence of
dynamic synaptic noise to generate a passage of the
network through a specified sequence of patterns.
Numerical simulations of these models have reproduced
several features exhibited by biological central pattern
generators'2. These are neural groups which control the
muscles involved in a variety of rhythmic activities
(such as locomotion, swimming and chewing) by
repeated generation of a specific sequence of patterns.
We have recently carried out a study13 which may be
classified in this category of modelling. This work
involves the development and simulation of a neural
network model for kindling, which describes the process
of generation of epilepsy in laboratory animals by
repeated electrical stimulation of certain- parts of the
forebrain. The starting point of this study is a
biologically plausible neural network that generates
complicated limit cycles in the absence of any external
stimulation. The resulting small-amplitude oscillations
of the network activity are assumed to model the resting
EEG. The effect of the external shocks is represented by
changes in the postsynaptic potentials of neurons close
to the implanted electrodes. These changes cause a large
number of these neurons to fire. The excess activity of
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the network is assumed to lead to the formation of new
excitatory synaptic connections through a Hebbian
mechanism'® of synaptic plasticity. The formation of
these new synapses causes more neurons to fire and this
‘snowballing’ process leads to a rapid increase in the
network activity, culminating in the epileptic state.
Simulations of this model reproduce and provide some
understanding of a large number of experimental
observations.

Other neurobiological phenomena for which models of
a similar nature have been developed include synchroni-
zation of oscillations in the visual cortex'® and oscilla-
tory and chaotic EEG patterns observed in the olfactory
systeml{’.

Realistic models

In modelling of this kind, all known biophysical details
of the individual neurons and synaptic connections
among them are incorporated in the model. Due to their
extreme complexity, models of this kind are not
amenable to analytic treatments. Numerical simulations
provide the only way of studying their properties. Such
simulations require an extensive amount of computing
resources. Consider, for example, a relatively small
network consisting of 1000 neurons. As discussed
earlier, one needs about 50 variables for a realistic
description of the behaviour of a single neuron. Thus, a
simulation of the properties of this network would
involve solving a set of about 50,000 coupled nonlinear
differential equations. This is a difficult task, even for
the most sophisticated supercomputers available today.
The complexity of these models sometimes makes
interpretations of the simulation results difficult. Due to
this reason, some researchers have raised questions
about how much insight is actually gained from
simulations of models which are almost as complicated
as the physical system being studied. Nevertheless, the
fact remains that modelling of this kind is necessary if
one wants to make direct quantitative comparisons with
experimental data. Work of this nature, thus, serves the
important purpose of providing a way of validating
theoretical ideas about how networks of neurons actually
function. An example of modelling of this kind may be
found in the work of Traub and collaborators®'’ on
rhythmic population oscillations observed in both the
hippocampus (the hippocampal theta rhythm) and in
vitro hippocampal slice preparations. Their model
consists of 9000 excitatory pyramidal cells and 900
inhibitory cells. The parameters describing the
properties of the pyramidal cells are chosen such that
when they are excited, they generate intrinsic bursts with
long, intrinsic hyperpolarization after the burst.
Excitatory synaptic connections among the pyramidal
cells are assumed to be sparse and random. These
connections are spatially restricted, in the sense that the
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probability of two pyramidal cells being connected
decreases exponentially with the distance between the
cells. Half of the population of inhibitory cells is
assumed to produce fast inhibition and the remaining
half produces slow inhibition. Axons of the inhibitory
cells are assumed to be spatially more restricted than
those of the pyramidal cells. Each neuron in the network
has, on an average, 20 excitatory inputs and 20
inhibitory inputs. All these features incorporated in the

model are consistent with the existing anatomical and

physiological data. Simulations of the collective
behaviour of the network are found to reproduce quite
accurately a large number of experimentally observed
results. From studies of how the network behaviour is
affected by changes in the values of the various
parameters appearing in the model, these researchers are
able to determine the dependence of the emergent
properties of the network on intrinsic celiular charac-
teristics and on the connectivity and strength of both
excitatory and inhibitory synapses. This study also leads
to a number of specific predictions which can be tested
experimentally.

Until recently, work of this nature could be carried out
only at a few places in the world. Due to recent
advances in computer technology, computing resources
necessary for carrying out simulations of this kind
have become more readily available. As a result, a large
number of groups are currently getting involved in
the development of models of this type'®. This
appears to be one of the fastest growing areas of neuro-
science.

Status of research in India

Several groups in India are currently working in the
field of neural networks. These groups, consisting
mostly of physicists, mathematicians, engineers and
computer scientists, are primarily working on the so-
called artificial neural networks. The problems being
studied include designing networks for specific
computational tasks, testing the performance of different
networks and analysis of the collective properties of the

various network models. Apart from a few isolated
attempts, essentially no research is being carried out in
India on modelling of neurobiological phenomena. This
is probably due to the fact that there is hardly any
interaction between the people involved in the
modelling and those doing experimental research in
neurobiology. A close collaboration between these two
groups of researchers is essential for the development of
a successful research programme in the area of neuro-
biological modelling. It would be worthwhile to initiate
a programme which would foster the development of
such collaborations.
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