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levels®. The classical capacitance really corresponds to
the flat-band limit. Also, it may be noted that quantum
capacitance involves a change of the chemical potential
with change in the electron density and is, therefore,
related to the compressibility of the electron gas. In a
real system with electron—electron and electron—ion in-
teractions, however, one would expect corrections to
(renormalization of) the free-electron gas value calculated
here. Finally, a technical remark. The present calculation
refers to the direct capacitance between two conductors
in isolation. In general, however, the charging energies
of a system of conductors, with or without a common
ground, is a bilinear expression in the charges residing
on the conductors, with a coefficients-of-capacitance
matrix that determines the self- and the mutual capacitan-
ces, known as the capacity coefficients (diagonal) and
the electrostatic induction coefficients (off-diagonal),
respectively’. Our quantum capacitance forms part of

the self-capacitance. The calculation refers to the simplest
case of just two oppositely charged identical conductors
forming a planar or bifilar capacitor —an operationally
well-defined situation.
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Lyapunov exponents and predictability of
the tropical coupled ocean-atmosphere
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It has recently been proposed that the broad spectrum
of interannual variability in the tropics with a peak
around four years results from an interaction between
the linear low-frequency oscillatory mode of the
coupled system and the nonlinear higher-frequency
modes of the system. In this study we determine the
Lyapunov exponents of the conceptual model consist-
ing of a nonlinear low-order model coupled to a
linear oscillator for various values of the coupling
constants.

Topay even with sophisticated computing, complex
general circulation models and experimental resources
available, we cannot predict accurately the state of the
atmosphere. This is due to the existence of an upper
limit on deterministic predictability of the atmosphere.
The reasons for the upper limit are that the equaticns
governing the atmosphere are nonlinear and the atmos-
phere is characterized by both horizontal and vertical
gradients of wind, temperature and moisture, which
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permit hydrodynamical and thermodynamical instabilities
to grow. The quantitative upper limit for deterministic
prediction is determined by the growth rates and equi-
libration of the most dominant instabilities.

The phenomenon of sensitive dependence on initial
conditions, known as chaos, means that two trajectories
initially separated by a small value may get vastly
separated after some time. The Lyapunov exponents
measure quantities which constitute the exponential diver-
gence or convergence of nearby initial points in the
phase space of a dynamical system. Thus, when sensitive
dependence on initial conditions leads to divergent trajec-
tories and, consequently, loss of information, we can
quantify the rate at which the information is lost through
these exponents. Lyapunov exponents of a dynamical
system are one of the invariants that characterize the
‘attractors’ of the system. Attractors can be thought of
as a distribution of points in a phase or state space
characterized by the density of points. The Lyapunov
exponents are independent of the initial conditions on
any orbit and thus are properties of the attractor geometry
and the dynamics'. A positive Lyapunov exponent
measures the average exponential divergence of two
nearby trajectories whereas a negative exponent measurczs
the exponential convergence of two nearby trajectories”.
Thus, a positive Lyapunov exponent may be taken as
a manifestation of chaos.

Recently, a number of studies on the predictability
of the atmosphere using coupled ocean atmospheric
systems have been reported in the literature®>. Goswami
and Shukla’ used classical predictability methods to
arrive at two distinct time scales for growth of small
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errors. The slow time scale provides a basis for long-
range predictability and appears to arise as a result of
a dominant four-year cycle of the system, while the
fast time scale appears to arise due to the aperiodicity
of the system. Krishnamurthy, Goswami and Legnani®
have recently proposed a conceptual model for the
aperiodicity of the interannual variability of the tropics.
The model consists of a nonlinear system (Lorenz model’)
coupled to a linear oscillator. The nonlinear system
represents some aspects of the general circulation of
the atmosphere and the equations are the same as those
of Lorenz’. The linear part represents the dominant
four-year oscillation of the coupled system arising due
to unstable air—sea interactions in the tropics and reflec-
tion of Rossby waves from the western boundary®. Due
to the very large horizontal scale involved, the equatorial
Rossby number for this phenomenon is small and hence
may be considered linear.
The conceptual model may be written as

5(=—Y2—Zz—aX+aF, (1)
Y = XY= bXZ—cY+G+aP, )
Z = bXY+XZ—cZ+0Q, (3)
P =-wQ-pY, @)
Q = oP-pz, 5)

where ® is the frequency of the low-frequency oscillator
with a period of four years, P and Q are the amplitudes
of the sine and cosine phases of the oscillation and
o and P are the coupling strengths. The above nonlinear
system [eqs (1)—(3)] is obtained by rescaling the Lorentz
system by a factor ¢ as (original values are denoted by
primes)

t=t/c; X=cX",Y=¢cY" Z=cZ’,

a=dc;b=b;F=cF';G=cG".

X may be interpreted as a zonally averaged field while

Y and Z may be interpreted as amplitudes of the two
wave components. F is interpreted as external zonally
symmetric forcing (e.g. solar forcing) while G is the
zonally asymmetric forcing (e.g. land-ocean contrast).
We have used ¢ = 0.5 and have retained the same
values of the unscaled coefficients a = 0.25 and b = 4
as used by Lorenz. A :

The method used in this study is based on the
algorithm of Wolf er al’ for the calculation of the
Lyapunov exponents from a set of differential equations.
As a test of the code, the Lyapunov exponents for the
Lorenz convection model'® as given in Wolf et al’
were calculated and had values A = 2.1643,
A, = 1.6967x10® and A, = -32.50. The accepted
values of the exponents for the Lorenz equations as
mentioned in Wolf et al’ are A, = 2.16, A, = 0.0 and
A, = —32.40.

Having tested the algorithm by computing the expo-
nents for the Lorenz model, we evaluated the same for
the conceptual model [eqs (1)—=(5)]. Table 1 provides
the values of the five exponents for a coupled case
(oo = B = 0.05) and for various values of F (6, 7, 8, 9)
and G (0.125, 0.25, 0.50). The convergence of the
exponents was checked using the criterion

M- < o IAfL,  i=1,2,3,4,5 6)
The superscript k indicates the index for the march of
the integration. It was found that for ¢ = 107, the
number of integration marchings required for all the
various cases were of the order of one lakh or less
(the time step was one-eighth of a day). All the cal-
culations were carried out in double precision. Con-
sideration of computer time as well as the need for
accurate values of the Lyapunov exponents led us to
enforce the following criterion. The integrations were
terminated when either the criterion in eq. (6) with
o = 107 was satisfied or when the number of integration
marchings reached a value of 6 lakhs. Since F refers
to external forcings such as solar insolation, which also

Table 1. Lyapunov exponents for ¢ = § = 0.05 and for different values of F and G

F, G A A A A, A

6, 0.125 2.17%x 10 ~1.57%x10%* -1.59x10* -237x 1073 ~2.41x 107
7, 0.125 1.43x10* 1.52%x 107 2.12x10°% -129 % 10 -4.09 % 1073
8, 0.125 2.64 x 107 6.13x10° 1.40x 107 -5.63 % 107 —4.69 % 1073
9, 0.125 843 x10™ 2.60x% 107 3.23x10° -1.03 x 10 ~5.36% 1073
6, 0.25 —4.52x10°% ~120x10™ -127x10™* -1.26 x 1073 -1.00 x 107
7, 0.25 1.02x10™* -5.55x10° -6.98 x 1075 -3.06 x 107 ~720x 107
8, 0.25 8.83 x 10°¢ -6.62x10° -787 %107 -266x107 ~2.88x%107
9, 0.25 5.41x10°% ~121x10* -120x10™* -148 x 107 ~152x%x103
6, 0.5 -1.37x 107 —622x 107 —497x 1073 -5.01 x 107 ~322x%107
7, 0.5 -5.75%x 107 -9.47%10% -8.44 %1073 -8.47 %107 ~2.39x 10-2
8, 0.5 1.17 x 103 —450%x10° —4.14% 1073 -5.09 x 107 -1.81x%107
9, 0.5 3.63 x10° ~1.00x 107 -159% 107 -1.36 x 10 -1.81x107
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changes with time around a year, we have evaluated
the exponents for different values of F. It is clear from
Table 1 that for all the four values of F (6, 7, 8, 9)
and for G = 0.125, the system is chaotic. The same,
however, cannot be said for the values of F = 6 and
G =025as well as F =6 and 7 and G = 0.5. It is
also seen from Table 1 that the increase in the value
of F for a fixed value of G causes more modes with
positive Lyapunov exponents to appear. Since G refers
to asymmetric forcings, we also wished to examine the
behaviour of the system with a different value of G
(0.125, 0.25, 0.5). It is evident from Table 1 that an
increase in the value of G for a fixed value of F gives
rise to a situation where chaos is absent. This is especially
evident for case of F = 6 when G increases from 0.125
to 0.5. This is to be expected as it is known from the
Lorenz model that for such large values of G the model
has a periodic orbit. The above results where more
modes with positive Lyapunov exponents manifest for
small values of G and large values of F seem consistent
with Lorenz’s observation that the behaviour of the
atmosphere is analogous to his.model with large F and
small values of G.

The coupling of the nonlinear system with the linear
oscillator is accomplished using the coupling constants
o and B. Table 2 presents the values of the five
exponents for F = 7 and G = 0.125 and for different
values of o (0, 0.05, 0.1) and B (0.0, 0.05, 0.1). One
would expect that for the uncoupled case
(0. = B = 0.0) atmospheric chaos will prevail. This is
evident from the appearance of a positive exponent in
Table 2. With the introduction of coupling
(o0 = 0.0; B = 0.05 and 0.1), it is seen that more modes
appear with positive exponents. This is consistent as
nonzero § value introduces a low-frequency component.
The effect of increasing o from 0 to 0.1 for B =0
causes all exponents to be negative. For the cases of
a=0 pf=005and o = 0; § = 0.1 it was found that
the number of integration marchings required were of
the order of one crore. However, it turned out that for
the cases of =0, a=0, =0 o=0.05 and
B = 0, o« = 0.1 the fourth and fifth exponents assumed

a value very close to zero (of the order of 107'%),
thereby assuming a value higher in magnitude compared
to the second and third exponents.

It was felt that a better way of illustrating the variation
of the Lyapunov exponents with system parameters like
coupling strengths and strengths of the forcing was
through figures. Figures 1-4 depict the variation of
Lyapunov exponents with forcings (F and G) and with
coupling strengths (B and o). The data for the figures
were taken from Tables 1 and 2, respectively. A line
is drawn in these figures (for convenience) connecting
the values of the exponents; the numbers 1-5 in the
figures denote the exponents (A —A,).

In order to deduce the possible role of the particular
value of ® (4 years), it was decided to run a couple
of experiments with different values of ® (2 and 7
years) for F = 7, G = 0.125, o = B = 0.05. It is known
that the broad spectrum of interannual variability in the
tropics has a peak in the range of 2-7 years and,
therefore, the above values of ® were chosen. It was
found that the system remained chaotic for ® = 2 and
7 years. However, the number of positive exponents
were two for @ = 2 years and one for ® = 7 years.

For systems whose equations of motion are explicitly
known determination of the complete Lyapunov spectrum
is relatively straightforward. The Lyapunov exponents
may be defined by the phase space evolution of a sphere
of states. However, efforts to apply this definition numeri-
cally to equations of motion fail since computer limita-
tions do not allow the initial sphere to be constructed
sufficiently small. This problem is avoided with the use
of a phase space plus tangent space approach so that
one obtains always infinitesimal principal axis vectors.
The remaining divergences of the orthonormal vectors
are overcome by repeated use of the Gram Schmidt
reorthonormalization (GSR) procedure on the vector
frame. Thus, repeated use of GSR allows the integration
of the vector frame for as long as required for spectral
convergence. We feel that the calculations carried out
in double precision with sufficient integration marchings
should yield robust values of the Lyapunov exponents.
Since the Lyapunov exponents change in general if the

Table 2. Lyapunov exponents for F = 7.0, G = 0.125 and for different values of o and B

o, f A A, A A A -
0,0 1.96 %107 -1.82x 1073 -1.82x 107 0.0 0.0

0, 0.05 259 %107 9.80x 107" -3.37x 107" -9.12x 107 -9.12x 107

0, 0.1 234 % 107° 3.53%x 1070 -1.35x 1072 -9.12x 10* -9.12x 107
0.05, 0 1.14x 10°° -1.57x 107 -2.04x 1073 0.0 0.0

0.05, 0.05 143x 107 1.52x10°° 2.12x10° -1.29x 10 -4.09 % 1073
0.05, 0.1 7.57% 1078 -2.28x 107 -1.29 x 107 ~-1.58 x 10 -3.42x% 107
01,0 -4.35x 1077 -9.89 x 1078 -3.45x103 0.0 0.0

0.1, 0.05 5.77%10° 2.01x10° 111 x 107 ~-1.72x 10 -3.43x 107

0.1, 0.1 7.68 x 1078 —6.59x 107* -6.60 x 10 -1.37x10? -1.41x 107
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Figure 1. Variation of the Lyapunov exponents with F for
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Figure 2. Variation of the Lyapunov exponents with G for
a=f =005 and F=7.0.

forcing values are changed, we have examined the
system with varying values of forcing. This is akin to
looking at the behaviour of the system at different
periods of the year, where one may assume that the
values of the forcing are more or less constant within
each of the individual periods. We have obtained the
result that for some values of F and G the computed
exponents are positive while for some others they are
negative. The interesting consequence of such a result
is that if the model imitates the behaviour of the coupled
ocean—atmosphere system, then the system is not always
chaotic but, in fact, becomes one for some conditions
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Figure 4. Variation of the Lyapunov exponents with o for B = 0.05,
F =170 and G = 0.125.

which are controlled by the forcings. Thus, if we examine
the coupled system behaviour over a period of one year
(the same being the periodicity of the forcings), then
the system is stable for some parts of the year while
for some other it behaves chaotically. This is exactly
the cause of the unpredictability of the atmosphere.
There is evidence® that the tropical coupled system is
most unpredictable during boreal spring and most pre-
dictable during boreal winter. Even though for part of
the forcing period (e.g. part of the annual cycle) the
system is not chaotic and may be predictable, when it
passes through the period of the forcing where it is
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chaotic, any two nearby similar trajectories are thrown
apart. This introduces loss of predictability even for the
low-frequency component.
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Possibility of usage of return maps to
predict dynamical behaviour of lakes:
Hypothetical approach
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In this article, we show how one-dimensional maps
can be wuseful in analysing experimentally the
dynamics of lake systems. We illustrate this by means
of hypothetical lake systems.

ONE of the ways to make a complex system easier to
analyse is by reducing the system to a simple system
that still captures the important features of the original
system. As the theory of one-dimensional (1-D) maps
is well developed in several fields'™, it will be useful
if an appropriate 1-D map can be constructed from the
system under study. In this communication, we
demonstrate how an approximate 1-D map can be used
to analyse the dynamical behaviour of some simulated
hypothetical lakes. The first-order difference equations
and the general conditions of the water bodies, and the
logistic map analysis for various possibilities are
hypothetically described in successive sections.

A treatise by May' lucidly explained the role of the
first-order difference equations, dynamical properties and
bifurcation generations in the application of ‘simple
mathematical models with very complicated dynamical
systems’.

The difference equation can be used for studying a
dynamical system as a water body at different time
‘intervals. It is represented as

X,

41

= F(X), (1)
.whcre X, and X, , are the populations (pixel population
in water body) of a natural system at time periods ¢ and
t+ 1, respectively. It indicates that output becomes an input
feedback, and hence an iterative process. The following

expression shows the relation between X, and X,

950

X2 = F(X,, ). (2)

The magnitude of population at a definite time in a
natural system is related to the magnitude of the popula-
tion in the preceding generation. This can be represented
applying the first-order difference equation X, _,
AX,(1-X), or X,,, =AX,—AX*, in which the first
term is linear and the second nonlinear. In this equation
the term A will give an idea about the magnitude of
variation. This equation defines an inverted parabola
with intercepts at X, = 0 and 1, and a maximum value
of X,,, = A4 at X = 05.If A > 1, it is an indication
that the population growth rate is increasing. The
parameter A gives the entire description of the system.
The steepness of the inverted parabola in the logistic
map depends on A. If A < 1, the population death rate
is said to be increasing. The strength of nonlinearity
explains the temporal changes in the dynamical system.
Till a certain degree of magnitude of nonlinearity, the
growth in areal extent of the water body will be attracted
to the equilibrium stage specific to that level of non-
linearity. For a magnitude range A = 3.57-4, the dynami-
cal system shows chaotic behaviour, revealing that the
areal extent of the water body is repelling. All the
parameters in the difference equation should be such
as to fix the linear term to betweéen O and 1, and the
strength of nonlinearity' to between 0 and 4, failing
which the areal extent tends to become extinct. The
graphic analysis explains that the normalized status of
a dynamical system as water body if starting at larger
than 1, it immediately goes negative and becomes extinct
at one time step. Moreover, if A > 4, the hump of the
parabola exceeds 1, thus enabling the initial population
near 0.5 to become extinct in two time steps. Therefore,
there is a need to restrict the analysis' to values of
A between 1 and 4 and values of X, between 0 and I.
As the areal extent X, of the water body is small (much
less than 1 on a normalized scale, where 1 might stand
for any number such as 1 million km®), the nonlinear
term can initially be neglected. Then the areal extent
at time step (year) ¢ = 1 will be approximately equal
to A X,. Figure 1 shows a logistic model and its essential
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