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An attempt is made to present some challenging
problems (mainly to the technically minded
researchers) in the development of computational

models for certain (visual) processes which are:

executed with, apparently, deceptive ease by the
human visual system. However, in the interest of
simplicity (and with a nonmathematical audience in
mind), the presentation is almost completely devoid
of mathematical formalism. Some of the findings in
biological vision are presented in order to provoke
some approaches to their computational models. The
development of ideas is not complete, and the vast
literature on biological and computational vision
cannot be reviewed here. A related but rather
specific aspect of computational vision (namely,
detection of edges) has been discussed by Zucker',
who brings out some of the difficulties experienced in
the classical approaches.

Space limitations here preclude any detailed
analysis of even the elementary aspects of infor-
mation processing in biological vision. However, the
main purpose of the present paper is to highlight
some of the fascinating problems in the frontier area
of modelling mathematically the human vision
system.

‘Facts not yet accounted for by available theories are of
particular value for science, since it is on them that its
development primarily depends.’

A. Butlerov?

SEEING is obvious to us, as human beings. However, on
careful examination, we discover that the problem of
how we identify objects — how we are able to tell cats
from dogs, chairs from tables — is a fundamental one.
Hebb® was one of the early workers to have made a
serious attempt to analyse it.

Recognizing patterns (and taking action on the basis
of the recognition) is the principal thing that most living
systems do. It appears that one can learn much from a
study of the way biological systems operate. Perhaps for
this reason, vision has always been a paradigm problem
for artificial intelligence (AI). Of course, there exists a
consnderable knowledge of the physiology of nerve
cells* and the neuroanatomy of certain insects and

mammals (including man)®, but this has not yet provided -

us with an implementable logical design for the brain,
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not even for one aspect like vision. One constantly
wonders whether we can treat the eye as the ‘window’
through which we can examine more efficiently the
workings of the brain!!

In this context, it is approprnate to look back and
analyse Turing’s classic essay which provides an
affirmative answer to the question ‘Can machines

-think?” He suggests that the machines (namely, digital

computers) can be built which will be able to ‘compete
with men in all purely intellectual fields’. Turing begins
with an attempt to define the meaning of the terms
‘machine’ and ‘think’, and decides, in the interest of
avoiding ambiguity, to replace the question by another
which is relatively unambiguous, involving an ‘imitation
game’, in which three objects participate: a computer, a
human being and an interrogator. The goal of the
imitation game is to be able to distinguish between the
human being and the machine, by querying both of them
appropriately.

It is also known that the operations of the nervous
system in processing information are fundamentally
different from those a computer would perform under a
similar situation”. Moreover, the operations the nervous
system performs apparently lack logical precision and
arithmetical depth. Nevertheless, the brain executes:
complicated tasks, using its own logic and arithmetic,
with an efficiency unmatched by any known automaton.
A comparison between the brain and the computer
should refer to their (hardware or physical) components
and their organization, as well as the representation and
transmission of information:

e In the digital computer, the paradigm (which
dominates computation) is that information must be
digitized to guard against noise and degradation. Note
that digitization imposes precision on an inherently
imprecise physical system. A neuron, in contrast, is
an analog device: its computations are based on
smoothly varying ion currents rather than on bits (on—
off) representing discrete ones and zeros. Yet, neural
systems are generally accepted to be superbly
efficient information processors.

o The connections among the neurons are numerous —
any neuron may receive many thousands of inputs in a
three-dimensional distribution. In contrast, the
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connections in a digital computer are limited to a
small number, in a two-dimensional distribution.

e While the neurons operate about a million times more
slowly than silicon chips, they are capable of doing
millions of operations simultaneously, while the
computer operates in a serial, one-step-at-a-time
fashion.

s The individual neurons in the retina consume one ten-

millionth as much power as the digital counterparts
do.

e Neurons operate with far less precision than the
digital computer.

Therefore, biological computation is very different
from its digital counterpart, and any modelling of the
former is to be made only in terms of the tasks of
information processing that they pe.form. In other
words, the visual processing tasks are to be decoupled
from the hardware that performs them (see note 1).

Turing-type question for vision

The Turing question of relevance to vision is: Can
. machines see (see notes 2 and 3)?

If our goal is to understand the information processing
aspects of vision, we need to distinguish, according to
Marr’, among three levels of analysis:

1. Computational theory. What is the problem of vision,
and in what manner can (and do) the physical cons-
traints enable a unique solution to be determined?

2. Algorithm. A clear procedure to implement the
computational theory.

3. Implementation. Hardware or neural-ware realization

of the algorithm.

As far as a theoretical answer is concerned, it should
be added here that there are many perceptual processes
(like illusions) whose problem specification (in the
sense of Marr) itself is not clear.

In order to provide a practically (as distinct from
logically) satisfying answer to this question (see note 4),
the words ‘machine’ and ‘see’ are to be defined
appropriately. As far as the equivalent ‘imitation game’
question is concerned, it has to be framed in such a way
as to bring in a robot with cameras as eyes, as a
participant. The human (H) and the two-eyed robot (R)
are to be presented with questions by the interrogator
who displays on the television screen, for both H and R,
the same images of the various scenes. The Turing-type
interrogation can be proposed. Both H and R are to
answer questions related to the contents of the images
displayed on the screen.

In fact, one wonders whether the question and answer
method (in the imitation game) proposed by Turing is
appropriate for pitting the human against the machine
for ‘seeing’. Interestingly, in Turing’s imitation game

*
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the slowness and inaccuracy in arithmetic are the human
weaknesses, and hence betray the human if he were to
act as a machine. But not so in ‘seeing’ (see note 5)!

In the manner of Turing’s disclaimers, it should be
added that we should not ask whether the machines at
present available would be able to see, but whether there
are imaginable machines which would. The formulation
of test questions for the imitation game in ‘seeing’
appears to be an interesting research problem by itself.
A typical question could, for instance, be: Given an
image of a scene as an input (for example, the image of
Figure 1), can the machine print out on a typewriter a
statement about what objects the scene contains and
where they are? '

Recognition of patterns and machine vision

[n any attempt to automate recognition capabilities of
biological vision, we should analyse how we (as
humans) recognize the difference between, say, a square
and a circle? Or, in general, how does a biological
organism abstract the attribute of shape of an object (see
note 6)? Observe that a square is recognizable as such,
by humans, in different sizes and orientations and in
different parts of the visual field. (In terms of biology,
the recognition of a square is obviously independent of
the particular groups of retinal cells excited.)

A visual image on the retina is nothing more than a
pattern of light, and patterns are a collection of contours
and edges, which in turn are defined as regions of sharp
changes in intensity of light falling on the retina. One of
the basic properties of the visual system is its sensitivity
to contrast, the ability to detect an edge or a contour,
which is determined by a change in brightness and dark-
ness across the visual field. It is astonishing that our
eyes execute complicated visual tasks (like distinguish-
ing between a shadow and a pothole) with phenomenal
ease. In fact, the human retina is estimated to perform
more than 10 billion calculations per second before an
image even reaches the optic nerve.

The major goal in machine vision is automatic
recognition of objects, which implies that a corres-
pondence be found between elements of the image and
an a priori representation of objects in the world. 1t is
not yet clear what type of prior world knowledge is
really the heart of the matter. A recent paper by
Pavlidis' offers some subjective comments on the
reasons for the relatively slow rate of progress in
machine vision in the last quarter of the century.

If the literature is any guide, whatever systems have
been designed and built in the various laboratories of
the world work in specialized domains only, requiring
careful lighting and imaging conditions. For instance,
bin-picking (i.e. picking objects jumbled together in a
bin, not laid out flat without occlusion) is still beyond
our reach. There appears to be nothing of significance in
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Figure 1a. Aerial image of a part of the Earth’s surface.
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Figure 15. Satellite image of a hilly terrain on the Earth’s surface.

machine vision except for some very special appli-
cations in controlled environments like the OCR (optical
character recognition) and industrial inspection of
specific parts or objects.

However, we read in journals and newspapers that
robots aided by image processors are doing wonderful
things: car manufacture, packaging chips, and inspecting
medicines, to name a few. Yet, it is to be emphasized
that these automatons accomplish these jobs only under
controlled conditions: lighting must be strictly modu-
lated and objects must be carefully positioned to avoid
ambiguities. If robots are to replace humans in every-
day-life — on farms, construction sites and the like - they
must be able to cope with a far more bewildering array
of sensory data.

CURRENT SCIENCE, VOL. 68, NO. 2, 25 JANUARY 1995

Biological vision

The human visual mechanism operates at an incredible
speed of 3—6 ms to form a coherent image during the
day, and 100 ms to form an image at night. Therefore, to
the human eye, vision seems instantaneous, and we are
usually unaware of the visual processing that is taking
place.

In some primitive creatures, much of the information
processing is done by the eye itself, and hence the eye
can be called a mini-brain! However, more advanced
creatures actually ‘see’ with their brains, since the
trigger cells that respond to specific shapes and colours
are found in the visual cortex itself. But even the human
eye edits the visual information that comes to it. Each
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eye has approximately 125 million photoreceptors, but
there are only one million ganglion cells leading to the
optic nerve that forwards the visual signals to the brain
(Figure 2). Much of what the eye sees never reaches the
brain.

From the physics of the human vision system, it is
'evident that the images formed on our retinas are upside
down. From two such inverted two-dimensional
projections of the three-dimensional world, the brain
interprets the image ‘right-side-up’ and in three
dimensions! Of course, the eye also uses visual cues,
such as distance and texture, to make sense of the
images it receives.

‘Neural architecture

In humans, the cerebral cortex almost completely
envelops the rest of the brain. It is very complex, not
only structurally but also in its functions. Vision is

- supposed to provide the brain with nine-tenths (?) of the

information coming from all the senses. Humans per-
form recognition and other related activities (including
locomotion) in a highly complex world of nonstationary
objects under variable lighting conditions. The two
special characteristics of the human visual system are:

o Visual processing is done not in a single stage but in
multiple stages, not just hierarchically (see note 7)
but rather heterarchically (Figure 3). This is a
consequence of the physiological structuring (or
architecture) of the retina — visuai pathway — visual
cortex mechanisms (Figure 2 d).

e Massively parallel computation.

The hierarchy refers to the representation of visual
data in increasing abstraction — from the image intensity
on the retina to changes in (i) intensity (used for stereo
perception), (ii) surface composition, (iii) location, (iv)
orientation, (v) end points of features, (vi) distance, (vii)
reflectance and the like to the symbolic interpretation of
the visual scene. Some intermediate representations are
believed to be necessary before object recognition takes
place. This seems to be one of the ways to achieve
reliable correlation between our perceptions and the
objects in the world, in spite of varying illumination and
other factors. However, the contribution of high-level
knowledge and inferential procedures to the vision
process is not clear.

In this multilayered structure, two types of flow of
information are involved:

e The (direct) flow of information is from the receptors
(in the retina) through early processing to higher-
level vision. These computations are organized as

Figure 2. a, Block schematic representation of the human visual
system; b, essential elements of the visual pathway; ¢, some details
of the retinal structure; 4, block schematic of the visual pathway.

CURRENT -SCIENCE, VOL. 68, NO. 2, 25 JANUARY 1995



NEUROSCIENCE — A MULTIDISCIPLINARY APPROACH

e The feedback flow of information is from the later
( grouping of §tructures, stages of processing, which modify and control the
model matching. 2-D and 3-D object earlier stages (Figure 3).

description using symbols,...) , .
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The bipolar cells do not respond to the absolute
brightness of the scene but only to the difference
between the photoreceptor signal and the local average
signal as computed by the horizontal cell network.

Real vision needs movement-sensitive and edge-
enhancing functions of the amacrine and ganglion cells.
Additional neural circuits are needed to recognize the
patterns that the retina generates.

It has been found by electrophysiological experiments -

that both retinal ganglion and geniculate cells respond
best to a roughly circular spot of light of a particular
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size in a particular part of the visual field. Each cell’s
receptive field (the patch of retinal receptor cells
supplying the cell) is divided, with an excitatory centre
and an inhibitory surround (an ‘on-centre’ cell) or
exactly the reverse configuration (an ‘off-centre’ cell)..
This is the centre-surround configuration (Figure 5).
Because these cells have circular symmetry, they
respond to a line stimulus (a bar of light), whatever its
orientation.

The signals from neighbouring visual cells may
interact with each other; they may be added together so
that their sensitivity is the sum of their receptive areas
or they may inhibit each other. The signal from a group
of cells or facets may be inhibited when cells
surrounding their receptive field receive the same kind
of stimulus (phenomenon of lateral inhibition). The
signal produced by a patch of light falling on the central
field will increase as the area of the patch increases until
it fills exactly the receptive area. Henceforth, as the
patch is increased further, the signal will actually
decrease when the light begins to impinge on the
inhibitory surround. The centre-surround organization is
believed to enhance contrast perception, but to leave
visual acuity unaffected.

The various salient features of the pattern — moving
edges, either dark or light, the presence of moving dark
spots, characteristic spatial frequencies in the pattern,
and edges or spots moving in particular directions — are
abstracted by the neural retina and tradsmitted inwards
to the brain. The task of the cortex for the processing of
visual information is different from that of the eye as an
optical system. The eye, retina and lateral geniculate
nucleus preserve essentially the spatial arrangement of
the retinal image; the cortex transforms this geometry
into abstract concepts.

Interestingly, it was found, based on the work of Cajal
and de No (see reference 5), using the Golgi method,
that the operations the cortex performs on the infor-
mation it receives are local. Further, the brain’s wiring
pattern ensures that closely related information is
mapped onto neighbouring groups of neurons. As an

example, the cortical areas that perform the early

processing of visual information preserve the spatial
relations of the image.

The information on vision is relayed from one cortical
area to the next, and the mapping of information
becomes progressively more blurred, and the infor-
mation carried more abstract. :

There is a wide variety of cell types in the cortex,
some simpler and some more complex in their response
properties, the simpler cells feeding the more complex
ones. Simple cells are orientation-specific and sensitive
to the location of the oriented line. According to some
researchers, these simple cells have receptive fields
composed of several parallel elongated excitatory and
inhibitory regions, modelled mathematically by the so-
called Gabor function. Each receptive field can be
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Figure 6. Random-dot stereo pair of images with the multiplanes as a three-dimensional percept.

characterized by a (radial) spatial frequency, corres-
ponding to the inverse of the distance between bright
bars, and by an orientation. The cell responds to a range
of frequencies and orientations about its centre values.
An important discovery is that the receptive field of
each cell occupies a patch that is much smaller than the
total frequency region to which the ensemble of cells is
sensitive (see note 8).

More numerous are the orientation-specific complex
cells, which are less particular about the exact position
of a line. Complex cells behave as though they received
input from a number of simple cells, all with the same
receptive-field orientation but differing slightly in the
exact location of their fields (see note 9) [see Reference
5b for the results of experiments (using micro-
electrodes) on the visual brain of the cat]. Certain brain
cells respond to specific patterns at the eye, other brain
cells to other patterns; some cells respond to movement

CURRENT SCIENCE, VOL. 68, NO. 2, 25 JANUARY 19935

in one direction but not the opposite or any very
different direction; other cells respond to lines oriented
at a certain angle and others to corners.

Hubel and Wiesel’ have also found that pattern
information of various kinds is brought together in

‘columns’ arranged at right angles to the clearly visible -

layers of the striate cortex. Such a structure seems to

solve the problem of how the brain relates together not

only three spatial dimensions but also colour, movement
and other object characteristics. '

Stereo vision

The visual cortex also combines the inputs from the two
eyes. If two objects are separated in depth from the
viewer, then the relative positions of their images will
differ in the two eyes. The process of stereo vision,.in
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Figure 7. Natural images of objects.

essence, measures this difference in relative positions,
called the disparity, and uses it to compute depth
information for surfaces in the scene.

In primates and other species, binocular vision leads
to depth perception, which is achieved in part by
comparing the images from the two eyes. It has been
discovered by Julesz', using some ingenious experi-
ments, that form perception does not precede depth
perception and that only ‘local’ contrast or texture
comparisons are needed. Julesz achieved this by
presenting each eye of a human subject with the same
pattern of random dots, except that a region of dots in
one, image was displaced horizontally. The region so
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displaced is perceived by the subject as a surface at a
different depth than its surround. See Figure 6 for the
stereo pair which has to be seen by a stereoscope for
perception of the three-dimensional multiple plane
structure shown in the lower half of the figure.

Mathematical modelling of vision

The realization among researchers in vision now is that
an understanding of biological vision is important in the
attempt to create robots endowed with vision. Therefore,
it is not surprising that vision system builders are

CURRENT SCIENCE, VOL. 68, NO. 2, 25 JANUARY 1995
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looking for inspiration in biology. Mathematical modell-
ing of vision is based on psychophysical/neurophysio-
logical experiments on a biological system.

The scientific results emanating from neurophysiology
and psychology usually do not address themselves
directly to the issues arising out of the analysis of the
so-called real and natural scenes (of the type shown in
Figures 1 and 7). In neurophysiology, the input stimulus
signals generally used are rectangular on—off pulse
trains of light, simple periodic sinusoidal variations or
moving versions of these. Such inputs present a very
confused picture to anyone wishing to specify a
computer model for perception. Here the emphasis is on
monochromatic stimuli such as small objects (for
example, circles or squares) against a uniform back-
ground, lights, characters and line drawings. Rarely is an
actual picture of a real environment, such as an office
scene or suburban street scene, ever employed.

Hubel and Wiesel> and others have experimentally
discovered, in the visual system (in the cat and other
mammals), networks of cells which are selectively
responsive to such features as the direction of a contour,
rate of change of brightness, and curvature of the
contour. Any (perceptual) model, if it has to be
mathematically complete, will have to assume the
existence of modules (or banks of filters) operating on
the input in order to extract (at least in a preliminary
way) cues which are passed on to the next stage for
further processing/abstraction.

In the attempt to model the visual system, it would be
helpful to treat the process of vision as occurring in
three (four) stages (Figure 2 a):

1. Optical stage, when an image of the outside world is
projected onto the retina.

2. Transduction stage, when the light- sensitive visual
cells convert the light energy into electrical signals.

3. Phykiological stage, when these primary signals are
analysed.

4. Possibly, the (last) stage that marks the consciou-
awareness of a visual display.

The neural net modelling of various aspects of v1sua1
perception started with Pitts and McCulIoch s paper" on
pattern recognition. Land and McCann'® were among the
first ones to demonstrate that edges in the retinal image
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Figure 8. General schematic diagram for the derivation of the
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play a key role in the process. They proposed that edge
information is extracted in part in the retina, via lateral
inhibition between retinal neurons, and that in the cortex
there is an inverse process — lateral excitation — whereby
the brightnegs of a patch of the image (bounded by
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Figure 10. Daugman’é synthetic images to demonstrate the inadequacy of the Marr model of human vision based on zero crossings.
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edges) is computed. The principal hypothesis is that a
major function of the visual cortex is to compute
invariants of the scene at different levels of abstraction.

Explicit modelling resuits

Perhaps as a first step towards answering the question of
the Turing type, Marr’s book’ investigates the question
‘What does it mean, to see?’ His research has pro-
vided quite an interesting framework for understand-
ing how humans interpret visual information (see
note 10).

In his formulation of the model of early vision", the
vision problem begins with a large grey-level intensity
array and culminates in a description that depends on
that array and on the purpose for which it is being
viewed. The first step of consequence is to compute a
primitive but restrictive description of the grey-level
changes present in the image, and then to implement all
subsequent computations as manipulations of that
description. The description itself is called the primal
sketch (as indicated in a grossly simplified schematic
diagram in Figure 8). According to Marr and Hildreth™,
in their attempt to model thc early processing of
information by the humian visual system, the image is
first processed independently. through a set of different
size operators (see note 11) whose shape is the
Laplacian of a Gaussian A%g (x, ) (which is a rotatio-
nally invariant second-derivative operator), where the
function g(x, y) is the Gaussian function of two variables
whose size is controlled by the variance parameter o.
The loci, along which the convolution outputs cross
zero, mark the positions of intensity changes at different
resolutions. These changes often correspond to what we
intuitively call ‘edges’, and are the consequence of a
change in some physical property of a surface:
reflectance, geometry or incident illumination. See
Figure 9 for the one-dimensional representation of the
Laplacian of the Gaussian and for the consequences
(also in one-dimension) of its operation on an ideal and
a realistic ‘step’ edge.

A sharp change in the intensity will give rise to a peak
in the output of a first-derivative operator (see note 12),
or, equivalently, zero crossing in the output of the
second derivative. These zero crossings can be
described by their position, slope of the convolution
output across zero, and the two-dimensional orientation.
The set of descriptions from different operator sizes
forms the input for later visual processes, such as
stereopsis and motion analysis.

Distinct from the above approach, Zucker' presents
the new trends. involving the ‘tangent field” for the
detection of boundaries of objects in a scene. According
to Zucker, these are supposed to open up ‘intrigu-
ing’ biological and mathematical connections (see
note 13).
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However, there does not seem to exist a definitive
account of the way in which the cortex actually
processes the edge information.

Consider the two distinguishable patterns'® in Figure
10, which are synthetically generated. The essence of
this generation is that a sinusoidal pattern (of frequency
@) in-the horizontal direction is modulated in the
vertical direction by another sinusoidal pattern of
frequency w,, the amount of modulation being restricted
by the frequencies w; and w,. The patterns so generated
are clearly distinguishable. But their zero crossings (or
contours obtained according to the Marr model of
blurring by a gaussian function, and taking the second
derivative of the resulting image) are the same vertical
lines.

More generally, a drawing of a scene adequately
represents the scene, despite the very different grey-
level image to which it gives rise. The results of many of
the edge detection algorithms which have been proposed -
for extracting line drawings from natural images have
proved to be generally unsatisfactory. Doesn’t this imply
that even an adequate line drawing of a scene cannot be
computed unless hypotheses about what is present are
allowed to influence processing strategies?

Stereo-perception modelling

Marr® and Marr and Poggio22 made explicit the steps
involved in measuring stereo-disparity from the stereo
pair of images: (i) a particular location on a surface in
the scene is selected from one image; (ii) the same
location is identified in the other image; and (iii) the
disparity between the two corresponding image peints is
measured. The difficulty of the problem lies in steps (i)
and (ii), that is, in matching the images of the same
location, the so-called correspondence problem.

Dev® and Marr and Poggio22 proposed a neural net
implementation of the Julesz model. In this model,
neurons in the visual cortex (excitatory interactions of
neighbouring units signalling the same depth, and
inhibitory interactions otherwise) are monocularly
driven, and can signal the depth of a local patch of the
surface of an object.

In this context, random-dot stereograms (of the type
shown in Figure 6) are particularly interesting because
when one tries to set up a correspondence between two
arrays of dots, false targets occur in profusion. A false
target refers to a possible but incorrect match between
elements of the two views. In spite of such false targets,
and in the absence of any monocular or high-level
cues, we are able to determine the correct corres-
pondence. Thus, the computational problem of human
stereopsis reduces to that of obtaining primitive
descriptions of locations to be matched from the images
and solving the correspondence problem for these
descriptions.
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Figure 11. Patches of black and white giving rise to the perception
of a dog.
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Figure 12. Pattern of circles and squares.

Mathematically difficult perceptual processes

The human visual system has a highly developed
capability for detecting many classes of patterns having
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Figure 13. The so-called glass pattern.

TN nNnNn
duuuuuvuuyuduuyd
nonaonnNnnAonaomnAn
DU UL UL LY uu U
amnnnNnnnonnNnAanNnnnn
JLuuulbuygdldUuuu
umdmmbpdJdnununu
ununmnudnunupunn
miuynun dngynunn
unpgnudnouyundnunnn
dhnunUUnunununn
UnUnUnunununn

Figure 14. Beck’s textural image.

properties of, for instance, symmetry, collinearity,
parallelism and connectivity.

A major role is played by the process of perceptual
organization (see note 14), in which groupings are
formed directly from the spatial structure of the image
without prior knowledge of its contents. Refer to
Figure 11, containing mere patches of white and black,
but still leading to the perception of an object (dog) in
the scene. Under this category, one includes figure-
background phenomena, segmentation, Gestalt percep-
tion and others.

The Gestalt psychologists, in the early part of the
century, made much play of perceptual organization, in
which stimulus patterns are organized into ‘wholes’
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Figure 15. Pattern of white circles (of gradually decreasing sizes)
against a dark background, which are perceived as surfaces.

(Gestalten). Patterns of dots were used in an attempt to
establish the laws of organization™®. A typical
principle is shown in Figure 12: The circles and the
squares are seen separately, each forming rows. This
demonstrates that similarity is a factor in perceptual
grouping.

In the glass pattern (Figure 13), we see and recognize
many black dots on a white paper, but we also recognize
circular groupings. _

The textural image of Figure 14 (ref. 26) contains
simply u’s and inverted u’s. We can distinguish between
the upper and the lower halves in this image. This is
_apparently accomplished by the long horizontal
groupings (or segmentation).

A human observer can easily understand the shapes of
the surfaces whose images are shown in Figures 154, b.
Even though some computational theories for the
description of the above perceptual processes have been
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proposed”’, they are not satisfactory when applied to

natural images.

Illusions as counterexamples (to current theories)?

There are also instances in which we see things not in
the image as such; these are called illusions. See, for
example, Figure 16, wherein we perceive a bright disk
within the lines/regions, although the luminance is the
same throughout the image.

Optical illusions seem to provide an important insight
into the biological retina’s role in reducing the
bandwidth of visual information and extracting only the
essential features of the image (see note 15). The
illusions are created because the retina encodes the
visual information selectively. '

Perceptual illusions involve a wide range of stimulus
properties, including luminance, colour, size, shape,
orientation, distance and velocity. They are not yet fully
understood, and the number of theories proposed to
explain them is almost as great as the number of effects
so far discovered. : .

The first type of illusion concerns the adaptive
response of the visual system to fields of parallel lines.
Figure 17 a, for example, has a high degree of contour-
directional redundancy. After looking at it for a while
and looking away, one sees a curious pattern of wavy
circles. _

With Figure 175, on the other hand, one sees wavy
radial streamers as an afterimage. A general description
could perhaps be that after exposure to' near-parallel
lines in one direction, the visual system seems to be
hypersensitized to a direction roughly orthogonal to the
direction of the stimulus. This leads to the possible
existence of networks, in the (human) visual system,
specifically sensitive to direction and capable of
adapting to direction in such a way that our colour-
sensitive mechanisms tend to adapt to celour, so that
complementary directions tend to be seen after exposure
to a given direction just as complementary colours tend
to be seen after exposure to a given colour.

The Hermann grid (Figure 18) is an_array of black
squares. Although the white grid has equal luminance
throughout, small grey circles can be seen at each of the
intersections. These differences in perceived luminance
cannot be measured by a photometer; they are not
present in the physical stimulus. We see the grey circles
because of the way the visual system processes adjacent
areas of dark and light. ‘

Artificial neuron modelling

Extending the results of McCulloch and Pitts’® and
Hebb®, the present-day connectionists hold that the
abstraction from the given image of a scene can be
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Figure 16. Some types of illusions.

Figure 17. a, Ray pattern giving rise to complementary images; b, circular pattern giving rise to similar complementary images.
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Figure 18. Hermann grid.

ORS Object recognition
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Figure 19. Grossberg model of human perception.

described in terms of the synaptic strengths in the neural
network”. Given that the entire behavioural response is
realized in a few hundred milliseconds (using the slow,
also millisecond) neural circuitry of the brain, it appears
that the connectionist models of (visual) perception
seem to be the only way to achieve these response times.

Perhaps, motivated by such a consideration, some
attempts have been made to create a ‘connectionistic’
neural model for the visual cortex. For instance, von der
Malsburg®® considers a nerve net model (for the visual
cortex of higher vertebrates) which consists of 338
neurons forming a sheet analogous to the cortex. These
neurons are connected randomly to a ‘retina’ of 19 cells.
With the stimuli in the form of light bars, a learning
procedure is given for the organization of orientation
selectivity of single units.

In a ditferent framework, Grossberg ef a contend
that some perceptual phenomena can be explained by
their new model, consisting of three subsystems:
boundary contour system (BCS), feature contour system

1.31, 32
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(FCS) and object recognition system (ORG). These
subsystems are supposed to interact to generate a
representation of the physical world as the output of a
sequence of operations on the human retinal image. This
model is supposed to explain how our visual systems are
designed to detect relatively invariant object boundaries
in spite of noise and to recognize objects in an environ-
ment subjected to occlusion. See Figure 19 for a

" schematic of the Grossberg model.

For pre-attentive vision, Grossberg er al.>"** report

that BCS and FCS lead to emergent boundary
segmentation and featural filling-in. This architecture is
claimed to clarify how scenic data about boundaries,
textures, shading, depth, motion and other types of
information can be cooperatively synthesized in real
time into a coherent representation of three-dimensional
form.

We have recently presented the actual results of some
computational experiments on the Grossberg neural
network model for brightness perception®. However, on
implementation of the brightness perception and texture
boundary detection Grossberg models, it has been found
that the outputs do not match the predicted results. The
model definitely needs to be changed, but what changes
are to be made are not known.

Fukushima" has attempted to create an artificial
neural network architecture which is ostensibly similar
to the neuronal structure as described by Hubel and
Wiesel’, to recognize two-dimensional patterns. It has
been found that the performance of this is far from
satisfactory™*.

Conclusions

The success of the venture to create a machine vision
system can lead to a bridge between neurobiology and
information sciences. One of the new views of infor-
mation processing is that analog systems may be able to
solve problems found intractable by conventional digital
methods.

Many of the results in the literature on modelling of
perceptual processes involved in the recognition of
patterns/objects in natural scenes appear to be unsatis-
factory. Some of the images which are not adequately
analysed by the current theories of perception have been
presented in this paper.

With the invasion of computers into human activities,
a topical question is: Can one design a machine to
replace the human visual system and, more significantly,
give ‘artificial sight' to the blind people? Conversely,
can the mathematical analysis of the human vision
system help us to understand the visual cortex behaviour
itself? For related studies, see References 35-37.
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Notes

10.

11.
12.
13.

14.

15.

. This is, possibly, the motivation for Fukushima’s'

. This separability is the foundation of the scnence of artificial

intelligence.

. Some fundamental questions come up for analysis: Are ‘seeing’

and ‘thinking’ mathematically the same, or is one a subset of the
other? Can ‘seeing’ also be reduced to the ‘digital’ paradigm as
thinking, the way Turing does?

. It is generally accepted that the retina’s nerve cells function as

complex analog processors. The connections between these
cells, the characteristics of their connections and the shape of
the cells themselves all seem to play a major role in determining
the basic parameters of analog processing. In this context, see
reference 8 for the analog paradigm suggested as a model for
retinal processing.

Unless, of course, one merely asserts that this question is
equivalent to Turing’s original question.

Ullmann'®: ‘If you consult a heart specialist you can be assured
that he knows fairly accurately how the heart works, but a
person who consults a psychiatrist has no such assurance
concerning the brain.” Can’t one here replace the word
psychiatrist by psychophysicist or even a neurobiologist?

. Object identification is for the most part a matter of form

perception. Form may perhaps be described as a set of properties
that are invariant over certain transformations (like brightness
and colour). Sometimes visual form is restricted to properties of
contours which may be generated by discontinuities in
psychological properties of light other than brightness, i.e. hue,
saturation and texture.

. In the so-called early vision, information is represented in a

spatial rather than symbolic form. This corresponds to the first
few layers of the hierarchy.

. This is interpreted as implying the existence of multiple

channels in the visual system. See reference 12.

structure of
the ‘neo-cognitron’ for pattern recognition. Discussed later and
in Reference 34.

It is curious that Marr has been quoted as having said'’. ‘He did
not much mind if any of his theories failed to find experimental
verification.” True enough, patterns can be generated which are
discriminated by humans but not by the Marr model of
computing the zero-crossings. See Reference 18 and the
discussion below.

These findings are consistent with the discovery of Hubel and
Wiesel® that at each cortical location there exist many neurons
with differing receptive ficld sizes. See also Reference 21.

Edge detection amounts to numerical differentiation, which
leads to (mathematically) difficult problems — the so-called ill-
posedness.

However, the illusory contour problem, which was used by
Zucker' as an example to show the inadequacy of the classical
approaches, is also surprisingly left out of the new framework.

Any visual task performed spontaneously without effort or
deliberation is regarded as a perceptual task.

As also for isolating and investigating the sensory and cognitive
processes associated with normal perception?®.
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