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This paper presents an introduction to neuro-
computers and an overview of the history of
neurocomputers. Direct implementation methods of
neurocomputers using techniques from micro-
electronics and photonics are discussed. Emulation
methods using special-purpose hardware are high-
lighted. The role of parallel computing systems for
improved performance is introduced. Some commer-
cially available neurocomputers and performance
issues of such systems are also presented.

FROM the advent of the first useful electronic digital
computer (ENIAC) in 1946 until the late 1980s,
essentially all information processing applications used
a single basic approach: programmed computing. Solv-
ing a problem using programmed computing involves
devising an algorithm and/or a set of rules for solving
the problem and then correctly coding these in software
(and making necessary revisions and improvements).

A new approach to information processing that does
not require algorithm or rule development and that often
reduces significantly the quantity of software that must
be developed has recently become available!. This
approach, called neurocomputing, allows for some types
of problems (typically in areas such as sensor process-
ing, pattern recognition, data analysis and control), the
development of information processing capabilities for
which the algorithms or rules are not known (or where
they might be known but the software to implement
them would be too expensive, time-consuming or
inconvenient to develop). Since current computers
operate on a totally logical basis, software must be
virtually perfect if it is to work. The exhaustive design,
testing and iterative improvement that routine software
development demands makes it a lengthy and expensive
process. The computer-aided software engineering
(CASE) tools often used with neurocomputing systems
can frequently be utilized to build these routine software
modules in a few hours. These properties make neuro-
computing an interesting alternative to programmed
computing, at least for those areas where it is applic-
able.

Formally, neurocomputing is the engineering
discipline concerned with nonprogrammed adaptive
information processing systems —neutral networks —
that autonomously develop operational capabilities in
adaptive response to an information -environment.
Instead of being given a step-by-step procedure for
carrying out the desired transformation, the neural
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network itself generates its own internal rules governing
the association and refines those rules by mapping or
associations of objects or representations in one set
(such as written words) with objects or representations
in another set (such as spoken sounds). Through trial
and error, the network literally teaches itself how to do
the task.

In the sections to follow, we describe the history of
neurocomputing, architectures of neurocomputers and
practical implementation attempts. .

History of neurocomputers

The first proposal to use neural networks as a basis for
computation was made in 1943 by McCulloch and Pitts,
who proposed to describe neural computation by a
network of binary threshold elements. More specifically,
each element could compute a weighted sum of inputs
from other elements and output a 0 or a 1 according to
whether this sum was below or above a certain thres-
hold.

In 1957 the perceptron was invented by Frank
Rosenblatt. In addition to the discovery of the
perceptron and his visionary view of the future of
neurocomputing, Rosenblatt also designed and helped to
build the first successful neurocomputer, the Mark I
Perceptron, which functioned as a character recognizer.
It was built and successfully demonstrated in 1957 and
1958.

One of the first approaches to an electronic model of
the neuron was an adaptive circuit theory pioneered by
Bernard Widrow in the early 1960s. Widrow worked on
a simple model of a neuron for pattern recognition and
signal processing (Adaline). While Adaline’s capab-
ilities were impressive, its initial applications were
limited because each neuron required an operator to
adjust its weights. John Hopfield was one of the first to
cast neural designs into microchips. His analog-to-
digital converter uses the principle of energy minimi-
zation, in which neural networks maintain a state of
lowest energy. The only inherent limitation for this
design method is the power dissipation cost created by
the resistive interconnections. Resistors create heat, and
because these circuits require high degree of inter-
connection — every amplifier must be connected through
a resistor to every other amplifier — heat dissipation in
the interconnect grid is the limiting factor on this sort of
cognizer chip.
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Most of the components in Hopfield’s simple design
already exist in other integrated circuits; hence, the
methods of constructing them are well established.
Accurate resistors, however, are often not needed and
the problem of building them into microchip silicon had
never been fully addressed. A team of Bell Lab’s
technicians, however, found one way of building such
resistive interconnects with advanced semiconductor
research apparatus. This newly developed method has
allowed Bell Lab’s researchers to build a 512-neuron
chip with over 256,000 connections. The 512 amplifiers
are arranged in blocks of 128 around the edges of the
chip. Resistors are built vertically at the 256,000
intersections of a central wire grid. A special low-
temperature ion beam process was used to place the
resistors.

To build Hopfield-style chips, different microchip
manufacturing techniques are being tried at other
research labs. Carver Mead fabricated an associative
memory chip that included several clever design
features. The chip consisted of 22 analog amplifiers
arranged along the diagonal of a 22 x 22 cell array. In
1986, Robert Hecht-Nielsen built the first commercial
neural network, which is described later.

Research in ways to capture neural network in silicon
has made remarkable progress in the last few years, and
with major research efforts being made in the United
States, Europe and Japan, even more progress will be
forthcoming.

Implementation aspects of neurocomputers

The progress of neurocomputing is inexorably related to
the progress in neurocomputer design. Historically, the
first real-world applications of neurocomputing became
possible only with the advent of sufficiently powerful
implementation hardware. Most future applications are
likely to require ever more powerful neurocomputers.
This section discusses the implementation of neuro-
computers and their performance measures.

The fact that Artificial Neural Networks (ANN) are
composed of a very large number of comparatively
simple processing elements leads us to the conclusion
that present-day digital computers may not be
particularly well suited as an implementation inedium
for neural nets. Neurocomputers can be built either as
hard-wired machines (direct implementation techniques)
capable of implementing only a limited set of neural
network architectures, or as flexible, reconfigurable
machines (emulation approach) that can run a wide
variety of neural network architectures. For those
applications where running multiple network types is
important, reconfigurability is essential. However,
hardware designed expressly for running a specific
network architecture can sometimes be more efficient.
We will begin this section with a definition and a brief
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analysis of direct ANN implementation approaches; we
will then define and focus on emulation-based imple-
mentations.

Direct implementation techniques

In direct implementation of ANNs, individual physical
elements (such as wires, transistors, light-emitting
diodes, etc.) are allocated to represent each element of
the neural network. Such an implementation is
inherently parallel, in that each implementation element
processes information simultaneously with respect to
other elements. The most commonly encountered direct
implementation schemes are based on optical or analog
electronic mechanisms.

In analog VLSI (Very Large Scale Integration)
microelectronics, semiconductor technology is used to
produce integrated circuits containing a large number of
analog components (amplifiers, comparators, etc.). Such
circuits operate on continuous-valued signals, rather
than on discrete-valued binary data. This makes analog
VLSTI attractive as an implementation medium for neural
networks, which also usually operate on continuous-
valued signals. Unfortunately, analog microelectronics
techniques face severe technological hurdles in neural-
network implementation. The existing and the projected
circuit technologies impose severe constraints in wiring
together large networks. As these and other
technological constraints are addressed, analog VLSI
will become an increasingly attractive means of
realizing artificial neural networks. Prof. Carver Mead
of Caltech and Synaptics Inc. has applied this analog
technology in the realization of several innovative
biologically inspired processing systems, including an
artificial ear and an artificial retina (see Figure 1). This
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Figure 1. Analog VLSI retina chip.
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vision-processing chip consists of an array of
interconnected analog circuits, each of which captures
the operation of the neural circuitry contained in a small
path of retina. Because this chip is a direct neural-
network implementation, it exhibits the real-time
processing speed which is possible with true parallel
implementations. Mead’s work exemplifies the value of
biology in guiding ANN applications development.

If analog VLSI faces severe hurdles as an ANN direct-
implementation medium, optical methods are perhaps
even less well developed. Optical ANN implementations
suffer from spatial-resolution problems (engendered, for
example, by optical diffraction limits), which restrict the
number of neural elements which may be implemented.
Also, there are very few optical mechanisms for
implementing the long-term memory required by adap-
tive neural nets. Optical methods exploit the fact that
light beams can pass through one another without
destroving their information content (though there are
possible interference effects). This opens up the
possibility of using optics as a high-capacity communi-
cation medium for implementing the links which connect
the nodes (processing elements) of a neural network.

One type of optical neural-net implementation is
illustrated in Figure 2. This example uses a hybrid
electronic/optic system, in which the input and output
signals for the net are implemented electronically. The
inputs are produced by a set of electrically driven light-
emitting diodes (LEDs). The light produced by each of
these elements is conveyed to the appropriate elements
of a weight matrix by lenses or by optical fibres. The
weight matrix is simply a transparent optical mask
whose matrix clements consist of regions shaded or
tinted to a degree that corresponds to the desired matrix
weight. To form an associate system, these outputs must
be fed back to the net’s inputs as shown in Figure 2.

Typical optical ANN implementation involves large
arrays of lLight-emitting diodes and photodiodes, or
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Figure 2. Llectrooptical network implementation.

complex nonlinear optical clements, all of which are
difficult to produce. Besides the initial expenses of this
exotic technology, there appears to be no way to signifi-
cantly cost-reduce such systems, as would be required in
high-volume ANN applications.

Direct ANN implementation is a ditficult task. It is
probable that direct implementations of specific
carefully chosen applications will be realized in the near
future. Howe¢r, these techniques are not likely to soon
provide an attractive means of realizing general ANN
applications. As an alternative to direct implementation,
we turn to digital emulation techniques.

Network emulation techniques

Network emulation techniques are quite general, per-
mitting the implementation of arbitrary network models
and arbitrary network organizations. While emulation
lacks speed and perhaps the low cost characteristic of
some direct implementations, it is extremely versatile
and builds on the existing digital technology. This is the
approach taken by most of the existing ANN companies.
Figure 3 shows several methods of pursuing an emula-
tion approach to neural-network implementation.
Emulating neural network using a standard Von
Neumann computer approach suffers from both speed
and memory utilization constraints, which can severely
limit the real-world applications of neural networks.
Even so, this approach is a logical and attainable
starting point for neurocomputer development. It may be
sufficient for certain neural network applications which
do not require large nets or high processing throughput.
Another possible type of emulation is the use of
numeric coprocessors or an array processor attached to
the host system. Most of the neurocomputers that have
been built are configured as coprocessors to a standard
computer acting as a host (Figure 4). As a coprocessor,
a neurocomputer can be thought of as just another type
of peripheral (like a printer) attached to a computer.
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Figure 3. Electronic neurocomputers.
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Figure 4. Neurocomputing coprocessor.

Hetch-Nielsen Neurocomputers Inc. (HNC)2 offers a
neurocomputing coprocessor card for IBM PCs and
clones (ANZA). This coprocessor is a fairly simple
numeric-oriented computer which can exchange data and
control information with its host PC. lts utility derives
from its hardware support for such numerically intensive
signal processing operations as sum-of-products, which
are extensively used in neural-net emulation. The
processing performance of the ANZA is derived from
the on-board 20 MHz Motorola MC68020 micro-
processor plus its associated 68881 numeric coprocessor
chip. Data memory and program memory are imple-
mented in 4 MB (4 million bytes) of RAM. Several
ANZA cards (or its successor ANZA Plus) are
installable within one host PC, increasing the size of the
nets which may be emulated. The ANZA was designed
to make easy neurocomputing integration into existing
software environments. Interaction between user
software on the ANZA is accomplished through a set of
callable subroutines that comprise the User Interface
Subroutine Library (UISL). The UISL provides access
to all of the ANZA’s network data structures and
functions. This allows the user to add quickly and easily
neural network capability to new or existing software.
As a general-purpose neurocomputing coprocessor, the
ANZA can implement anyone of the known network
paradigms.

As a third alternative to the emulation techniques,
multiprocessor systems are used. Each processor in such
a configuration is much faster than a microprocessor-
based numeric coprocessor, and each processor also has
a much larger amount of local storage (and thus the
ability to describe a larger piece of network). However,
such a machine is also much more expensive than a
coprocessor-based system. Some of the multiprocessor
systems used for neural-network implementation include
the transputer-based computing surface with 40
transputers, the WARP machine, the BBN Butterfly, the
connection machine, the hypernet and the hierarchical
network of hypercubes. [n the next section, we discuss
some of these architectures for the simulation of neural
networks.
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The BBN Butterfly machine

The BBN Butterfly machine is characterized by a higher
degree of hardware parallelism, and by the nature of the
communication mechanism which links its constituent
processors. Such a machine is much more expensive

than a neurocomputing coprocessor, but is also signifi-

cantly more powerful. This class of machines is also
typically general-purpose, rather than being specialized
for neurocomputing. The Butterfly machine usually
contains 4 to 128 individual processing nodes. Each
such node is a complete computer containing a Motorola
68020 processing unit .and an optional numeric
coprocessor, local data memory and local program
memory. ANN emulation can take advantage of many of
the Butterfly’s architectural features, provided that the
needed supporting software is available. As in any
general-purpose  system, however, neural-network
emulation can be even better implemented on a parallel
system which is architecturally specialized for such a
task.

Hypercube architecture

Let us now consider hypercube machines, yet another
type of parallel digital computers which are potentially
useful for neural-network emulation’. Like Butterfly,
existing hypercubes consist of a few tens to a few
hundred processing nodes. Each such node is like the
nodes used in the Butterfly (i.e. each contains a
processor, memory, etc.). The price of a hypercube is
also similar to that of a Butterfly containing a like
number of processor nodes. The distinction between
these classes of architectures revolves around the nature
of the internode communication mechanism. The
Butterfly uses a particular type of nonblocking multiport
message switches, whereas the hypercube machines use
high-speed point-to-point serial communication links
between nodes. In an »n-dimensional hypercube design.
each processing node has a dedicated link to »
neighbouring nodes. Most hypercube machines are of
degree 5 or 6; each node has direct links to 5 or 6 other
nodes.

Like the Butterfly machine, hypercubes are usually
implemented as general-purpose computers. ANN
simulation may be readily performed on such machines,
given the necessary software. While the parallelism of
hypercubes makes them attractive for neural-network
emulation, their communication mechanism is less than
ideal for this task.

Hierarchical network of hypercubes

The hierarchical network of hypercube proposed by
Kumar et al**® is a low-cost, expandable and fault-
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Tabie 1. Comparison of backpropagation implementa-
tions on different sysiems

Performance
Cemputer in CUPS**
Connection machine 2 280 M
WARP (1)) 17 M
ANZA Plus 10M
Butterfly 64 8 M
SUN3 230K
EH (3.2) 945K
EH (3. 3) 60-64 K*
EM(G. 4 400480 K*

*+CLPS: Connection updates per second.
*Estimated values.

telerant parallel architecture suitable for neural-network
simuiation. A hierarchical network of hypercubes is
represented by EH(%, /), where EH stands for Extended
Hypercube, k is the dimension of the basic module and
there are /+ 1 leveis of hierarchy in the network (/ is
often referred to as the degree of EH). Several neural
network paradigms have been simulated on this
architecture with significantly improved performance
compared to that obtained on CM-2 and iWARP
machines. Table 1 compares the backpropagation imple-
mentations on different systems.

TMI connection machine

We will briefly consider one more parallel computer
which is usable in ANN emulation: the Thinking
machines, Inc. (TMI) Connection Machine. This system
is quite different from any other machine considered
previously. The Connection Machine is architecturally
quite innovative, but acceptance of the machine has
been relatively slow. (Writing software for this system
has proven challenging.) It is an expensive machine. The
connection machine is a true massively parallel
computer, consisting of up to 64 K (65,536) individual
processing nodes, each of which is much simpler than a
full stand-alone computer. In fact, each such node
contains a bit-serial processor (i.e. one which performs
its operations, such as addition, one bit at a time) as well
as a small amount of memory. The resulting processing
nodes are small enough for several of them to be built
on a single chip. The overall machine contains many
such processing-element chips. The processing nodes do
not contain enough local memory to emulate a
reasonably large chunk of network, forcing an extensive
use of slow serial interprocess communication. Pro-
gramming the machine is difficult, though software
support is increasing. Finally, the connection machine is
so large and expensive that its use is impractical for
many interesting neural-network applications (e.g.
military signal processing systems, or embedded
machine controllers).
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Performance measures of neurocomputers

A number of neurocomputer performance measures that
have been found to be useful in assessing the capabil-
ities and costs are presented in the following paragraphs.

Capacity

There are two measures of capacity. The first concerns
the sizes of specified types of networks that can be
implemented by the neurocomputer. The second
measure of capacity is the total number of networks of
specified types and sizes that can be stored ready for
immediate use within the neurocomputer. This second
measure of capacity is important, since most appli-
cations of neurocomputing require multiple networks,
and since loading networks into a neurocomputer over
an interface is usually a time-consuming process.

Speed

Speed is rated by how quickly a specified network of a
specified size can update the interconnections. Commer-
cial neurocomputers are typically benchmarked using a
large backpropagation network of a stated number of
layers and processing elements per layer. The total
number of interconnections that can be updated in one
second is often used as the speed metric.

Cost

Cost is one of the most difficult performance measures
to determine in a fair and accurate way. Further, there
are legitimately different approaches to cost measure-
ment. The measurement approach that most compre-
hensively incorporates all of the costs involved is the
calculation of the delivered-capability cost. Given a
neural network of a certain type and size that is
activated from software, the delivered-capability cost is
the total cost of running that network through some
stated number of update iterations. This cost should
include the purchase price of the neurocomputer
(including any taxes), the cost of any required software,
neurosoftware languages, cables, LAN hardware, and so
on, and neurocomputer system administration costs.
Maintenance costs during the useful life of the machine
must also be incorporated.

Accuracy

Accuracy is a neurocomputer capability performance
measure that assesses the numerical accuracy of the
machine in terms of the needs of certain specified
networks. The measure is typically binary. Either the
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neurocomputer can implement a particular specified
neural network to the necessary degree of accuracy, or it
cannot do so.

Generality

Some neurocomputers are suitable for implementing
only certain neural-network architectures. Other neuro-
computers can implement essentially any architecture.
Given a specific list of architectures, generality is the
binary measurement of whether the neurocomputer can
or cannot implement those network types.

Software interface provisions

For software programs to be able to call neural networks
as subroutines, it is necessary to have software routines
that can be linked with the user software and then called
whenever needed to control the neurocomputer. The
simplicity and ease of use of these software interface
provisions are of great importance.

Configuration provision

For a computer to be used, it must be configured to run
the desired neural networks. There are two basic
approaches to this problem. First, most of the commonly
used neural networks should be available in highly
efficient (in other words, microcoded or otherwise
optimized) prepackaged form. This coding efficiency

ensures that the networks used most often execute at
maximum possible speed on the hardware. As with
software interface provisions, configuration provisions
are best judged on a relative-merit basis. The availa-
bility of a general-purpose neural network description
language capable of describing a large percentage of
neural-network architectures efficiently for use with the
neurocomputer is an important consideration

Table 2 shows the different neurocomputers built so
far, their performance in terms of speed and capacity,
and the year introduced.

Conclusions

We discussed here the different approaches for
implementing neurocomputers. The future development
of neurocomputers will be governed by the development
of accurate mathematical models for artificial neurons.
Since it is predicted that the models will involve more
of analog computations, it is hoped that more emphasis
will be laid on analog hardware design and photonic
computing for the design of efficient neurocomputers.
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Mathematical modelling of neurons and neural

networks
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The basic concepts and techniques involved in the
development and analysis of mathematical models for
individual neurons and networks of neurons are
reviewed. Some of the interesting results obtained
from recent work in this field are described. The
current status of research in this field in India is
discussed.

THE development of an understanding how the human
brain functions is one of the most important and
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challenging tasks faced by modern science. During
recent years, a great deal of progress has been made in
experimental neurobiology. At the same time, efforts

* towards the development of mathematical models for

some of the experimentally observed phenomena have
gained momentum. Neurosciences cover a vast range of
phenomena extending from the molecular to the
behavioural level. In this paper, [ have made an attempt
to provide a brief overview of the concepts and
techniques involved in the development and analysis of
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