PRL 95, 108001 (2005)

PHYSICAL REVIEW LETTERS

week ending
2 SEPTEMBER 2005

Kinetic Model for Sheared Granular Flows in the High Knudsen Number Limit
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The sheared granular flow of rough inelastic granular disks is analyzed in the high Knudsen number
limit, where the frequency of particle-wall collisions is large compared with particle-particle collisions,
using a kinetic theory approach. An asymptotic expansion is used in the small parameter £ = (no’L),
which is the ratio of the frequencies of particle-particle and particle-wall collisions, where # is the number
of disks per unit area, o is the disk diameter, and L is the channel width. The collisions are specified using
a normal coefficient of restitution e, and a tangential coefficient of restitution e,. The analysis identifies
two regions in the e, — e, parameter space, one where the final steady state is a static one in which the
translational velocities of all particles decrease to zero, and the second where the final steady state is a
dynamic one in which the mean square velocities scale as a power of ¢ in the limit € — 0. Both of these

predictions are shown to be in quantitative agreement with computer simulations.
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Rapid flows of granular material have been analyzed
using methods from the kinetic theory for dense gases.
These include approximate approaches that modified the
Navier-Stokes mass, momentum, and energy equations by
adding a dissipation term due to inelastic collisions in the
energy equation [1-4], as well as asymptotic approaches
that used an expansion in the inelasticity and the Knudsen
number [5-7]. These have proved to be quite successful [8]
in the low Knudsen number limit, where the mean free path
is small compared to the macroscopic length scale.
However, there are many practical situations, such as the
chute flows and flow in thin layers, where the distance
between boundaries could be of the order of a few particle
diameters, and it is important to examine whether a kinetic
theory approach can be fruitfully employed for high
Knudsen number flows. It is also of interest to examine
whether the rheology is sensitive to the nature of the
particle-wall interaction. One approach is to try and deter-
mine the distribution function and constitutive relations in
the opposite high Knudsen number regime, where the
frequency of particle-wall interactions is large compared
to particle-particle interactions. This is difficult, in general,
because the distribution function is sensitive to the nature
of the particle-wall interactions, and it may not be possible
to obtain analytical results in all cases. Analytical results
were obtained for the velocity distribution function for
smooth particles by Kumaran [9] using an asymptotic
analysis in the small parameter & = no L, which is pro-
portional to the inverse of the Knudsen number, where n is
the number density, o is the diameter of the particle, and L
is the channel width. The disadvantage of that study was
that it was restricted to smooth particles where the angular
momentum of the particles was not incorporated in the
description, though the particle-wall collision rule did
permit the transport of momentum from the wall to the
particle in the tangential direction. The present study pro-
vides the results for rough particle-wall interactions where
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the transfer of momentum parallel and perpendicular to the
surface at contact is incorporated. These two models are
the most general models for particle interactions with a flat
wall, even though it is possible to formulate more detailed
models that incorporate sticking and sliding friction in
collisions. Therefore, these provide the range of scaling
laws for the stresses in a high Knudsen number flow
bounded by flat walls. However, these results are not ex-
pected to hold for more complicated models, such as the
bumpy wall model.

The configuration and coordinate system used in the
analysis is shown in Fig. 1. The model predictions were
compared with simulations carried out using the hard disk
event driven simulation technique [10]. The simulation cell
typically consisted of 125 particles, and a total of 40 peri-
odic images of the simulation cell were used in the lateral
“flow” direction. This large number of periodic images
was necessary since there are particles that travel nearly
parallel to the wall, and they undergo very infrequent
collisions in the dilute limit.
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FIG. 1. Schematic of two-dimensional rough disks sheared
with two parallel moving rough walls.
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We use the collision rules for rough, inelastic hard
spheres, formulated by Lun [4], which is a modification
of the collision rules of Bryan [11] for perfectly rough
perfectly elastic spheres. Consider a collision between two
particles with precollisional linear velocities u and u* and
angular velocities w and w*, such that the unit vector along
the line joining the centers of the particles is k. The
precollisional relative velocity at the point of contact is
g =[u+ (6k/2) X w] —[u* — (gk/2) X w*]. The col-
lision rules stipulate that the postcollisional relative veloc-
ity at the point of contact g’ is related to the precollisional
relative velocity g by

8= —egn (1)

where g, and g/, are the components of g in the direction of
k, g/ and g, are the components of g perpendicular to the
direction of k, and e,, and e, are the normal and tangential
coefficients of restitution.

In the absence of binary collisions, a steady state is
achieved if the particle velocity distribution is recovered
after two wall collisions. In the present case, we show by
analyzing the evolution of a particle velocity due to wall
collisions that the steady state distribution is a delta func-
tion at the location in velocity space where the translational
velocities are equal to zero, and the rotational velocity is
equal to the ratio of the wall velocity and the particle
diameter. If the particle collides with the wall at y =
—L/2, the particle velocity after collision derived using
Eq. (1) as indicated in Lun [4] is

I —=
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where subscripts x and y stand for flow and gradient
directions, respectively, 1, = % e M = H;“, and
Kk = (41/mo?), where I is the moment of inertia. The
velocity after a subsequent collision with the wall at y =
L/2, (u},uy, "), is related in a similar manner to
(u’, u§ w'). If the velocity of particle after two successive
collisions is the same as the initial velocity, uy = u,, u} =
u, and " = w. The solution for the velocity of the par-
ticle at steady state is

=u, =0, w’=w=_2vw.

) o
3)

The above results indicate that at steady state the distribu-
tion function is a delta function at the location in velocity
space where the flow and gradient directional velocities are
zero, and the rotational velocity distribution is (_7}/2 .

Next, we consider the evolution of a particle whose
velocity is different from those in Eq. (3). For this purpose,

. =u, =0, u

!
y

we define the deviation from the steady state angular
velocity as ) = (w + 2V,,/o). Considering two wall col-
lisions as one event, the velocity and angular velocity after
(i + 1) pairs of wall events are related to those after i pairs
of wall collisions by
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and 7, and 7, are provided after Eq. (2). The magnitude of
the largest eigenvalue A, of the transfer matrix A deter-
mines the rate of decrease of the velocity u, with number
of pairs of collisions. For disks of uniform density, k =
(1/2), and there are two complex conjugate eigenvalues for
A when e,>0.0294373. It is found that for e, >
0.0294373, both the eigenvalues are real. However, in
all cases, the magnitude of the eigenvalues is less than 1
for |e,| < 1. The cross stream velocity after a pair of wall

collisions, u},Hl), is related to the cross stream velocity
before a pair of collisions, by

ultl = Aul, (6)

where A, = e2. Since the magnitudes of the eigenvalues
Ao and A, are always less than 1, the particle velocities
converge to the steady state values given by Eq. (3) inde-
pendent of the initial velocities.

In the presence of binary collisions, there are two pos-
sible final steady states. One is the state where all particle
velocities decrease to zero at long times, because the
frequency of wall-particle collisions, which tends to reduce
the translational velocity, is larger than that of interparticle
collisions. The frequency of wall-particle collisions per
unit area is proportional (nu,/L), whereas the number of
interparticle collisions is proportional to n?c(u? + u?)'/2.
The ratio of the binary collision frequency and the particle-
wall collision frequency is given by [noL(u? + u?)'/?/u,].
Since we are considering the limit (noL) = ¢ < 1, the
ratio of binary and particle-wall collisions is always small
if u, decreases to zero faster than u, as the particle under-
goes wall collisions. Therefore, it is expected that the final
steady state will be one in which the translational velocities
of the particles reduce to zero if u, reduces to zero faster
than u, as the particle undergoes wall collisions. In the
opposite case, where u, reduces to zero faster than u, as the
particle collides with the wall, it is expected that [(u2 +
u?)/u,] will increase with the number of collisions, and
this ratio could be large enough that [noL(u? + u?)'/?/u, ]
will be O(1) even though noL is small.
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Thus, the ratio (A,o/A,) provides the relative rate of
decrease of u, and u, with a number of pairs of wall
collisions. For A,q < Ay, u, decreases to zero faster than
u, and the translational energy goes to zero at long time.
For A,q > A,, the system reaches a steady state, where the
average translational energy of the system is constant. The
above predictions are in good agreement with the results of
simulations. In the results presented here, we assume that
the coefficients of restitution for particle-particle and
particle-wall collisions are equal. Figure 2 shows the
boundary between the parameter regimes for the zero
translational energy steady state, and the nonzero transla-
tional energy steady state. The points are the parameter
values for which simulations were carried out on either
side of the boundary, and the pluses are the points at which
the final steady state had zero translational energy, while
the circles are the points at which the final steady state had
nonzero energy.

The physical picture of the evolution of the particle
velocity in the dynamical steady states is as follows. For
particles that have just undergone a collision, the frequency
of wall-particle collisions is large compared to that of
binary collisions. The particle undergoes collisions with
the wall, and the velocity evolves according to
(0)
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FIG. 2. Static and dynamic regions for different values of e,
and e, and « = 0.5. The analysis predicts that dynamical steady
states will be observed below the solid line, and static steady
states above the solid line. The circles are points at which
dynamical steady states were observed in simulations, and the
pluses are points where static steady states were observed in
simulations.

where i is the number of pairs of particle-wall collisions
after the most recent binary collision. As the number of
wall collisions increases, the frequency of binary collisions
becomes equal to that of wall-particle collisions for
(uy/uy) ~ &1, or i =i, ~ [log(e)/log(A,/A)]. At
this point, the particle undergoes a binary collision that
scatters the velocity. This cycle repeats itself, and a dy-
namical steady state is achieved. It is convenient to sepa-
rate the  distribution  function  f(u,, u,, Q) =
2, fi(uy, uy, ), where the index i represents the number
of pairs of wall collisions after the most recent binary
collision. The relation between f; and f;_; at steady state
can be inferred from the condition that the frequency of
wall collisions of particles with index i — 1, which results
in an accumulation of particles with index i, is equal to the
frequency of wall collisions of particles with index i, which
results in a depletion of particles with index i (note that the
frequency of binary collisions is small compared to that of
wall collisions for i < i,,). Since the wall flux of particles
with velocity u@ is equal to nu@ fi, the flux balance
provides a relation for f; in terms of f;_;,

fi=N1fior = A fo. )]

Equation (8) relates f; to f;, but does not provide the
dependence of f, on e. This dependence is estimated from
the normalization condition, which requires that the sum of
fi over all i is O(1). The upper limit in the summation can
be estimated as the number of collisions at which the
frequency of binary and wall-particle collisions become
equal { = i, since the distribution function decreases as
the number of wall collisions increases beyond this point.
Therefore, the normalization condition is satisfied only if
fo -~ /\;m, or

fo~ gllog(a,)/ log(,/ /\x())]’ 9)

since i,, = [log(e)/log(A,/A,q)]. A more exact kinetic
theory calculation would require the specification of the
functional dependence of f, on € in Eq. (8) by a self-
consistent calculation, so that the distribution function is
completely specified. However, we do not carry out this
calculation, since it is not required for obtaining the scaling
laws for the stresses.

The moments of the velocity distribution can now be
determined as

o~ [a0T @O0, a0
=

The following scaling of the moments of the distributions
with & are evaluated analytically using (7) for u and u;’),
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TABLE I. A comparison of the theoretical and simulation
results for the scaling laws for the velocity moments with e.
The theoretical results are from Eq. (11), while the simulation
results are obtained by fitting the simulation results in the
interval 0.008 = & = 0.08 to a power law, and extracting the
exponent.

log((u2)) log((u3)) log(—(u,uy))
log(e) log(e) log(e)
e e, Theor. Simu. Theor. Simu. Theor. Simu.
0.60 0.65 25074 24865 25074 25261 25074 2.5696
070 0.75 2.6310 2.5944 26310 26285 2.6310 2.6583
0.80 0.85 3.1899 29858 3.1899 3.0050 3.1899 3.0736

0.70 0.70 2.0000*
0.80 0.80 2.0000*
0.90 0.90 2.0000*

1.7839 2.0000
1.7559 2.0000
1.6834 2.0000

1.9956 2.0000 2.0338
1.9869 2.0000 2.0245
1.9739 2.0000 2.0126

0.65 0.60 1.4581 1.4437 1.7291 1.7306 1.7291 1.7204
0.75 070 1.3516 1.3218 1.6758 1.7050 1.6758 1.6913
0.85 080 1.1453 1.1550 1.5727 1.5653 1.5727 1.5807
(8) for f;, and (9) for fy:
(u2) ~ gllog@,)/ 1oz, /A0)] for (,\20/,\y) <1
» )
~ gl2log(A:0)/log(A,/A0)]  for ()‘)ZCQ/A}') > 1,
log(e)
2 for ()@Q/)\y) =1, (11)

~g?2 277
log(/\y//\xﬂ)
<uxuy> -~ S[IOg(A‘)/ log()‘y//\xﬂ)]’

(u2) ~ glloghy)/ loglhy/Aa)],

The moments of the distribution function obtained from
simulations were found to be well fitted by a power law
form for low &. The deviation of the simulation results
from the power law fit was found to be less than 1% of the
value of the velocity moment for € = 0.1 for all values of
the coefficient of restitution, except for e, = ¢,(A,q =
/\5), for which the theoretical prediction (11) had a loga-
rithmic correction. The power law exponents obtained
from the simulations in the range 0.008 = & = 0.08 are
compared with the theoretical predictions in Table I. It is
observed that there is excellent agreement between the
theoretical predictions and the simulation results in most
cases. One exception is the results for (u2) for e, = e, (or
A = A%). In this case, the theoretical prediction (11) has
a logarithmic correction (u2) ~ £*log(e), which is not
incorporated while determining the scaling from the simu-
lation, resulting in relatively poor agreement. The other
exception is the result for ¢, = 0.80 and e,, = 0.85, where
the theoretically predicted slope is large, and the range of &
studied in the simulations is not sufficient to obtain con-
vergence to the theoretically predicted scaling law. For all

other values, there is excellent agreement between the
theoretical predictions and the simulation results.

Thus, the present analysis establishes that the kinetic
theory approach can be employed to model the rheology in
the high Knudsen number limit for rough particles. The
predictions of the model are in quantitative agreement with
the results of simulations, both for the regimes of static and
dynamic steady states and for the velocity moments or
stresses in the dynamic steady state. The implications of
the analysis for the rheology of high Knudsen number
flows are as follows. The shear stress exerted on the top
and bottom surfaces, scaled by the particle mass, is pro-
portional to nV?2gllog,)/loeA /A0l \where V,, is the wall
velocity. Consequently, the shear stress scales as the square
of the wall velocity in this limit, and the stress-strain
relationship is represented by the “Bagnold law” o;; =
B;;(V,,/L)*, where o; are the components of the stress
tensor and (V,,/L) is the mean strain rate. The “Bagnold
coefficient” B, is proportional to (nL2)gllog(d)/log(ha /A1,
The Bagnold coefficient for the normal stress in the cross
stream  direction, B,,, is also proportional to
(nL?)gllog(A,)/log(da/A)] The Bagnold coefficient for the
normal stress in the streamwise direction B,, depends on
the value of (A2,/A,), but it is proportional to (nL?) times
a power of e. This indicates that the Bagnold coefficient is
very different in the high Knudsen number regime than it is
in the low Knudsen number regime, and provides the
explicit dependence of the Bagnold coefficient on the
channel width. Though the present results are restricted
to the case where gravity is ignored and the walls are
considered to be flat, they provide some indication of the
variation of the Bagnold constant with Knudsen number
for rapid flows in the high Knudsen number limit.
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