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The neighbor distribution in hard-sphere and hard-disk fluids is analyzed using Voronoi tessellation.
The statistical measures analyzed are the nth neighbor coordination number (C,), the nth neighbor
distance distribution [f,(r)], and the distribution of the number of Voronoi faces (P,). These
statistics are sensitive indicators of microstructure, and they distinguish thermodynamic and
annealed structures. A sharp rise in the hexagon population marks the onset of hard-disk freezing
transition, and C, decreases sharply to the hexagonal lattice values. In hard-disk random structures
the pentagon and heptagon populations remain significant even at high volume fraction. In dense
hard-sphere (three-dimensional) structures at the freezing transition, C; is close to 14, instead of the
value of 12 expected for a face-centered-cubic lattice. This is found to be because of a topological
instability, where a slight perturbation of the positions in the centers of a pair of particles transforms
a vertex in the Voronoi polyhedron into a Voronoi surface. We demonstrate that the pair distribution
function and the equation-of-state obtained from Voronoi tessellation are equal to those obtained
from thermodynamic calculations. In hard-sphere random structures, the dodecahedron population
decreases with increasing density. To demonstrate the utility of the neighbor analysis, we estimate
the effective hard-sphere diameter of the Lennard-Jones fluid by identifying the diameter of the
spheres in the hard-sphere fluid which has C; equal to that for the Lennard-Jones fluid. The

estimates are within 2% deviation from the theoretical results of Barker-Henderson and

Weeks-Chandler-Andersen.

I. INTRODUCTION

The Voronoi polyhedron of a nucleus point in space is
the smallest polyhedron formed by the perpendicularly bi-
secting planes between the given nucleus and all the other
nuclei.! The Voronoi tessellation divides a region into space-
filling, nonoverlapping convex polyhedra. The salient prop-
erties of Voronoi tessellation are the following:

* Any point inside a Voronoi cell is closer to its nucleus
than any other nuclei (Fig. 1). These cells are space
filling and hence provide a precise definition of local
volume.”

* It gives a definition of geometric neighbors. The nuclei
sharing a common Voronoi surface are geometric neigh-
bors. Points on the shared surface are equidistant to the
corresponding pair of nuclei. Hence, geometric neigh-
bors are competing centers in a growth scenario.

e Voronoi cells of hard-spheres are irregular at lower
packing fractions but become regular as the regular
close packing is approached. Thus, they are useful in
characterizing all structures from random to regular.

These properties qualify Voronoi tessellation as an im-
portant tool in the structural analysis of random media such
as glass, packings, foams, cellular solids, proteins, ete.”?
Voronoi tessellation occurs naturally in growth processes
such as crystallization and plant cell growth.6 The statistical
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distributions of many Voronoi cell properties are reported
(see Zhu et al.,7 Oger et al.,8 and references therein). In this
analysis, we use the Voronoi neighbor statistics to character-
ize the thermodynamic and annealed microstructures of hard-
disks and hard-spheres.

Section II presents the hard-core packing fractions of
interest in this work. Section III introduces the Voronoi
neighbor statistics. Let a central sphere’s geometric neigh-
bors be called first neighbors, i.e., the first layer of neighbors.
The first neighbors’ neighbors (which are themselves not first

FIG. 1. The Voronoi tessellation of a hard-disk configuration, with periodic
boundary conditions. Central box shown in dashed lines. The first and
second neighbors of a central disk () are shown linked in dashed lines.
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TABLE I. Salient packing fractions in hard-rod, hard-disk, and hard-sphere systems.

Hard-rod Hard-disk Hard-sphere
o is Length Diameter Diameter
Volume of the particle, v, wa? /4 7o /6
Cell volume at regular close packing v, 3a2/2 a/\2
Freezing packing fraction, vy ~0.691" ~0.494°
Melting packing fraction, v, ~0.716" ~0.545"
Loose random packing, v gp 0.772+0.002° 0.555+0.005°
Dense random packing, vpgp 0.82+0.02° 0.64+0.02°
Regular close packing, v, T / (2\3) T / (3\2)

“From Alder and Wainwright (Ref. 16).
°From Hoover and Ree (Ref. 17).
‘From Hinrichsen et al. (Ref. 19).
9From Onoda and Liniger (Ref. 15).
“From Berryman (Ref. 18).

neighbors) are the second neighbors, and so on (Fig. 1).
Thus, all the spheres surrounding a central sphere can be
partitioned layerwise and characterized by nth neighbor co-
ordination number (C,) and nth neighbor distance distribu-
tion function [f,,(r)]. In Sec. III it is shown that the informa-
tion contained in the radial distribution function [g(r)] can be
partitioned into these sets of neighbor statistics. The distri-
bution of the number of Voronoi bounding surfaces (P,) is
also of interest because C, is its mean. These neighbor sta-
tistics are sensitive microstructural indicators, and they dis-
tinguish the thermodynamic and annealed structures. For a
hard-rod system in one dimension, these neighbor statistics
are exactly known, given in Sec. IV. For hard-disk and hard-
sphere systems, we review the neighbor statistics reported in
literature and report C, and P, for the NVE Monte Carlo
(MC) and annealed configurations in Secs. V and VI.

We have generated the annealed structures by repeated
cycles of swelling and random displacements, this is a MC
adaptation of Woodcock’s algorithm.9 The low-density an-
nealed structures are identical to the thermodynamic struc-
tures. The dense annealed structures are quite distinct from
the thermodynamic structures and are presumed to terminate
at the dense random packing. However, as shown by
Torquato et al.,'® when there are inhomogeneities in the sys-
tem consisting of crystallite domains in a dense random
structure, it is possible to generate configurations denser than
the dense random packing. The C; for random hard-sphere
structures produced by this algorithm agrees well with the
dense random packing experimental results of Finney.”

A sharp rise in the hexagon population marks the onset
of hard-disk freezing; C, for n>1 decreases sharply to the
hexagonal lattice values. In dense hard-disk random struc-
tures, the pentagon and heptagon populations remain signifi-
cant even as the random close-packing limit is approached.
In dense hard-disk structures, both thermodynamic and ran-
dom, the number of pentagons and heptagons appear to be
equal as the close-packing limit is approached. In dense
hard-sphere (three-dimensional) structures at the freezing
transition, C; is close to 14, instead of the value of 12 ex-
pected for a face-centered-cubic lattice. This is found to be
because of a topological instability analyzed by Troadec
et al.,'* where a slight perturbation of the positions in the
centers of a pair of particles transforms a vertex in the

Voronoi polyhedron into a Voronoi surface. Due to topologi-
cal instability, a slightly perturbed face-centered-cubic lattice
of hard-spheres has Voronoi polyhedra with faces 12 to 18,
with the mean at 14. Hence, on freezing transition the hard-
sphere C is close to 14 rather than 12. We demonstrate that
this result is consistent with thermodynamic data. In hard-
sphere random structures, the dodecahedron population de-
creases with increasing density.

The notion of effective hard-sphere diameter for dense
soft potential fluids has been extensively analyzed, see the
recent review by Silva et al.”® Tt is known, both through
simulations and experiments, that the structure of a dense
soft potential fluid is nearly identical to that of the hard-
sphere fluid having a particular diameter. This diameter is the
effective hard-sphere diameter. In Sec. VII, we show that
using the equality of C; of the Lennard-Jones fluid to the
hard-sphere fluid at some packing fraction, it is possible to
estimate the effective hard-sphere diameter to within 2% de-
viation from the theoretical results of Barker-Henderson®’
and \i\‘(eeks-Chandler—Andersen38 and its modification by
Lado.

Il. HARD-CORE-SYSTEM PROPERTIES

Let v, be the volume of the hard-sphere, p the number
density, and v=1/p the specific volume. The packing fraction
is v=v,/v. At regular close packing, let v, be the regular cell
volume and v.=v,/v, the packing fraction. The normalized
packing fraction is y=wv/v.. Other packing fractions of physi-
cal relevance are

e the freezing (v;) and melting (v,,) packing fractions,

« the loose random packing (v gp) defined” as the
lowest-density isotropic packing that can support an in-
finitesimal external load at the limit of acceleration due
to gravity tending to zero, and

e the dense random packing (vpgp) defined as the highest-
density spatially homogeneous isotropic packing.

All these salient packing fractions are listed in Table I. There
is no freezing transition for a hard-rod system. Also there are
no random structures for hard-rods since the regular close-



FIG. 2. Voronoi partitioning of hard-disk g(r), ¥=0.50, gum=81+8g,+&3
+g4. The g,(r) and g, are shown in thick lines and g(r) in thin line.

packed structure is the only load-bearing structure. For a
Voronoi analysis of hard-disk loose random packing refer to
Hinrichsen er al."

lll. NEIGHBOR STATISTICS

Let N, be the number of nth neighbors around a central
sphere, then the nth neighbor coordination number is
C,=(N,), where (-) denotes the ensemble average. The radial
distribution function is computed as

g(r) T

(1)
where 6V, is the volume of the shell between r and r+dr
around the central sphere and 6N, is the number of spheres
with their centers in the shell between r and r+dr. The
spheres around the central sphere can be partitioned layer-
wise as

[’

SN, = >, 6N, (2)

n=1

where 6N is the number of nth neighbors with their centers
in the shell between r and r+dr. Using Eq. (2) in Eq. (1),
g(r) can be partitioned as

I (V) <
g(r)= 21 7 —zgm, 3)

where g,(r) is the nth neighbor radial distribution function.
Figure 2 illustrates a Voronoi partitioning for hard-disk g(r).
Such a partitioning was first reported by Rahman®” and re-
cently by Lavrik and Voloshin.”!

The nth neighbor distance distribution function f.(r) is

defined such that f,(r) dr is the fraction of the nth neighbors
at a distance r to r+dr, then,

(8N (N9
(fgoNtdry — C,

Here, we have used ([ oN'dr)=(N,)=C,. Using Egs. (3)
and (4), we get,

falr)dr = (4)

LG G
gn(r) = o &V, p s (5)
dr

where S, is the spherical surface area at r, S,=2 in one di-
mension (ID), S,=2#r in two dimensions (2D), and
S,=47r” in three dimensions (3D). Using Eq. (5) in Eq. (3),
we get,

1 o0
8N =—2 Cflr). (6)
pSrn:l

Equation (6) shows that the two Voronoi neighbor statistics,
C,(v) and f,(r;v), together contain the thermodynamic in-
formation in g(r;v). We consider another Voronoi statistic,
the distribution of the number of bounding surfaces of the
Voronoi cell, P,,. It is identical to the distribution of the num-
ber of the first neighbors, hence C;=2nP,. We will show in
Secs. V and VI that these neighbor statistics are sensitive
indicators of the microstructure which distinguish thermody-
namic and annealed structures.

In hard-sphere systems the compressibility factor
Z=p/(pkgT) is related to the radial distribution function at
contact g(o) as

Z=1+Bypg(o), (7)

where B, is the second virial coefficient, B,=o for hard-rods,
B,=(m/2)0” for hard-disks, and B,=(2/3)mo” for hard-
spheres. Now g(o)=g,(0), since a sphere in contact is
necessarily a first neighbor. Equation (5) gives
g1(0)=(C,/p)fi(0)!S,]). Note that B,/S,=0/2D, where D
is the dimensionality of the system. Using these in Eq. (7)
gives

Z=1 +%C1f1(0'). (8)

Thus, for the hard-sphere systems, the two neighbor statistic
values C; and f;(o) contain the thermodynamic information.

For any nondegenerate22 two-dimensional (2D) tessella-
tion with periodic boundary conditions (PBC) or with a large
number of particles, C;=6 exactly.”** Using this in Eq. (8)
for hard-disks we have Z=1+20f,(c). This result was de-
rived by Ogawa and Tanemura > using a different but less
general method, while the above derivation is valid for any
dimensions and shows the role of Cj.

IV. HARD-ROD RESULTS

For a hard-rod system g, (r) is exactly known,?
0, if r<no;
g,(N= ur—no)"! ( r—no) )
——————exp| - , ifr=no.
(n-1!(v=-0)" v—-no

)

Here, S,=2 and C,=2. Using this result in Eq. (5)
gives f,(r)=(1/v)g,(r). Using this with Eq. (9) gives
f1(o)=1/(v-0). Using these results in Eq. (8) gives
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FIG. 3. P, for 2D Poisson tessellation. Theoretical result (O) from Calka
(Ref. 30). Simulation data (@) averaged for 3500 frames of 900 random
points.

]
Z=l+—2 L (10)

v—-o0 v-0o l-v

This is the Tonks equation of state for hard-rods.”’
For a hard-rod system f,,(r) can be gotten from f,(r)
exactly as

fn+1(r)=f Jilr=r)f,(r")dr". (11)
0

Such a simple convolution is not available for hard-disk and
hard-sphere systems.

V. HARD-DISK RESULTS

For 2D Poisson tessellation f;(r) was derived by
Collins,24

filr)= %{p”zr exp(%prz) + erfc(%-rp”2 )} .

(12)

It was rederived by Stillinger et al.® by a different method.
Explicit expressions for 2D Poisson tessellation P, are
available. " We compare the Poisson P, data of Calka™
with our simulation results in Fig. 3.

We have studied two types of hard-disk structures: ther-
modynamic and swelled random structures. The thermody-
namic structures are generated using NVE MC at 50% suc-
cess rate; i.e. the amplitude of the random trial displacement
is adjusted such that 50% of the trials lead to nonoverlapping
configurations. The swelled random structures are generated
using a MC adaptation of the Woodcock’s’ algorithm: swell
all the particles till the nearest neighbors touch each other,
give random trial displacements (with say 50% success rate
as in NVE MC) for all the particles, and repeat the swelling
and random displacements till the desired density is attained.
The effect of the success rate on the randomness of the re-
sultant structures is studied below.

As mentioned in Sec. III, for any nondegenerate 2D tes-
sellation with PBC, C;=6 exactly. Hence, C, is not a micro-
structural indicator for hard-disk structures. However, C,,, for
n>1, are functions of v and are sensitive indicators of mi-
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FIG. 4. C, for hard-disk NVE (@) and swelled random configurations at
success rates of 10% (1), 30% (<), 50% (O), 70% (+), and 90% (X). NVE
data averaged for 10 000 configurations of 256 hard-disks. Swelled random
data averaged for 1000 configurations of 256 hard-disks.

crostructure. C, and C; for hard-disk configurations are
given in Figs. 4 and 5, from which we observe the following:

e For 2D Poisson tessellation Cg%13.698 and Cg
~22.94.

* Well below the freezing density, the swelled random
structures are identical to the thermodynamic structures
for any success rate. Above the freezing density, the
thermodynamic structure C, (n>1) decreases sharply
to the regular hexagonal lattice values (C,).,=6mn,
while the swelled random structure C,, decreases slowly
and nearly saturate at vpgp.

o If the swelled random configurations are generated with
a low success rate, the large random trial displacements
tend to equilibrate the local structures. However, if the
success rate is high, the random trial displacements are
small and the swelling process locks the particles into
random structures. The Fig. 4 inset shows that as the
success rate is lowered, the C, of the resultant structure
gets closer to its thermodynamic value. The difference
between the C, (n# 1 in 2D) of a given structure and
that of the thermodynamic structure at the same density

20

22¢

211
S

201

19¢

18 02 0.4 06 08 1

v

FIG. 5. C; for hard-disk NVE (@) and swelled random configurations at
success rates of 10% ((J), 30% (<), 50% (O), 70% (+), and 90% (X).
Averaging as in Fig. 4.
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FIG. 6. Py for hard-disk NVE (@) and swelled random configurations at
success rates of 10% (), 30% (<), 50% (O), 70% (+), and 90% (X).
Averaging as in Fig. 4.

is a measure of its randomness. The Fig. 4 inset also
shows that for v> v, configurations with different de-
grees of randomness can be generated by tuning the
success rates. The proximity of the 70% and 90% suc-
cess rate structures in the said inset shows that the lim-
iting case of near 100% success rate should give the
maximally random structures. These structures should
not sense the freezing transition, and hence their C,
should not have an inflection point around the freezing
density. From the inset, note that while the 10% success
rate structures have an inflection about vy, structures
with success rates 50% and above show no visible in-
flection. The branch of maximally random structures is
presumed to terminate at the dense random packing.
However, by negotiating disorder with order, one can
generate structures denser than the dense random
packing.10 From the inset also, note that at 10% success
rate, packing fractions as high as 0.85 are attainable,
even though vprp=0.82+0.02. This is possibly due to
the formation of crystallite domains within the dense
random structure. However, at 90% success rate, the
maximum packing fraction attainable using the present
algorithm does not exceed vpgp. It is interesting to note
that the Voronoi neighbor statistics are sensitive even to
the degree of randomness of the “random” structures.

Next, we study the number distribution of the Voronoi
polygon edges, P,. For 2D configurations with PBC, even
though C;=2n P,=6 exactly, P, is a function of density and
is a sensitive microstructural indicator. In Fig. 6 we compare
the hexagon incidence in the swelled random structures for
different success rates with that in the thermodynamic struc-
tures. However, for the incidence of other polygons, to avoid
a profusion of figures, we compare only the thermodynamic
structures (Fig. 7) and the 50% success rate swelled random
structures (Fig. 8). From these figures we observe the
following:

* Figure 6 shows that, while the hexagon population rises
sharply across the freezing transition for thermody-
namic structures, it rises quite slowly for the random
structures. As the success rate increases, the hexagon
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FIG. 7. P, for hard-disk NVE configurations, for n=4 (@), 5 (O), 7 (0), 8
(¢©), and 9 (+). Averaging as in Fig. 4.

population at vprp decreases. This shows that increas-
ing the success rate increases the randomness of the
structures.

* From Fig. 7, for v> v we see that the polygons, domi-
nant after hexagons, are pentagons and heptagons. Also
their populations are nearly identical. This population
equality, also observed in the random structures (Fig.
8), may be explained as follows: In 2D structures with
PBC, if the populations of the polygons other than pen-
tagons, hexagons, and heptagons are negligible (as in
dense hard-disk structures), then the populations of pen-
tagons and heptagons will be nearly identical, so that
the mean number of sides is exactly six.

* From Fig. 8, it is seen that the pentagon and heptagon
populations are quite significant in the dense random
hard-disk structures.

* Polygons with faces 3, 10, 11, and 12 have sharply de-
creasing incidence as v increases (even for v<<wp) in
both thermodynamic and swelled random structures
(figure not shown).

VI. HARD-SPHERE RESULTS

For three-dimensional (3D) Poisson tessellation
C(I):%7T2+2z 15.5354, an exact result by Meijering.23 The
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FIG. 8. P, for hard-disk 50% success rate swelled random configurations,
for n=4 (@), 5 (O), 7 (O), 8 (<), and 9 (+). Averaging as in Fig. 4.
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FIG. 9. C, for hard-sphere NVE (@) vs 50% success rate swelled random
(O) configurations and (*) are experimental results by Finney (Ref. 11). The
NVE and swelled random data sets are averaged for 1000 configurations of
256 hard-spheres.

Wigner-Seitz or Voronoi cell for the perfect face-centered-
cubic (fcc) lattice is the rhombic dodecahedron, and it has
Cy=12 and C,=42. Figures 9 and 10 respectively show C,;
and C, for thermodynamic and swelled random hard-sphere
structures, from which we observe the following:

« For 3D Poisson tessellation C)~69.8.

e The sudden decrease of C,, across the freezing transition
is similar to that observed in the hard-disk system.

. Finney” has reported C; for two different sets of ex-
perimental dense random packing configurations as
14.251+0.015 and 14.28+0.05. Figure 9 shows that the
C, for random hard-sphere configurations match rea-
sonably with the experimental results of Finney.

e Figure 9 shows that C; approaches 14 instead of the
value of 12 expected for an fcc lattice. This is because a
slight perturbation of the positions in the centers of a
pair of particles transforms a vertex in the Voronoi poly-
hedron into a Voronoi surface, causing the coexistence
of polyhedra with faces 12-18, with the mean at 14, as
shown by Troadec et al.’> We briefly discuss this issue
in the Appendix. C; increases from 12 to 14 by the
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FIG. 10. C, for hard-sphere NVE (@)vs 50% success rate swelled random
(O) configurations. Averaging as in Fig. 9.

FIG. 11. g,(r) for thermodynamic hard-sphere configurations at v=0.57.
The promotion of a few second neighbors into first neighbors manifests as a
secondary peak in g,(r).

promotion of a few second neighbors into first neigh-
bors, by the formation of additional tiny quadrilateral
faces on the erstwhile rhombic dodecahedron (see Fig.
19). This promotion manifests as a secondary feature in
g1(r) (Fig. 11) which grows as an inflection near v and
becomes a separate peak as v increases.

TABLE II. System size/shape dependence and thermodynamic consistency
checks for hard-sphere C;.

b

v ZHSa Run Cl fl(a') Zvor

0.65 24.19 I’ 14.0390 9.96 24.31
i 14.0388 9.99 24.38

mr° 14.0386 9.83 23.99

v 14.0389 9.92 24.20

Ve 14.0382 9.93 24.24

0.68 36.34 1 14.0252 15.00 36.07
II 14.0260 15.13 36.37

11 14.0251 15.30 36.77

v 14.0255 15.09 36.27

A\ 14.0249 15.20 36.53

0.70 54.47 I 14.0172 22.97 54.65
I 14.0168 23.08 54.93

111 14.0165 23.11 55.00

v 14.0164 23.16 55.10

v 14.0175 22.97 54.67
0.72 108.05 I 14.0083 46.23 108.94
I 14.0080 46.15 108.74

1T 14.0083 46.67 109.95

v 14.0083 46.29 109.08
v 14.0085 46.63 109.86

*Young and Alder (Ref. 31) give the hard-sphere solid equation of state as
Z=3/a+2.566+0.55a—1.19a%+5.950°, where a=(v-v,)/vy=(1-y)/y is
the dimensionless excess free volume.

®Using Eq. (8).

“Averaged for 1000 configurations of 256 hard-spheres in a cubic box, with
PBC.

dAveraged for 512 configurations of 500 hard-spheres in a cubic box.
“Averaged for 500 configurations of 512 hard-spheres in a cuboidal box
(2l 1,=2:1:1).

fAvt:raged for 297 configurations of 864 hard-spheres in a cubic box.
€Averaged for 187 configurations of 1372 hard-spheres in a cubic box.
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FIG. 12. P, for hard-sphere NVE configurations, for n=12 (@), 13 (O), 14
(O), and 15 (). Averaging as in Fig. 9.

Table II shows the system size/shape dependence and
thermodynamic consistency checks on the hard-sphere C;
data. It shows that C; tending to 14 near regular close pack-
ing is consistent with the thermodynamic data. C; data shows
negligible size dependence since it depends only on the enu-
meration of the first neighbors. For simulations in a cubical
box with PBC, the number of spheres must be more than
(6/m) X(Cy+---+C(,_;)) to have meaningful averages for
the higher order C,. Table II also shows a comparison of the
thermodynamic compressibility factor obtained from the
hard-sphere equation of state (Young and Alder’") with the
compressibility factor obtained from Eq. (8), in which C,;
and f,(o) are determined by Voronoi tessellation. This table
shows that the compressibility factor obtained from Voronoi
tessellation is in agreement with the thermodynamic data,
even though C| is larger than the value of 12 expected for a
fcc lattice.

Next, we study the number distribution of the Voronoi
polyhedra faces, P,. We compare the data for the thermody-
namic configurations in Figs. 12 and 13 with those for the
50% success rate swelled random configurations in Figs. 14
and 15. From these figures we observe the following:
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FIG. 13. P, for hard-sphere NVE configurations, for n=11 (@), 16 (O), 17
(0), 18 (©), and 19 (+). Averaging as in Fig. 9.

10

10

0 0.2 04 06

v

FIG. 14. P, for hard-sphere 50% success rate swelled random configura-
tions, for n=12 (@), 13 (O), 14 (O), and 15 (). Averaging as in Fig. 9.

e Arise in the dodecahedron population marks the freez-
ing transition. However, the populations of 13-18 fac-
eted polyhedra remain significant even near v,. It is also
apparent that P, near close packing for equilibrium
structures is not very different from that near the dense
random packing for annealed structures due to the to-
pological instability (Fig. 16). The P, data near dense
random packing agrees well with that of Jullien et al.*

* Figure 14 shows that in the random hard-sphere struc-
tures, the dodecahedron population decreases with in-
creasing v. This behavior is unlike that in the random
hard-disk structures (Fig. 6), where the hexagon popu-
lation steadily increases with v. The decrease in dodeca-
hedron population cannot be interpreted as a decrease in
fcc crystallites because a slightly perturbed fcc crystal-
lite may get accounted for in the 13—18 faceted polyhe-
dra population.

* Comparing the P, data in Figs. 13 and 15, we see that
the population of the polyhedra with faces 11 and
16—19 decreases sharply across the freezing transition
in the thermodynamic structures, but it decreases only
gradually in the random structures.
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FIG. 15. P, for hard-sphere 50% success rate swelled random configura-
tions, for n=11 (@), 16 (O), 17 (), 18 (<), and 19 (+). Averaging as in
Fig. 9.
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FIG. 16. Comparison of P, for a near regular close-packing thermodynamic
structure at ¥=0.74 (@) and a near dense random packing swelled random
structure at v=0.632 (O).

A similar topological instability occurs for a simple cu-
bic lattice in the hard-disk system, which has C;=4. In 2D
tessellations, vertices with four edges incident on them are
topologically unstable and any slight perturbation of the lat-
tice transforms a vertex into a Voronoi edge, resulting in
C,=6. However, since the regular close-packed structure in
two dimensions is a hexagonal structure, in which the num-
ber of Voronoi edge is stable under a slight perturbation of
the particle centers, this effect is not observed in two dimen-
sions.

Vil. ESTIMATION OF THE EFFECTIVE HARD-SPHERE
DIAMETER FOR LENNARD-JONES FLUID FROM
G

The notion of effective hard-sphere diameter (EHSD)
has a long history, beginning with Boltzmann.” He sug-
gested that the distance of closest approach of the soft po-
tential molecules could be considered the EHSD. > Experi-
ments and simulations have shown that the structure
(characterized by the radial distribution function®® or its Fou-
rier transform, the structure factor35) of the dense soft poten-
tial fluid can be matched with that of the hard-sphere fluid
having a particular diameter. This defines the EHSD of the
soft potential fluid at a given density and temperature. The
EHSD method has been proven successful in the prediction
of thermodynamic properties, self-diffusion coefficient,'® and
shear Viscosity36 of Lennard-Jones (LJ) fluids.

The LJ potential ¢y ,(r)=4¢,[(o;/r)">=(o;/r)®] has
an energy scale € ; and a length scale o7 called the molecu-
lar diameter. The dimensionless temperature is 7" =kgT/ €
and the dimensionless density is p*=p0{1. The effective

hard-sphere diameter o is rendered dimensionless as
o' =c/oy;. The theoretical approaches of Barker and
Henderson®’ (BH) and of Chandler, Weeks, and Andersen’®
(WCA) and their modification by Lado'* (denoted here as
LWCA) integrate the repulsive part of the LJ potential with
different criteria yielding different expressions for the
EHSDs. The explicit expressions for these models, as pre-
sented in Ben-Amotz and Herschbach,39 along with their em-
pirical results (denoted here as BAH) obtained by fitting the
equation-of-state data to Carnahan-Starling—van der Waals
equation are given in Table III.

We estimate the EHSD as follows: By Voronoi tessellat-
ing the LJ configurations we get C;. The effective hard-
sphere packing fraction v is gotten by interpolating the ther-
modynamic hard-sphere C; vs v data (Fig. 9). Then, the
dimensionless EHSD is computed as o =(6v//p")"3. This
method of estimating the EHSD of the soft potential fluid
requires that the averaged local neighborhood, as character-
ized by Cy, be identical with that of the hard-sphere fluid
having the diameter o, the EHSD. This method is based on
the statistics of the geometry of particle distributions and is
similar to Boltzmann’s method®® which is based on the tra-
jectories. Such statistical-geometric approaches are simpler
because they do not use any integral criteria for the repulsive
part of the potential (as in the BH, WCA, or LWCA models)
or employ any property data fitting (as in the BAH model).
Table IV shows ten different state points for the LJ fluid; the
first five state points are in the liquid state, while the rest are
in the gaseous state. For these state points, the values of
EHSD predicted from C; show less than 2% deviation from
the BH, WCA, and LWCA models and less than 5% devia-
tion from the BAH model. It may be noted that the devia-
tions among these models is also of the same order (see, for
example, Fig. 7 of Ben-Amotz and Herschbach®®). The ex-
cellent match of the EHSD computed from the statistical-
geometric approach with those based on the integral criteria
for the repulsive part of the potential (as in the BH, WCA,
and LWCA models) shows the validity of the EHSD concept
and also acts as a validation of the computational procedure
used here.

VIil. CONCLUSIONS

We have analyzed the nth neighbor coordination number
(C,), the nth neighbor distance distribution [f,(r)], and the
distribution of the number of Voronoi faces (P,) for hard-
disk and hard-sphere systems for both thermodynamic and
annealed structures. The annealed structures were produced
by repeated cycles of swelling and random displacements,
with the success rate of these random displacements being a

TABLE III. The parameters o, and T in o =ay[1+(T"/Ty) 217 for the different EHSD models, as presented

in Ben-Amotz and Herschbach (Ref. 39).

Model a, T,
Barker-Henderson (BH) (Ref. 37) 1.1154 1.759
Weeks-Chandler-Andersen (WCA) (Ref. 38) 1.1137  [0.721 57+0.045 61p"~0.074 68p"2+0.123 44p"3]2
Lado (LWCA) (Ref. 14) 1.1152  [0.734 54+0.102 50p"=0.129 60p"?+0.159 76p"3]2
Ben-Amotz-Herschbach (BAH) (Ref. 39) 1.1532 0.527




TABLE IV. Comparison of EHSD values predicted from C; with those from the models in Table III.

LJ state 0" values from the models in Table III Voronoi analysis
T p BH (Ref. 37)  WCA (Ref. 38) LWCA (Ref. 14) BAH (Ref. 39) c,* a

0.7408  0.8350 1.0262 1.0224 1.0200 1.0123 14.47 1.0318
0.8230  0.8010 1.0226 1.0193 1.0169 1.0074 14.55 1.0295
1.0649  0.7000 1.0134 1.0113 1.0090 0.9952 14.77 1.0246
1.0662  0.8210 1.0133 1.0096 1.0068 0.9951 14.58 1.0143
1.0845 0.7690 1.0127 1.0097 1.0072 0.9943 14.67 1.0188
2.5655  0.4000 0.9775 0.9782 0.9760 0.9497 1524 0.9884
27371 0.3000 0.9746 0.9758 0.9739 0.9461 1533 0.9830
27584 0.7195 0.9742 0.9718 0.9686 0.9457 1491 09735
3.2617  0.9200 0.9666 0.9600 0.9558 0.9364 1470 0.9540
3.8833  0.9900 0.9583 0.9496 0.9449 0.9267 14.66  0.9398

“Averaged for 1000 configurations of 256 LJ molecules, with PBC.

control parameter. In the dilute limit, the random structures
produced at any success rate are identical to the thermody-
namic structures. Above the freezing density, higher success
rates produce more random structures, and the limit of near
100% success rate gives the maximally random structures.
The neighbor coordination numbers C, analyzed here, C,
and Cj in two dimensions and C;, C,, and Cj in three di-
mensions, have an inflection at the freezing transition for
thermodynamic structures, but the maximally random struc-
tures do not have an inflection point around the freezing
density. The first nearest neighbor coordination number C,;
for random hard-sphere structures produced by our algorithm
agrees with the dense random packing experimental results
of Finney.ll

For a hard-rod system g, (r) is exactly known.”® For the
2D Poisson tessellation f;(r) (Ref. 24) and P, (Ref. 30) are
exactly known. For any nondegenerate 2D tessellation with
periodic boundary conditions, C;=6 exactly.23’24 For the 2D
Poisson tessellation, we report C,=~13.698 and C;=22.94.
For the 3D Poisson tessellation, C1=%ﬂ2+2% 15.5354
exactly,23 and we report C,=69.8.

On freezing, the hard-disk coordination numbers C,, (for
n>1) decrease sharply to the regular hexagonal lattice val-
ues (C,)reg=6n. A sharp rise in the hexagon population and a
sharp drop in the population of the other polygons mark the
onset of hard-disk freezing transition. The hard-disk random
structures have a slow rise in the hexagon population with
increasing density, and the pentagon and heptagon popula-
tions remain nonzero as dense random packing is ap-
proached. In dense hard-disk structures, both thermodynamic
and random, the pentagon and heptagon populations seem
identical.

For the perfect fcc lattice C;=12 and C,=42. However,
due to topological instability,12 a slightly perturbed fcc lattice
has Voronoi polyhedra with faces 12—18, with the mean at
14. This increase is achieved by forming tiny quadrilateral
faces with a few second neighbors, thereby promoting them
into first neighbors. This promotion manifests as a secondary
peak in g;(r). Thus, on freezing transition the hard-sphere C,
is close to 14 rather than 12. We have demonstrated that this
result is consistent with thermodynamic data. On freezing

transition, even though there is a rise in the rhombic dodeca-
hedron population, the population of the polyhedra with
13-18 faces remains significant. In hard-sphere random
structures, the dodecahedron population decreases with in-
creasing density. These results show the significant differ-
ences between the hard-sphere and hard-disk microstruc-
tures.

We show that the Voronoi neighbor statistic C; is useful
in estimating the effective hard-sphere diameter of soft po-
tential fluids. By matching the C; of the Lennard-Jones fluid
configurations with that of the thermodynamic hard-sphere
fluid at some packing fraction, we are able to estimate the
effective hard-sphere diameter of the Lennard-Jones fluid
within 2% deviation from the theoretical results of
Barker-Henderson’’ and Weeks-Chandler-Andersen® and
the modification by Lado."* This statistical-geometric ap-
proach is elegant because it does not employ integral criteria
for the repulsive part of the potential (as in the above-
mentioned theories) nor utilize property data fitting (as in the
empirical correlations).

APPENDIX: TOPOLOGICAL INSTABILITY OF FCC
LATTICE

The Rhombic dodecahedron (Fig. 17) is the Wigner-
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FIG. 17. Rhombic dodecahedron is the Wigner-Seitz or Voronoi cell for the
perfect fcc lattice.



FIG. 18. The octahedron formed by the spheres sharing a type-B vertex. For
sphere 1, the spheres 2-5 are first neighbors, while sphere 6 is the second
neighbor, if the lattice is nonperturbed. Small perturbations can promote
sphere 6 into a first neighbor for sphere 1.

Seitz cell or the Voronoi polyhedron for the perfect fcc lat-
tice. It has 12 identical rhombic faces and 14 vertices. Its
vertices are classified into two types based on their connec-
tivity. Vertex type A has four edges incident on it, with three
edges from the given cell and another edge from the neigh-
boring cells. Vertex type B has eight edges incident on it,
with four edges from the given cell and four from the neigh-
boring cells. A rhombic dodecahedron has eight type-A ver-
tices and six type-B vertices. A type-B vertex is shared by six
spheres, the centers of which form an octahedron (Fig. 18).
The type-B vertices are topologically unstable and, on per-
turbation, form additional edges leading to pentagonal or
hexagonal faces or form an additional tiny quadrilateral face
with a second neighbor sphere, thereby promoting it into a
first neighbor (Fig. 19). When an additional face is formed, it
is perpendicular to the diagonal of the octahedron formed by
the central sphere and the sphere getting promoted as a first
neighbor. Among all possible infinitesimal perturbations of

FIG. 19. A Voronoi cell from a perturbed fcc lattice having pentagonal or
hexagonal faces due to the formation of additional edges or having an ad-
ditional face formed with an earlier second neighbor.

the lattice shown in Fig. 18, there will be an equal number of
perturbations leading to the formation of additional faces be-
tween the pairs of spheres (1, 6), (2,4), or (3,5). Hence, the
probability that an additional face is formed between one of
the pairs is % Thus, the average number of faces equals 12
plus the number of type-B vertices times the probability that
a type-B vertex forms an additional face (12+6><%=14).
This was proven by Troadec et al."* (further details are
therein).
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