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Abstract

A family of stochastic Newmark methods are explored for direct (path-wise or strong) integrations of stochastically
driven dynamical systems of engineering interest. The stochastic excitations are assumed to be modeled by white noise
processes or their filters and may be applied additively or multiplicatively. The family of stochastic Newmark maps are
developed through a two-parameter, implicit Ito-Taylor expansion of the displacement and velocity vectors associated
with the governing stochastic differential equations (SDE-s). Detailed estimates of local and global error orders for the
response variables are provided in terms of the given time step size, 4. While higher order Newmark methods lead to
higher accuracies, far less random variables need to be modeled in the lower order methods to make it much more
attractive from a computational point of view. For the specific case of a linear dynamical system, the stochastic New-
mark map is used to obtain a closed form map for computing the temporal evolution of the response co-variance
matrix. A host of numerical illustrations, covering linear and non-linear, single- and multi-degree-of-freedom dynamical
systems, are provided to bring out the advantages and possible weaknesses of the methods proposed.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Wiener processes; Stochastic differential equations; [to—Taylor expansions; Path-wise solutions; Stochastic Newmark maps;
Mechanical oscillators

1. Introduction

Newmark method is by far the most popular tool for direct integration of deterministic dynamical
systems [12,1,11,25]. For a given time step size, #, a Newmark map may be derived by expanding the
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displacement and velocity components up to O(h%) and O(/) respectively via a two-parameter implicit Tay-
lor series. This corresponds to a constant average acceleration for a sufficiently continuous and differentia-
ble deterministic system. The same logic, however, cannot be directly used for stochastic systems under
white noise inputs. It is well known that a white noise process, defined formally as the derivative of a Wie-
ner process, is not a valid mathematical or physical function of time. This is because a Wiener process, even
though continuous, may have an unbounded variation over any given time interval. Consequently, for such
engineering systems, the acceleration vector does not exist mathematically (at least, in the sense of sample
paths). Moreover, increments of a Wiener process change by O(h'"?) over a time interval of 4. These two
non-deterministic aspects of a stochastic differential equation (SDE) explain why numerical integration
techniques for strong solutions of SDEs are often so different from their deterministic counterparts [4].
A consistent way to achieve higher order accuracy while developing numerical algorithms for pathwise
(strong) solutions of SDEs is to use a stochastic Taylor expansion [4], which in turn is derivable from re-
peated applications of Ito-Taylor or Ito-Stratonovich formulas to a functional [6]. Direct integration meth-
ods provide an attractive numerical approach due to their simplicity and applicability to MDOF non-linear
systems. A stochastic central difference method [18-21], and a Newmark family of algorithms [22] have
been proposed for systems described by second-order matrix differential equations. Although successful,
these methods are limited to non-linear elastic structures subjected to additive white noise excitations.
Zhang and Zhao [24] updated the algorithm to correctly handle autocorrelation functions of response pro-
cesses under Gaussian white noise excitations in a discrete form and clarified the effect of the time interval
on the calculations. To represent a filtered white noise excitation, an AR model [8] and an ARMA model
[32] were incorporated into the algorithms. Ohtori et al. [13] proposed a semi-implicit integration algorithm
for stochastic analysis of state-space equations. It solves the linearized equations by an implicit method
termed as “‘semi-implicit integration”. By taking the mathematical expectation of the recursive expression
for the solution of the state-space equation, the algorithm calculates the mean and covariance of the re-
sponse of the structure. Bernard and Fleury [2] have recently proposed a stochastic Newmark scheme
for solution of dynamical equation of linear oscillators subjected to white noise excitation. Runge-Kutta
schemes in the strong sense have been proposed, for instance, by McShane [27], Rumelin [26], Chang
[29], Milstein [9], Kloeden and Platen [7] and the references of Saito and Mitsui [28]. Tocino and Ardanuy
[23] have proposed a class of explicit second order and two explicit third order RK schemes. A symplectic
stochastic integrator [10] and a second order leapfrog algorithm [14] are also available in the literature.
The central purpose of this paper is to theoretically develop and numerically implement a family of lower
and higher order stochastic Newmark algorithms for pathwise integration of SDE-s of relevance in stochas-
tic structural dynamics. At the outset, certain rather general continuity and boundedness requirements are
imposed on the drift and diffusion vectors. Secondly, lower and higher order stochastic Newmark maps are
derived based on appropriate stochastic Taylor expansions of displacement and velocity vectors in terms of
a given time step size, 4. As in the deterministic case, the displacement and velocity expansions are per-
formed implicitly using a couple of arbitrary integration parameters, o and . Given a time step size 4,
the displacement and velocity expansions are computed by retaining terms up to O(4?) and O(/) respec-
tively in the lower order and terms up to O(h*) and O(4%) in the higher order. These expansions are not
complete in the sense that certain terms of the highest order in /4, involving multiple stochastic integrals
(MSI-s) in terms of the Wiener increments, are dropped off from the expansions for the sake of computa-
tional convenience. Rigorous error estimates are carried out to determine the local and global error orders
for displacement and velocity vectors. Systematic procedures for the determination of MSI-s, crucial for
maintaining the pathwise integration accuracy in the stochastic regime, are provided. The method is devel-
oped within an adequately general framework to be readily implementable for large DOF mechanical sys-
tems. A host of numerical illustrations of the methods are undertaken for linear and non-linear, single- and
multi-degree-of-freedom mechanical oscillators under additive and multiplicative white noise inputs. It may
be noted that the lower order Newmark method has already been reported by the authors [16]. However,



for the sake of completeness, the lower order method is again briefly covered, albeit within a more general
framework.

2. The methodology

Since the stochastic Newmark method (SNM) is proposed to be developed in the context of engineering
dynamics, a natural starting point would be to consider the following n-DOF dynamical system:

X +CX, X)X +K(X, X)X = zq: G(X, X, )W, + F.(1), (1)

where X = {xV,x®, .. x"Tc R?", C(X,X), K(X,X) are nx n (state-dependent for non-linear systems)
damping and stiffness matrices, {G,(X, X, )} is the rth element of a set of n x 1 drift vectors, { W(f)} con-
stitutes a g-dimensional vector of independently evolving zero mean Wiener processes with W,(1),
r=1,2,...q with W,(0)=0, E[|WAt) — Wis)]"] =(t — ), t>s and F.(t) = {fV(0)[j = 1,2,...,n} is the
external (non-parametric) deterministic force vector. It may be noted that the white noise processes
W.(t) do not have any realizable sample paths with finite measure and hence the description of the dynam-
ical system as in Eq. (1) is entirely formal. These second order equations may more appropriately be recast
as the following system of 2n first order equations in incremental form:

dx}) =y d,
D e o (2)
A =a" (X, X, 0)de + > oV (X, X, 0)dW, (1), j=1,2,....n,
r=1
where,
aV(X, X, 1) Z Cu(X, X)x ZKjk(X,X)x<k) + f9(), ‘)
=1

cV (X, X, 1) = Gﬁf (X,X,1).

In order tQ ensure sample existence and boundedness of the solution vectors X; =X = {xl'} and
Xo=X= {x2 },7=1,2,..,n, it is assumed that the drift and diffusion vectors, "’ and ¢¥) are measurable
(with respect to ¢t € R1 X, X € R"), continuous and satisfy the Lipschitz (linear) growth bound

q
aV (X, 1) —a (Y, 0]+

r=1
where X, Y € R*, Q € R" is a sufficiently large positive real number and X = {X TX = {XTxT}". The
norm ||| is the Euclidean norm. Let the initial conditions be m.s. bounded, i.e., E|X (#)|* < oo and have
certain growth bounds (not necessarily linear). Thus the sample continuity (w.p.1) of any realization of
the (separable) vector flow ¢ (¢, w, X (#y)) for any w € Q (Q being the event space) is assured. Let the subset
of the time axis over [0,7] be ordered such that 0 =, <#;, <t, <.---<{;<---<ty=tvand h;=t;,— t;
where i € Z". It is now required to replace the non-linear system of SDEs (1) by a suitably determined (sto-
chastic) Newmark map over the ith time interval 7;=(t,_;,¢], given the initial condition vector

o) (X, 1) = (Y, )| < QX = 7|, Vjell,n], (4)

X(ti1) 2 X, 1. It is assumed that the response random variable X (;) £ X, is F(1;) measurable with
E|)A( ,-|2 < o0 and F(z;) denoting the non-increasing family of o-subalgebras. Further, for convenience of dis-
cussion, an uniform time step size /; = hVi is assumed in what follows.

Now, towards deriving the stochastic Newmark map over the ith time interval, the first step is to con-
sider Eq. (2) and expand each element of the vectors X (f;,_; +h)=X(¢;,_; +h) and Xo(t, +h) =
X (t;_1 + h) in a stochastic Taylor expansion around Xi(#;_1) = X7,;_; and X»(#;_1) = X, respectively.



Either Ito or Stratonovich calculus may be used for this purpose (see [6] or [9] for a detailed derivation of
Ito-Taylor and Ito-Stratonovich expansions). For purposes of a ready reference, a brief derivation of the
Ito-Taylor expansion is provided in Appendix B. In the present study, the derivation of the map is per-
formed following Ito’s formula (see Appendix A), i.e., by using the Ito-Taylor expansion. An integral form
of Tto’s formula (see Appendix B) of any functional of response processes, as adapted specifically for Eq.
(2), is stated below:

S(X1(),X(s),5) = f(X1(60), Xa(t0), t0) + ) /S A f (X1 (s1), X2(s1),51) AW, (s1)

+ /S Lf(X](S]),X2(S]),S1)dS1, (53)

where f'is any sufficiently smooth (scalar or vector) function of its arguments, s > ¢, and the operators A,
and L are given by:

L _z": oY EXn ) (5b)

)
©x2

+Z 0 +Za —{/ Si DY a">a> 6f (5¢)
Xy =1

j=1 r=1 k=1 I=1 6x2

2.1. A lower order Newmark method

Here the jth element, x&")(t,» =t,1 +h), of the n-dimensional vector X;(¢,) is expanded over the semi-
closed interval (z;_1,1;] as:

ti ) ) t;
20 (6) = x(6) + / %9 (s)ds = £ () + /
t t

+ Z / N 1),s1)dW, (sl)}ds. [7 (6)

At this stage, Ito’s formula (which forms the basis for stochastic Taylor expansions; Appendix A pro-
vides a brief account of Ito’s formula) may be applied on the functions ¢¥) and a?” around (X (¢, ),t 1)
to obtain the stochastic Taylor expansion:

ti s .
3 (1) = (1) + 25 () + @ (X (1104 +Zav 1) / / AW (s1)ds + pf,
ti1 Jtio
(7a)

{ng>(zf1)+ / AR (51), 1) dsy
1 tiog

where the jth remainder component, pw consists of the following multiple integrals:

. q ti s N .
pY) = Z / / / A,a" (X ( (82),82)dW,(s2) dslds—i—/ / / La(’ 2),52) ds,dsy ds
= Jti Ju

/ / A6 (X (52), 52) A (52) A, (s1) ds

tiop Yt Sl

K 51 =N
/ / LoV(X (52), 52) dsa dW, (s1) ds. (7b)
1 Jticr Jtig



The above equations constitute a direct stochastic Taylor expansion for the displacement vector Xj.
However, keeping in mind the deterministic Newmark technique, an implicitness is introduced in the expan-
sion by using a non-unique real integration parameter « and writing Eq. (7a) as:

. . q o t s o h2
) (6) =2 (tm) + 2 (t)h + > 6D (X (1), i) / / AW, (s1) ds + 0a? (X (11),10-1) 5
r=1 tip Jti

+ (1 = a)a” (X (1), 1; )h2 + pY. (8)

Now the fifth term on the RHS of the above equation is expressed in terms of a)(X (t;), ) via a back-
ward stochastic Taylor expansion as:

am()?(tifl)a tig) =a” ()?(ti)v t) — pg)7 (9a)
where the remainder p(f ) is given by:
pg”:/ La" (X ds+Z/ A,a9 (X (s),8)dW,(s). (9b)
tiq

Thus one has the following expression for x (1) £ x

. . . q o ti s R h2
x%’? :x?‘l).f1 +x§{371h+20£’)(Xi,1,ti,1) / dW,(sl)ds—i—ota(’)(Xf,l,ti,l)E
ti-1 Jtizy

r=1

PN
+ (1 —)a” (X, ;) = 3 +RY, (10a)

. ) W )
RV = —(1—a)py E+p§’. (10b)

(/)

The jth velocity component x5, 1s now implicitly expanded as:

xz, *le p+ E U(/ Xi1,ti / dW,(s) + BaV (X -1, ti1)h + (1 = B)a (X1, 1:)h +R%/)a (11)
i1

where, the expression for the remainder is:

R(’ Z/ dw (s / ZA,O' 1),51)dW,(s1)

+Z tt[ dW,.(s)/t LoV (X (s1),)ds; — (1 = B)pYh. (12)

r=1 i— i—

In the RHS of the above expression, p2 is given by Eq. (9b). Now a stochastic Newmark map for the jth
scalar displacement, xY , is given by Eq. (10a) without the last remainder term, R”, on the RHS. Smnlarly,
Newmark map for the jth scalar velocity, xg’ ), is obtained via Eq. (11) without the remainder term R; Y on the

RHS. These Newmark approximations to {X} = {{x1 I {x2 Wj=1,2,...,n}" will henceforth be de-
noted as {X} = {{z/}", z}"j = 1,2,...,n}".

2.2. A higher order Newmark method

As in the deterministic case, stochastic analogs of higher order Newmark methods are possible, at least
theoretically. Such higher order methods may be derived by incorporating more terms in the associated



stochastic Taylor expansions (i.e, by iterating the error terms in lower order Newmark method via an inte-
gral form of Ito’s formula (see Appendix B for a general description of deriving the Ito-Taylor expansion).
However, in sharp contrast with the lower order Newmark method, one has the daunting task of modelling
MSI-s of third and higher levels for higher order Newmark methods. For notational simplicity, these multi-
ple integrals will henceforth be denoted by:

/1/2 Jk / dW// / dWJk Sl/ / /1 Skl (13)

ti

where the integers jj, o, . . ., ji take values in the set {0,1,2, ..., ¢} and /; ;, ., may be considered as the kth
Ito multiple integral. Moreover, d W(s) is taken to indicate ds. In most of the cases, these higher level sto-
chastic integrals cannot be evaluated in closed form and hence need to be determined numerically. Even a
numerical computation may sometimes become so computationally expensive as to render the higher order
method practically useless. With this in mind, only one higher order Newmark scheme, which can be ap-
plied to an engineering system of arbitrarily high DOF and under any number of additive and/or multipli-
cative white noise processes, hopefully within an affordably extra computational cost, is presented in what
follows.

Following the same stochastic expansion of Ito as in the lower order case and using the new symbol, as

in Eq. (13), for multiple stochastic integrals, the following higher order implicit expansion for fo may be
arrived at:
x%:x%q“‘x%qh‘f‘a ( i— 17 +ZG</ i—1y ti_1 rO+ZZAIO_ i—1s i I)IIrO
q q q
+ZZZ W0 (X Lyt ulr()+ZAa X, ti) o0
r=1 I=1 u=1
q R h3 .
3 LeV (X1, 6 )opo + {oLa (X, 1 60) + (1 —oc)La(’)(X,»,t,«)}€+Rg’), (14)
r=1
where the higher order remainder Rg’ ) is given by:
) . h3
RY = pf — (1 —a)pf’ — 6 : (15)

The error components p3 ) and pf{) are respectively given by:

i i/ / / / LA6Y (X (53),53)ds3 AW ;(s2) AW, (s1)ds
220

e / / / / / LA, A6 (X (s4),54)dss AW, (s3) AW (s3) AW (s) ds

Zq:ii //////1/1/110 R (52),50) AW (53) AW o (s53) AW 1 (52) A, (51) s

r=1 [=1

r—l/ / / / LA,a" (X (s3),3)dssd IV, (s2) ds ds

S 1/ / //AAa X (53),55) AW (53) I, (52) s ds

r=1

q q

I MQ

_|_

+
MQ



q t; s N 5 R
/ / / / A[Uy>(X(S3),S3)dW[(S3)dS2dWr(S1)dS
=1 Y1 i Sl Y

i

t; s 51 52 .
+ / / / L*aY (X (s3),53)ds3 ds, ds; ds
tiog Sty St i

852 Y
/ Lzo,@(X(S3),S3)dS3dsde,(sl)ds
tig

q t N S1
+Z/ / / / AL (X (53),55) AW, (s3) dsa s d, (16a)
r=1 Y1 Sty St St
t
py>:/ (% ds—i—Z/ A LaD (X (s),5) A, (s). (16b)
i i

The higher order implicit expansion for the jth velocity component, ng? may similarly be derived as:

NEd

. . q ) q q N q DR
X)) =xy) + Z DX i)+ A (X i)+ > LeD (X iy ti1)o,

r=1 [=1 r=1

,1,11h+2/161 1171] 10+ZZZAAIG 1]7 )[uAl‘r
r=1 I=1 u=

+ {BLaV (X1, t:i1) + (1 — B)LaV (X,,t)} +R(f (17)
The jth error component, R2 , corresponding to the velocity component, xg), may be written as:
G _ 0) L
R =ps" —(1- ﬂ)P4 5 (18a)

where,

q q q t; K S1 52 .
+Y 3 / / LA,A,6Y (X (s3),53) dss AW, (s5) AW, (s1) AW, (s)
r=1 I=1 u=1 Y1 Yt St Ji1i
q q t N ] R
+Y > / / LoV (X (s1),57) AW (s2) dsy AW .(s)
=1 I=1 tioy Jtiy St

2> / / / L0 (X (s2),52) ds2dsy 417 )
/tl /S /S] 414,07 (X (s,),5,) AW (53) AW (1) ds

1 Yt Y Jilig
t

q i s S1 R

/ / LA,a" (X (s),5,)ds, dW,.(s1)ds
=1 Jti-1 Yt St

t N S1 N
/ / / A, LaV (X (55),5,) AW, (s,) ds; ds

tiop Sl Sl

ti s S1 R
+ / L*aY (X (s,),5,) ds, ds; ds, (18b)
tiog Ji;



and pff) is given by Eq. (16b). Obviously, the higher order stochastic Newmark map for the jth displacement
and velocity components, x;” and xg’), are respectively given via Egs. (14) and (17) without the remainder
terms.

2.3. Error estimates

Since the sample path, X (¢t) traced by the given SDE is, in general, different from the approximated
Newmark solution, X, an instantaneous error at ¢ =1¢; may be defined as the 2n-dimensional vector

E;, = {{EE’I)}T, {EE’?}T}T = {{(x%’f —AXY?)}E, {(xé’? — ch’f)}T}T where j = 1,...,n, and the instantaneous Euclid-
ean error norm is denoted as e; = |X; — X;|. This error vector is treated as a set of conditional random vari-

ables such that the local initial condition, X i_1, 1s deterministic and that X .1 = X, ;. In what follows, let Cm
and ¢, respectively denote the orders of the mean and mean square of this conditional (local) error with
respect to the chosen time step size, & = t; — t;,_;. In other words, one has the following bounds:

IECX; = X)ll < O(1 + | XA, (19)

~ ~ 1 fa -
[E[IX; — X[PJF < O(1 + [[X i [*)h. (20)
Also let ¢s1/2 and cp,¢s + 1/2. Then, one has the following bound on the global error:
~ ~ 1 ~ L1
[EIX; — X7 < Q1+ 10?2, (21)

This implies that the global order of accuracy of the method, constructed using a one-step approxima-
tion, is ¢y = ¢ — 1/2. The monograph by Milstein [9, pp. 12-17] is referred for a step-by-step proof of this
observation.

2.3.1. Error in lower order Newmark method

From the remainder Eqgs. (7b), (9b) and (12), it is clear that for evaluating the mean and mean-square
error orders, it is necessary to determine the first two statistical moments of the multiple Ito integrals, 1,
and 1, o. At this stage, the following proposition becomes quite relevant.

Proposition 1. One has E(I;, ;, . ;) = 0 if there exists at least one j; # 0, [= 1,2, ..., k. On the other hand,
E(/j j,..) = O(hk) if =0V 1€[0,k]. Moreover,
= O(h"),

[E(Ijl T2k )2]
: (22)

where w = (2—7j)/2, jy=1 if j,#0, elsej,=0.

=1

ol—

Proof of the first part of the above proposition regarding the mean is quite straightforward. For the sec-
ond part, involving Eq. (17), reference is made to the monographs by Milstein [9] or Kloeden and Platen [7].

Now taking expectation of the remainder term RY associated with the jth displacement component x(l’f

(Egs. (10a) and (10b)), one can readily see via Proposition 1 and the inequality (13) that:
[ERV| < O(1 + || X1 [|*)7. (23)
Similarly, using Eq. (17) and the inequality (14), it follows that:

IERYYE < O(1 + || X |0 (24)



Thus, for the proposed stochastic Newmark scheme as applied to displacements, one has (¢y,). = 3,
(¢5), = 2(> %), and thus the inequality (c¢;,), = (¢), + 1/2 is satisfied. Hence the global error order for com-
puting the displacement vector is given by (¢y). = 1.5. One can also apply the above arguments for the
velocity equation (11) and the associated remainder equation (12) to obtain (cm), = 2, (¢5);, = 1(> 1/2).
Thus the inequality (cnm), = (cs); + 1/2 is again satisfied to yield (c,), = 1/2.

It is of interest to note here that the implicit stochastic Taylor expansion of Eq. (10a) used to obtain the
Newmark approximation, x%’l), to the exact displacement component, x;’;, is not complete in O(/?). This may
be verified form the expression of the remainder, R, (Eq. (10b) along with Eq. (7b)) which contains a mul-
tiple Ito-integral /;, o = O(1?), I,r # 0. Since evaluation of multiple integrals involving more than one inte-
gration of Wiener increments is a computationally expensive affair, especially for large DOF engineering
problems, the O(4%) term involving 1;, 0 has not been accounted for in the lower order version of Newmark
displacement map If, in addition, the other easily-evaluatable O(h%) term, u; = oa) (X i1, 1) % L
(1 —a)a¥ (X ,,t) is also left out of the expansion, then from Proposition 1 one would have (¢y,). = 2,
(¢s)x = 2. Since the inequality (¢qm)« = (¢s)x + 0.5 is no longer satisfied, one must take (¢g) = 1.5 for evalu-
ating the global error order (cy), [6]. Thus one finally has (c,), = 1.5 — 0.5 = 1.0. Hence it is observed that
even though the presently adopted Newmark expansion is not complete in O(/?), retaining the term u; leads
to an increase in (cg)y by 0.5. Now, consider the other possibility of retaining the term involving the o(?)
integral I;,  in the expansion instead of the term u;. In such a case, one readily obtains, again via Propo-
sition 1, (¢m)x = 2, (¢5)x = 2. Thus, one again gets (c,), = 1.0, i.e., 0.5 less in order than is achieved by retain-
ing u; 1nstead of the term involving /;, o. However, if both these O(/?) terms are included, then (c,,), = 3.0,
(cs)x = 2.5, and hence (¢,), = 2.0, i.e., 0.5 more in order than the presently adopted scheme at the cost of an
enhanced computational effort, which sharply increases with an increase in the system DOF. Similar argu-
ments as above may be used to justify the inclusion of the O(h) term, u, = fa’)(X,_1,t;,_1)h + pa") (X i ti)h,
and not the term involving O(/) multiple Ito integral 1; (I, # 0). Thus, it may generally be noted that com-
putations of error order along with the retention of appropriate terms in the stochastic Newmark method
considerably differ from those for its well known deterministic counterparts.

2.3.2. Error in higher order Newmark method
Determination of local and global error orders for displacement and velocity components follows the
same steps as detailed in Section 3.1. Thus taking the expectation of the error component Rg’), as in Eq.

(15a), corresponding to the displacement scalar x}”, it is readily seen that:
[ERY| < Q1+ |1 X[ )A. (25)
Moreover, using proposition (1), one also has:
[BRYVF < 01+ |1 Xi [P0, (26)

Hence the local and global error orders for the (higher order) Newmark displacement vector, X, are
respectively O(%*) and O(4*?). Similarly it may be shown 1 using Eq. (18a) that the local and global error
orders for the (higher order) Newmark velocity vector, X, are respectively O(h%) and O(h'”). It is thus
apparent that the higher order Newmark scheme yields response approximations which are consistently
one integral order higher than those obtained using the lower order Newmark scheme. However, this obser-
vation is true provided one can obtain the associated MSI-s sufficiently accurately.

2.4. Determining the multiple stochastic integrals ( MSI-s)

Accurate computation of these integrals constitutes a crucial factor in maintaining the error orders as
obtained in Section 3. First consider the lower order Newmark scheme, wherein one needs to compute only



two kinds of multiple integrals, viz., I, and [, o,7 = 1,2, ..., g. Fortunately, given the associated Wiener
increments, both these integrals may be computed exactly. For the first level integral, ., one has
I. = W.(t)) — W.(t,_)) & A;W,. To model I, 0, it is first noted (via integration by parts) that:

ti s
1,3() = / / dWr(S1)dS = hA,'W,- —I()A’r. (27)
tioy St
Moreover, using the Ito definition of a stochastic integral, one has:
h3
E(lp,) =0 and E(l,) = 5 (28)

It is therefore possible to model 1, as the random variable v, = h4;W, — v;, where the zero-mean ran-
dom variable v; has the normal distribution N(0, \/4°/3).

For the higher order Newmark scheme, the additional multiple integrals to be modeled are 1,1, 0,
100,100, 11 and 1, ;0 where r,,u =1,2, ..., q. In order to consistently generate these random variables
numerically within a computer program, the following scaling is first effected.

W,.(6h) .
(0) = with W,.0)=0, 0<0<LI1. 29
&.(0) v/ (0) (29)

Obviously, g(0), r = 1,2, ..., q are standard Wiener processes with unit variance. Let the scaled kth sto-

chastic integral in terms of increments of new Wiener processes, g.(0) be denoted as:

1,0 Oca
Lijygi = /0 /0 . ~/0 dgj] (gkfl)dgjz(ek—ﬁ - 'dgjk(e)v (30)

where it is implied, as before, that dgg(0) = df. One thus has the following set of relations between the
scaled and original multiple integrals:

Ir = h%ira [r,O = h%Tr,O; IO,r = h%i(),r; [r.IAO = hzir,l,(); In[,u,() = hg?n/,u,o; ce. etC., (31)
forallr,l,u=1,2, ..., q. Since the present objective is to generate the third or higher level integrals approx-
imately via a numerical scheme, the following proposition becomes quite useful (Milstein [9]).

Proposition 2. Let a numerical scheme with an order of accuracy m, generates the following one-step
approximation:

:)?H»l :)?[+A(t,-,X,-,h,AW,<(S)|t,-§S<t,-Jrh:t,-H and r= 1,2,...,q). (32)

Suppose that the vector function A contains terms of the form P(t;,X)){(AW(s)), where {(.) is a known func-
tions of its random arguments. If an approximate numerical method is used to generate the function { such that
(=19 + 0 (Where ¥ is the approximate value and 9 is the remainder), then the order of accuracy, m, of the ori-
ginal method remains unaltered if the following inequalities hold.

IES| < O™ and [ES*} < QW™ (33)

2.4.1. The case of a single white noise

This particular case, involving only one Wiener process Wi(¢) is simpler to implement and is therefore
dealt with first. It has been shown [9] that recursively using an expansion of the two-parameter Hermite -
polynomial, H,(4s,yW(s)), followed by equating the like powers of 4 and 7, one can arrive at the following
exact expressions of the still undetermined multiple integrals:



Ill(h):W§ [110(}!):%/0 Wi(s)ds

h h
]][)()(h) = h[]() — / SW] (S) dS; I()]()(]’l) = 2/ SWl(S) dS — h[l(), (34)
0 0

[111(]1) = W16(h) —%th(h), [1110(}1) = é / W%(S)dS—% / SWI(S)CIS.

Thus for an implementation of the higher order Newmark scheme, 1t suffices to approx1mately model the
following basic multiple stochastic integrals: 4; = fo Wi(s)ds; 4, = fo sWi(s)ds; and 453 = fo W3 (s)ds. Ex-

pressed in terms of the standard Wiener process, g,(0) = W(0h)/v/h,0 = s/h € [0, 1], these integrals take
the form:

1
A, = hz/ 22(0)d0 = n*4,,
0
1
Ay =K / 0g,(0)d0 = h**4,, (35)
0

1
Ay = 1P / 23(0)d0 = 1?45,
0

Now the following four SDEs may be solved over 0 € [0,1] to determine these integrals:
dd, = dg,(0); dd, = 4,d0; dd, = 04,(0)d0; dds = 4,(60)do. (36)

The above equations are subject to initial conditions 4;(0) = 0; k = 0,1,2,3. Moreover, the approximate
numerical technique and the time step size, /4, to be used to solve for these equations have to be so chosen
as to satisfy the requirements of Proposition 2. In order to maintain local error orders O(/4°) and O(h?)
respectively for displacement and velocity components in the higher order Newmark scheme, the following
inequalities need to be satisfied (via Proposition 2):

E[(4,(0 = 1) = Ay (0 = 1))’} < O(A"),

E[(4(0 = 1) — Ao (0 = 1))} < O(h), (37)

E[(43(0 = 1) — 43y(0 = 1))’]
where, Ay, A,y and A3y are numerical approximations to 4;, 4, and 43 respectively and the above set of
SDEs are subject to initial conditions Aw(0) = 0, for k =1,2,3. It is noted that no such restrictions are put
on the variable 4, since it can be modeled exactly using Ao, —Aoj 1 + 4;g,(l), where 4,g,(h;) is an

N(0,+/h;) random variable. At this stage, suppose that a stochastic Heun scheme (SHS) of global order
O(h) is used to approximately obtain A4;(1), 42(1) and 4;(1) via the map:

Ay =Aivi1 +0.5(4, 0, 1+A0,)h1>
Aoy = Aovi1 + 0. 5(9‘ Aot + 0:do)h, (38)
A3N1_A3Nz l+05( 01 1+A01)h

< O(h),

l—

Now in order to satisfy the first of inequalities (37), one must have /;, = A'~, so that a smaller time step
size, hy, is warranted for accurately obtaining the required integrals. For 1nstance, if a step size 7 =0.01 is
used for integrating the original system of equations, then a corresponding step size #; = 0.001 needs to be
chosen for approximately obtaining the multiple integrals over each interval. In other words, about 1000
random variables have to be generated over each time interval of 2= 0.01. On the other hand, if one



forcibly chooses /&; = i to economize on the computational time, the local error order for displacement
components reduce to O(/*°), while the local error order of O(h?) for velocity components remains unaf-
fected. In fact, depending on specific forms of the governing differential equations, there may not be any
need to model many such multiple integrals and thus one may still achieve the desired order of O(4)
for the displacement components with /&, = 4. Take, for instance, the common case where the multiplicative
noise coefficients aﬁ") (X1,X>,t) are not functions of the velocity vector, X,. In such cases, A;aﬁf) =
A;Auaﬁf') = 0 and hence, as seen from the higher order Newmark displacement expansion of Eq. (14), all
the terms involving I;,o and [, identically vanish, thereby ensuring a local error order of O(?) for
the displacement components with /; = A.

2.4.2. The case of multiple white noise inputs

A procedure similar to the case of a single white noise input may be adopted in this case too. The only
difference in this case is that a simplified recursive relationship between the multiple integrals based on Her-
mite expansions is not possible here. Thus all the multiple integrals of third and higher levels have to be
determined by constructing a set of simple SDE-s and solving the latter numerically. As in Section 2.4.1,
these SDE-s are formed in terms of the increments of a set of standard (scaled) Wiener processes
g, (0) = W:}f”, sothat 0 <0<, r=12,...,9 (¢ = 2). With a time step size 5, the first level scaled inte-
grals, 1,(1), may be exactly generated using the map (7 )= (1, )1+ 4;8.(h) with 7,(0) = (1), = 0. More-
over, Egs. (27) and (28) may be used to exactly obtain the second level integrals 1., and I,,. Next, one has
the following set of SDE-s for the approximate evaluations of other scaled multiple integrals over [0, 1] with
a step size hp:

djlj = 7l dgr(e); djl,r:O = Tl,r do; djr,(),() = Tr,() do,

_ _ _ _ _ _ 39
dlo,o = 1o,d0; dl,;, =1,,dg.(0); dlr0=1,:,d0 39)
subject to initial conditions 7,,(0) = 0;1;,0(0) = 0;...1,,,0(0) = 0. The following general relation between
the scaled and original kth level multiple integrals may be readily noted:
k
> @—jw)/2
Ijlijvw-«J-k(h’{W"(h)|r: 17"'7q}) = hr=1 IjlajZa ----- y fk(lv{gr(l)|r: 17"‘aq})7 (40)

where j = 01if j,, = 0 else j, = 1. Now suppose that a Heun scheme be used to determine the scaled multi-
ple integrals as:

(jlr) (I/)) + 0'5((71)1'—1 + (Tl)j)Afgr(hl)7
= Tio0), 1 +0.5((T1,), + (T1)) i,

(71,1 0)

({r,oo), (I100) ;-1 +0-5((Tr0);-1 + (o) ), )
(10,0); = (Los0);-1 +0.5((Zo,);-1 + (o) ),

(Tulr)/ (Tulr) + 0'5(( u«,l)jfl + (1 )‘)Ajgr(hl)v

(juer) ( ulr«,O)j,l +O-5((714J,r)j,1 + ( ul)) )hly

for all u,l,r € [1,4]. It must be noted that the above set of equations would have to be solved in the same
hierarchical order as shown. For instance, to solve for (7, 0) using the second of the above set of equations,
one must first solve for (7;,), ; using the first equation. At thls stage, given the fact that the above Heun
scheme has a global accuracy order of O(/,), it is required to determine the appropriate value of the step
size /1 in terms of the original time step size A, so that the desired respective local error orders of O(/*) and
O(h?) for displacement and velocity components are ideally maintained. Since the lowest order of a numer-
ically approximated (using Eq. (41)) multiple integral that appears in the higher order Newmark velocity



expansion is /;, and one has the relation (using Eq. (40)) I, = hl,,, it directly follows from Proposition 2
that one must have A; = 7' to maintain the O(4?) local error in velocity. Similarly, from displacement point
of view, the lowest order of a numerically approxmlated (using Eq. (41)) multiple integral in the hlgher or-
der Newmark scheme is /;, . Since 1,9 = =T 10, ONE again derives via Proposition 2 that /; = h'? so that
the local error remains O(k°). However, in the special case of the multiplicative noise coefficients,

/' (j=1,2,...,n), not being explicit functions of the velocity vector X, = {ng )} (and this is the case with
most of the englneering systems), the choice of /#; = & is enough to maintain the desired error orders. All
linear and non-linear engineering systems with only additive random noises also fall within this category.

Still higher order stochastic Newmark maps may be theoretically derived, but it should be clear from the
above discussion that the associated numerical difficulties increase too sharply to make such maps practi-
cally useful in general. Thus consider a higher order Newmark scheme of O(/?) in velocity components. As
in the previous cases, one has to numerically obtain scaled multiple integrals of the type 7;,.(1), where
L,r # 0,/ # r. If a Heun scheme with step size /; is again used for this purpose, one must necessarily use
hy = h* 5 to arrive at O(/’) local accuracy order in velocity. For instance, if 4 =0.01 then one has
hy =0.00001, i.e., it is needed to model 10° random variables for each step of the original Newmark map
and this is indeed an enormous numerical task.

Finally, it is worth noting that the following scheme may be adopted to generate Wiener increments,
AW (s),r = 1,2, ..., ¢, for implementing the stochastic Newmark algorithms. To begin with, r sets of inde-
pendent and N(0,1) random variables, S, = {w@,w?, ...,@", ..}, are generated. These Gaussian vari-
ables may be obtained from uniformly distributed pseudo-random variables in [0, 1] via Box—Muller or
Polar-Marsaglia transformations. Next, the desired Wiener increments are generated via the scaling:

AW, (s) = @ \/5.
2.5. Numerical examples

The basic aim of the present paper is the theoretical derivation of a class of useful stochastic Newmark
algorithms, and as such a limited set of illustrations are presented in this section for a non-linear, hardening
(single-well) Duffing oscillator under additive, multiplicative and filtered white noise excitations. In addi-
tion to being a workhorse example for single-degree-of-freedom (SDOF) non-linear engineering systems,
the Duffing equation is known to behave very much similar to a large class of non-linear problems in struc-
tural dynamics.

Example 1. For the first example, consider the non-linear second order stochastic differential equation
(SDE) for Duffing oscillator under a deterministic sinusoidal and an additive white noise inputs. Such a
system is adequately described by the following five-parameter equation [15]:
%+ 21k + 46y (1 4 x%)x = dn’e; cos(2mt) + dnPeg W (1). (42a)
Since W, (¢) is physically meaningless (in the sense of sample paths), the SDE may be more properly writ-
ten in the following incremental state-space form:
dx; (7) = xp(¢) ds,
dXQ(t) = (—27[81)(2 — 4ﬂ282(1 + xz)xl + 47'[283 COS(Znt)) dr + 47'5284 dW1 (l‘)
Using Egs. (10) and (11) with n =1, one obtains the following lower order Newmark approximation
X = {71, l,xz,} for the desired solution X = {x1, ,,le}T:

2 2

E"— (1 — a)a(X[,t[)E,

(42b)

X0 = X101 + X0 1h+4ntesd 1+ aa()?iflv tio1) (43a)

X2 = X2,i— 1+4TC F411 +ﬁa( i— 17 i— l)h+(l _B)a(/?lﬁti)lh (43b)



where,
a(X 1) = —2merxs — 4n’es (xy +x7) + 4n’e; cos(2mt). (43c¢)

Note that the superscript (j) has been omitted from the state variables since n = 1. As is clear from the
above equations, a specific advantage of the lower order scheme is its simplicity. Moreover, no laborious
numerical generation of multiple integrals are involved. If one intends to use the higher order Newmark
scheme for the above problem, then Egs. (14) and (17) may respectively be used to determine the associated
implicit maps for displacement and velocity components. This leads to:

- ~ 2 R 3
X1 = X1 + X0 h+4nted o+ a(Xi, i) 5 87164l 00 + “La(Xi—lvti—])g
- W
+ (1 —o)la(X;,t,) 5 (44a)
. . h2 _ hZ
%o =X, +4m%ealy + a(X 1, ti1)h — 8 ereal o + BLa(X 1, i) > + (1= pB)La(X;, ti)?a (44b)
where,

La(x1,xy,t) = —2meja(x;, xa,t) — 4n*ex(1 + 3x%)x, — 87es sin(2me), (44c)

and the expression for the drift coefficient a(xi, x,,?) is still given by Eq. (43c). Compared with the lower
order case, the only additional multiple integral to be modeled here is 7; o . This may be readily done fol-
lowing the scaling as detailed in the previous section followed by using a Heun map over [0, 1] with /;; = A to
obtain for the scaled integral 7, (1), which in turn is related to 7y o(h) via I100(h) = W7 100(1).

Another advantage of the stochastic Newmark algorithms is that the basic steps of its computer imple-
mentation as described above basically remains the same irrespective of the dimensionality of the engineer-
ing system. In case the system is non-linear (as in the present case), then for o, # 1 the associated
Newmark maps constitute a set of coupled non-linear algebraic equations, which may be solved via a New-
ton-Raphson approach.

In order to compare Newmark solutions in the stochastic regime with those obtained via an acceptable
stochastic numerical scheme, the stochastic Heun scheme (SHS) is adopted for this example. It is known
that SHS has local and global truncation errors of O(/*?) and O(h) respectively [4], provided that the system
is driven by only one white noise process. In case of more than one independently evolving white noise pro-
cesses, local and global accuracy orders for SHS reduce to O(h) and O(h*°) respectively (i.e., the same as
Euler method). It is also to be noted here that there exist certain stochastic Runge—Kutta schemes [4] which
lead to a higher local error order, provided that certain very stringent equalities involving the first and sec-
ond derivatives of the drift and diffusion vectors are satisfied. Indeed, these equalities are not satisfied for
the hardening Duffing system (or, for that matter, for most other engineering systems), thereby leaving the
SHS method as the most accurate known integration tool. Thus referring to the hardening Duffing SDE
(42) under a single additive noise (wherein higher accuracy orders for SHS are maintained), one has the
following map over the time interval T; = (¢;_;,t] to integrate the SDE based on SHS:

Z1; = X121 + 0.5(x0,1 + 22y,

- (45)
2y = Xp-1 + 0.5 (X1 o1, %21, tim1) + W (214, 204, 1) ) i + dnteyly,
where,
hi=t—ti_1, Zi; =X1;-1 + X210,
Zo; =Xou1 + Y(X1i1, X0, timn ) hy + &4l (46)

W (x1,x0,1) = —2mex; — dn?es(1 +x%)x1 + 4¢3 cos(2nt).



In Eq. (45), {z1.5 zz,,-}T is the SHS approximation vector to (x;;x»,) and {xl,,-_l,xz,,-_l}T constitute the
known initial condition vector. In order to pathwise compare the results of lower and higher order stochas-
tic Newmark methods (respectively acronymed as LSNM and HSNM) with that of SHS, it is needed to use
the same realizations of standard Wiener increments, I; = A;W(h). A consistent time step size 2 = 0.01 has
been adopted in all the following numerical results. To understand the effect of arbitrary solution param-
eters, o and f, on LSNM and HSNM, displacement and velocity histories for a specific choice of param-
eters are plotted in Figs. 1 and 2 for different choices of these parameters in [0, 1]. It can be seen that the
trajectories do not sensitively depend on the choice of o and . While choosing o« = § = 1 makes the New-
mark map explicit (and hence computationally faster), an implicit scheme is known to have far better sta-
bility characteristics, especially for larger time step sizes, and hence o = # = 0.5 has been consistently chosen
in this study. In Figs. 3-5, displacement and velocity histories of LSNM and HSNM-based solutions of the
oscillator under weak, medium and strong intensities of additive white noise inputs are shown. Sinusoidal
deterministic inputs are assumed to be acting on the oscillator in these examples. Comparisons of time his-
tories obtained via Newmark algorithms with those via SHS are also provided in these figures and they ap-
pear to be quite close. In fact, the deterministic forcing amplitude parameter e; has been so chosen that
there is, in the phase plane, an unsymmetrical (about the velocity axis) and dumb-bell shaped one-periodic
orbit of the oscillator under no noise. Even though HSNM is the most accurate out of all the three methods
employed, it is observed that LSNM works well in all the three cases, even under a strong additive noise
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Fig. 1. Response histories under a single additive noise via LSNM for different o, ff; &1 = 0.25, &, = 1.0, ¢3 = 1.0, ¢4 = 0.2.
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intensity. In Fig. 6(a)—(c), the noisy phase plots of the orbit under weak, medium and strong additive noise
intensities are plotted via HSNM. As seen from Fig. 6(b) and (c), the periodic structure of the orbit gets
more and more diffused as the noise intensity grows. It is now of interest to see how the stochastic New-
mark methods, especially the lower order one, behaves for locally unstable orbits, such as those encoun-
tered during chaos or quasi-periodicity. One such chaotic attractor under a weak additive stochastic
excitation (¢4 = 0.5) is plotted in Fig. 7(a) and (b) using LSNM and HSNM respectively. In Fig. 8(a)
and (b), phase plots of the strange attractor, respectively obtained via LSNM and HSNM, under a stronger
additive noise intensity (¢4 = 20) are shown. Even though the global error in velocity computation is O(h'?)
in LSNM as against O(4*?) in HSNM, the phase plots obtained for this kind of orbits via LSNM appear to
be quite acceptable. In all the cases, however, one achieves a lower global displacement error of O(h*?) via
LSNM than a global error order of O(%) in SHS.

It needs to be stressed that in case of multiple and independently evolving white noise inputs, there are no
restrictions on the applicability of the Newmark procedure, even though SHS is generally not applicable with
the same accuracy (as for a single noise input) in such cases. One such example is considered next.
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Example 2. Notwithstanding the simplicity of the LSNM, one has to exercise caution in assessing the
accuracy of the method in certain cases, especially for multiplicative noise inputs, primarily due to its poor
velocity approximation. The HSNM, on the other hand, may be relied upon to yield acceptably accurate
results even in such cases. Consider, for instance, the hardening Duffing equation driven by combined
additive and multiplicative noise excitations. The governing second order SDE takes the form:

dx1 (t) :Xz(t) dt,
d)Cz(l) = a(xl,xz, t) dr + 47'[2(84 dw, (t) — &5X1 sz(l)),

where Wi(f) and W,(¢) are two independently evolving Wiener processes. The lower order Newmark map
for this equation over the time interval 7;=[t;,_1,¢; = t;_1+h) is given by:

(47)

2

- -~ ~ h
¥ =X100 + X1 h + 4 (eal 1o — esxii1la0) + o{a(X iy, tir) + (1 — a)a(X, l‘i)}57

%o =X, 1 + 4% (eady — esx1,110) + ﬁ{a()?i—lv tio)h+ (1 - ﬂ)a()?n t)}h. (48)
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p=0.5.

As in Example 1, one need not approximately model any multiple integral while employing
LSNM here too. The higher order Newmark map for Eq. (47) over the same time interval takes the

form:



N ~ 2
Frp = X110 + X0 1h + 4% (eal g — esx1i1100) + a(Xi1,tio1) = + 81 (esx1-1 1200 — €4l 100)

2

~ ~ n
—Antesxy; 1loa0 + {oLa(X, 1, ti 1) + (1 — a)La(X;, fi)}g,
Foi =X, 1 + 4n*(ealy — esx1, 112) — dmlesxa; 1o + a()?i—lv tio1)h

- 87'[38184]10 - 87'[381854)61A’[,11210 —+ {ﬁLa()A([,],t,-,l) —+ (1 - ﬁ)La()?,-, [i)}h2/2.

(49)

As one can see, only three third level integrals need to be approximately modeled while implementing
HSNM. These are 1, ,12,0,0 and Iy»o. The procedure to do this has already been dealt with in detail
and hence is not repeated here. As was mentioned previously, SHS is no better than the stochastic Euler
scheme (SES) in the present case. The explicit stochastic map for Eq. (47) based on SES is given by:

)flJ X1,i—1 + x2,171h7 (50)
Fo; =X, 1 + 4n*(eady — esxy; 1 12) + a(xy; 1, X2 1,8 1)h.

In Figs. 9-11, displacement and velocity history plots via HSNM, LSNM and SES are shown for weak,
medium and strong multiplicative noise intensities, while holding the additive noise intensity constant at
low, medium and strong levels. Treating the results via HSNM as the reference (since this scheme is by
far the most accurate), it is seen that while LSNM works reasonably well for weak and medium multipli-
cative noise intensities, it fares rather poorly for strong multiplicative intensities. The explicit SES scheme
(having the same error order as the SHS for the present problem), on the other hand, behaves in a highly
unstable manner and simply becomes unbounded within a short interval even for a low multiplicative noise
intensity.

Even though more accurate, from the computational point of view HSNM is considerably slower than
LSNM. One therefore sees that a certain amount of judgment, mostly based on an extensive numerical
investigation, has to be exercised in deciding about the kind of stochastic Newmark algorithm to be applied
to a given system.

Example 3. As a third example, consider a hardening Duffing oscillator under filtered white noise
represented by the following stochastic differential equations (SDE-s).

——LSNM
~~a--~HSNM
o SHS f —————— LSNM
—o— HSNM
::Eg % —— Euler
% =5
o Q %S i
g z il il J%ig |1 i
& k<) :
: |
b {1
| o
8 10 T s 10
(a) Time (sec) (b) Time (sec)

Fig. 9. Response histories under combined weak-intensity additive and weak-intensity multiplicative noise excitations via LSNM,
HSNM and Euler method: ¢ = 0.25, ¢; = 1.0, ¢3 =41.0, ¢4 =0.1, &s=0.1, = 0.5, = 0.5.
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Fig. 10. Response histories under combined weak-intensity additive and medium-intensity multiplicative noise excitations via LSNM,
HSNM and Euler method: & = 0.25, &, = 1.0, ¢3 = 41.0, ¢4 = 0.1, &5 = 0.5, = 0.5, § =0.5.
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Fig. 11. Response histories under combined weak-intensity additive and high-intensity multiplicative noise excitations via LSNM,
HSNM and Euler method: &, = 0.25, &, = 1.0, &3 =41.0, &4 =0.1, &s = 1.5, « = 0.5, £ =0.5.

¥ 4 2mex + 4ney (1 4 x?)x = dn’e; cos(2mt) + g(1), (51a)

g+ 20wg + w’g = dnlesW, (51b)
where, ¢ and w in Eq. (51b) are damping coefficient and natural frequency respectively.

The SDE-s may be more properly written in the following incremental state-space form:

dx; (¢) = x»(¢) dt,

2(1) = (—2me1x; — dnley(1 + x3)x; + 4n’es cos(2nt) + g(¢)) dt,
(51c)
dgi(1) = g, (1) de
dg,(t) = (— 2£wg2 w?g,)dt + dne, dW (1),
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Fig. 12. Response histories under a low additive filtered white noise excitation via LSNM and SHS method: & = 0.25, & = 1.0,
£,=0.0, 5, = 0.5, 2 =0.5, = 0.5.

Using Egs. (10) and (11) with n =2, one obtains the following lower order Newmark approximation

= {x1 ; 7x(lzl)7 21, )} for the desired solution X = {xill),x1 ; ,xg l),xng}T:
1 1 1 v h2 v h2
5= x4kt ad (X o) 5+ (- 0a V(X)) 5 (52a)
%) = xy)y + PV (X ti)h+ (1= Ba (X, 1), (52b)
N " SN
)?(f,—) = x(li-)_l +x(2?,-)_1h + 47128411,0 + aa® (X1, tim1) 5 +(1- oc)a@) (X, 1) 50 (52¢)
#) = x5 +antedy + pa® (X, ti)h + (1= B)a® (X, 1)k (52d)
where,
(X, 1) = —2menxt) — 4rPer (V) +x") + 4nPes cos(2mt) + 2, (52¢)
and,
O(X,1) = —2t0x? — ?(x\Y). (52f)

Displacement and velocity plots (Eq. (51a)) have been obtained from Figs. 12-14 with increase in addi-
tive intensity via LSNM and SHS. Phase plots have been obtained in Fig. 15 for one medium (g4 = 5.0) and
the other strong (g4 = 20.0) intensity additive noise. Both the results are in good agreement for all the re-
sponse plots.

3. Moment equations for linear systems
In this section, the LSNM maps for displacement and velocity have been extended for linear MDOF

dynamic structural systems to compute the mean square response in a direct way without a resort to expen-
sive Monte Carlo Simulation (MCS).
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Fig. 13. Response histories under a medium additive filtered white noise excitation via LSNM and SHS method: ¢ = 0.25, &, = 1.0,
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Fig. 14. Response histories under a strong additive filtered white noise excitation via LSNM & SHS method: ¢ =0.25, & = 1.0,
63=0.0, &4 =20.0, &5 =0.0, 2= 0.5, $=0.5.

3.1. Formulation of the moment equations
Thus, consider the governing equation in matrix form for a linear n-DOF system:

q
MX + CX +KX =Y o/ ()W, () + Felt), j=1,2,....n, (53)

r=1
76V ()W ,(t) and Fy(?) denote input dynamic stochastic excitation vector and an external deterministic
force vector respectively. Let the displacement vector be denoted as X = {x%’) |j=12- ~n}T and the
velocity vector be denoted as X, = {xg’) lj=1,2--- n}T. M,C,K are system (globally assembled) mass,
damping and stiffness matrices respectively. Via a suitable arrangement of the Newmark displacement
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and velocity maps for the lower order case (see Egs. (10) and (11) without the remainder terms), one obtains
after some algebraic manipulations:

A)?i :Fe)?i,l +C] +C27 (54)
where
. X ~ X
X—{ 1} and X = é, (55a)
X5 X,
F) ={/2W j=1,2---n}" (55b)
i h W
A= |M+A-0)5K (1-05C | (55¢)
(1 = p)hK M+ (1—p)hC
I s s
B— M—aciK hM—ocEC 7 (55d)
—BhK M — BhC
100
Cl = q aU>I ) (556)
r=1"r *r [j=12--n
" "
= U=)5Fe(t) \ | JamFe(ti) | (55f)
(1 = B)hFe(t:) BhEF(ti-1)

Post-multiplying both sides of Eq. (54) with their respective transposed vectors and taking the ensemble
averages, the Newmark map for the co-variance matrix of the system may be derived as follows:

R; = N3R,_{N4y+ NS;_|Ny + N1S;_1Ng + N9C1T,,-,1N2 + N, (56)



where,

~ ~T T
R=XX, S=CCT,
N =4"') Ny=(4")", Ny=NF, Ny=FIN,, Ns=C, Ng=Cl,

N; =C,Cy, Ng=NeNs, Nog=NNs, Ny=NNiN,.

In Eq. (56), R stands for co-variance matrix of displacement and velocity vectors and S stands for co-
variance matrix of stochastic load vector evaluated at the end of the previous time step.

3.2. Applications to MDOF systems

Consider a beam-column element with six degrees of freedom as shown in Fig. 16.
The nodal displacement for the member ‘1-2’ shown in Fig. 16 can be represented as:

{uyv,0, u20202}T = {xixfxfxéx%xi}T.

In general, for a beam element i/ — j, the nodal displacement vector is given by:

x(le) — [x(l3i72)x(l3i7l)x(l3i)x§3j72)x(l3jfl)x(l3j)]T.

Similarly, the element nodal velocity vector is given by:

xée) — [x(23i72)x(23i7l)ng%i)x;}‘/‘fZ)ngjfl)x(23/’)]T )

. . . . . > X
The joint displacement and velocity vector is given by X ©_ { X] }
2
The element equations are first formulated in the element coordinate system, and then transformed to
the global coordinate system by standard procedure before element assemblage. Transformation of dis-

placement and velocity parameters at nodes j from element coordinates to global coordinates can be per-
formed by standard transformation matrix given by:

o /]
T= ,
0 ¢ 6x6

where
cosf) —sinf 0
t=|sinf cosf O],
0 0 1

and 0 is the angle of inclination of the local axis in an anticlockwise sense as positive angle from the global
X-axis (Fig. 16).

V2,fy2

uz,Xo

vifyi 6,,m,

urfu 01,m;

Fig. 16. Beam element in local co-ordinate (DOF per node = 3), X and Y correspond to global direction.



3.3. Element matrices

The element matrices required are stiffness matrix <, mass matrix m‘®, and damping matrix ¢®. The
element stiffness matrix is formulated by superimposing the bending stiffness matrix kif) and geometric stiff-
ness matrix kg) of the basic beam element and the stiffness matrix £ of the linear bar element. The element
mass matrix is obtained by superimposing mfe) and m® the consistent mass matrices of the basic beam ele-
ment for lateral translational inertia and rotational inertia, respectively, and m® the consistent mass matrix
of the linear bar element. These matrices are given as follows.

(a) Bending stiffness matrix k, :

12 6L —12 6L
EI| 6L 41> —6L 2I°
3| -12 —6L 12 —6L

6L 21> —6L 4I°

kY =

(b) Geometric stiffness matrix k?:

36 3L —36 3L
£© — fo 3L 41> 3L -I?
¢ T30L|-36 —-3L 36 -3L
3L —L* 3L 4I°

(c) Axial stiffness matrix kf]f):

AET 1 -1
S —
m L [—1 1 }

where L is the initial length of the beam axis, EI is flexural rigidity. f, is the axial nodal force at node
2, and AE is the axial rigidity. The degrees of freedom as relevant to the construction of ky, and k, are
up and those for constructing k,, are uy,. The vectors u, and u,, are given by: u, = {v; 6, v, 0,7
and u, = {u; up}" with reference to Fig. 16.

(d) Consistent mass matrix for lateral translation mﬁe):

[ 156 220 54 —I3L

e _ PaL | 22L 4> 130 =317
Y420 54 13 156 -22L

| —13L =31 -221L 47

(e) Consistent mass matrix for rotation m®):

3 3L -36 3L
e _ P | 3L 4L 3L -’
T U30L|-36 -3L 36 -3L
| 3L —I*> 3L 4I?

(f) Consistent mass matrix for axial translation m(®):

@ _ Pl ]2 1
Tm =g [1 2|

where L is the undeformed length of beam axis; p4 and p; are inertia constants and are defined as

ps= [,pdd and p, = [, py*d4 where p is the mass density, y is the distance from the axis of centroid
to the an infinitesimal area d4 on the cross section.



(g) Rayleigh Damping matrix ¢©:

Cij = ag[M;] + a\[K;], ap and a; are proportionality constants.

3.4. Numerical results and discussion

Example 4. An SDOF system:

Consider an SDOF linear system given by its equation of motion as:

X 4 20EX + X = W(2). (57)
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Fig. 17. Variance of displacement response of linear oscillator: w = 1.0; (a) ¢ =0.02, (b) £ =0.05.
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Fig. 18. Variance of velocity response of linear oscillator: w = 1.0; (a) £ =0.02, (b) £ =0.05.
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Fig. 20. Variance and covariance response of a 2-DOF system: (a) ¢ = 0.01, (b) £ =0.05.
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Exact solutions for the transient displacement and velocity variance functions for the above equation
had been reported by Caughey and Stumpf [3]. The variance and covariance evolutions of displacement
and velocity have presently been obtained through the present method (SNM) and plotted in Figs. 17—
19. The results have been compared with exact solutions for two typical values of & =0.02, ¢ =0.05 and
for a fixed w = 1.0. The results are in very good agreement with each other.

Example 5. 4 2-DOF system:

Consider a two-degree-of freedom linear system modeled by the vector equations of motion:

m 0 X ci+ec —c X ki +ky —k X F
B e N e A R N
0 m || X, —C 1) X, —k> k> X, F

The system parameters are: m; = 1.0 kg; m> = 0.1 kg; k& = 1.0 N/m; k», = 0.1 N/m; & = 0.05.

The excitations are:

Fy = [exp(—O.lt) — exp(fl.St)] W,
Fyp = 0.1F21

where W5, is a Gaussian white-noise process.
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Fig. 24. Variance and covariance of displacement and velocity in the vertical direction at the free end of cantilever beam without
damping (a9 = 0.0,a; = 0.0).



The variance and covariance results for the response variables of the 2-DOF system (Eq. (58)) have been
obtained via LSNM for two damping values of 1% and 5% and plotted in Fig. 20. The results match well
with the reported results of Masri [30] and To and Orisamolu [31].

Example 6. A cantilever beam shown in Fig. 21 is analysed for response under an axial deterministic load-
ing and a vertical stochastic load. The material and geometric properties are as shown in the figure.

The example illustrates the application of stochastic Newmark method to a simple multi-dimensional
problem having total degree of freedom equal to 6. However with fixed support condition at the node
‘1°, there are only 3 DOF-s to be determined at node 2’. As a result, the dimension of the problem is
n = 3. There are three displacements and three velocity components respectively denoted as (u, v, 0)" and
(a1, D, G)T at node 2. In Fig. 22, displacement response plots at the free end of the cantilever displacement
beam in axial and lateral direction for two different cases, with or without the effects of axial shortening
are shown without damping effects. In this example, the geometric stiffness accounts for axial shortening
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Fig. 25. Variance and covariance of displacement and velocity in the vertical direction at the free end of cantilever beam with damping
(ap = 0.05,a; = 0.05).



in the beam element. Considering viscous damping of the system with assumed proportionality constants a,
and a; as 0.05 each, similar displacement and velocity response at the free end in axial and vertical direction
for both the cases (with and without the effects of axial shortening) are shown in Fig. 23. Variance and
covariance plots for displacement and velocity in the vertical direction at the free end of the cantilever beam
are shown in Figs. 24 and 25 with and without damping respectively. It is observed that displacements and
velocity variance in the vertical direction (corresponding to stochastic load) of the cantilever beam grows
with time when there is no damping in the system. However, with introduction of small damping in the
system, variance bounds are formed, as expected.
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Fig. 26. Frame subjected to (a) earthquake excitation in horizontal direction and (b) ground input acceleration.
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Fig. 28. Variance and co-variance at nodes 5 and 6 in X-direction.

Example 7. For the shear frame shown in Fig. 26, the following are the geometric and material properties:
Column C.S=0.0625m? Column M.I=0.0004 m*, Beam C.S=0.125m’ Beam M.I=0.003m"
E =3.5x10° kg/m?, Sp. Weight = 2500 kg/m?>.

The frame under consideration in Fig. 26(a) is subjected to horizontal ground acceleration modeled as a
non-stationary stochastic process. The record of the ground acceleration is shown in Fig. 26(b). The
ground acceleration is modeled as the product of modulated white noise and an enveloping function c¢(¢)
[17] shown in the diagram. The displacement and velocity plots as well as their variance and co-variance
plots in axial direction (X-axis of frame) are shown from Figs. 27 and 28 for two typical nodes 5 and 6 of
the frame. The proportionality constants ay and «; are assumed to be 0.05 in the calculation of Rayleigh
damping matrix. The example further illustrates the application of LSNM to MDOF systems for response

calculations.

4. Concluding remarks

A new family of stochastic Newmark algorithms for direct time integration of engineering dynamical
systems driven by additive, multiplicative or filtered white noise processes (defined as formal derivatives
of Gauss—Markov Wiener processes) is derived in this Paper. The basis of this new development is a
two-parameter implicit stochastic Taylor expansion for both displacement and velocity components. Given
a time step size, 4, the displacement and velocity components are expanded up to O(h?) and O(h) respec-
tively in the lower order scheme and up to O(/°) and O(/?) in the higher order scheme. While both lower
and higher order Newmark maps are readily adaptable for path wise solutions of linear and non-linear
multi-degree-of freedom (MDOF) stochastic engineering systems, far less number of random variables need
to be modelled in the lower order method, thereby making it computationally faster. The higher order
method, on the other hand, is more accurate and in certain cases, especially for non-linear dynamical sys-
tems under multiplicative noise inputs, yields conspicuously more accurate results. Rigorous estimates of
local and global error orders in displacement and velocity components have been included in the Paper.
A detailed discussion on the exact or approximate modelling of the MSI-s has also been provided. A host
of numerical illustrations on the application of these schemes for pathwise integration of a non-linear hard-
ening Duffing oscillator under additive, multiplicative and filtered white noise excitations has been included.



Some of these results, wherever appropriate, have been compared with some other available stochastic inte-
gration schemes.

Implementation of the stochastic Newmark integration technique based on Ito-Taylor expansion re-
quires computation of MSI-s which is an involved task, particularly for higher order schemes. This encour-
ages development of another single step alternative, wherein one can avoid or drastically reduce the
computation of MSI-s. Such a stochastic integration scheme known as ‘Locally Transversal Linearization
(LTL) method has been developed and will be discussed in another paper.
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Appendix A. A brief introduction to Ito’s formula
A.1. Wiener processes

A g-dimensional Wiener process { W, (f)[r =1, ..., ¢} is a vector stochastic process with the following
properties:

1. Normal increments: W(t) — W,(s) has normal distribution with mean zero and variance (¢ — s) for every
rell,q].

2. Independence of increments: W(t) — W,(s) is independent of the past, i.e., of W.(u), u < s <t for every
re[l,ql].

3. Continuity of paths: W,(t,») is a continuous function of time ¢ for every realization w and for every
r €[1,q] (o is an element of the event space Q).

4. Any two Wiener processes W,.(t) and W,(t) are mutually independent stochastic processes for
r#Lrle[l,q].

A.2. Ito Integral

Let0 =1 <t <--- <t = T bea partition of the interval [0, 7] such that O = MaXie(oy- (e, =) —
0as N— and X() be a stochastlc process. Then the Ito integral fo t)dW,(¢) is defined as:
/ X(0)dw, (o) = lim ZX WAEL) — W), (A1)
N—oo

For instance, one may readily show that
T
1
/ W,(t)dW.(t) = 5(Wf(T) —T). (A.2)
0

In defining the Ito integral in Eq. (A.1), attention is restricted to the class of predictable stochastic pro-
cesses X(2),t € [0, T] such that:

T
/ X%(t)dt < co almost surely (A.s.). (A.3)
0



Moreover, the process X(7) is assumed to be F, measurable, where F; is the increasing family of o-alge-
bras generated by { W,(s)|s € [0,¢);r € [1,4]}. It may be be shown [5] that the Ito integral is an N(0,¢) ran-
dom variable such that:

o’ = Var { /0 TX(t)dW,.(t)} = /0 TE[XZ(t)]dt. (A.4)

A.3. Quadratic variation

Given a partition {¢"|i € [0, N]} of the interval [0, 7] as before, the quadratic variation of a process X(7) is
defined as:

X0 = Jim 3 - X (P, (A5)

oy—0 i=

where the above limit is taken in probability. For instance, one may show that
W, W.](t) = t, (A6.1)

and,

[xwam. [ xwamo|o- [ (A62)

The above two equations provide an amazing and counter-intuitive result in the theory of stochastic pro-
cesses. For instance, from an inspection of the left hand side of Eq. (A.6.1), one would normally expect it to
be a random variable (for a given ¢). But, it turns out that it is indeed a deterministic number. It is also
interesting to note that the quadratic variation of a differentiable and bounded process (as generally
encountered in deterministic dynamics of many engineering systems) over any finite time interval is identi-
cally zero. For instance, the quadratic variation of each (complex valued) scalar function
X,.(¢) = exp(vV—1mt) of the Fourier basis set {X,,(¢),m € Z} in the Hilbert space of continuous and
bounded functions is zero. This is probably the most conspicuous difference of a stochastic process from
a deterministic (non-stochastic) one.

A.4. Stochastic differential equations (SDE-s) and Ito’s formula

Consider the vector stochastic process X(¢) € R” governed by the SDE:
dX(t) = a(t,X)dt + o(t,X)dW (¢), (A7)

where W(f) € R? is a g-dimensional vector Wiener process, o(z,X) € R™“ is the diffusion matrix and
a(t,X) € R" is the drift vector. The SDE (A.7) is expressed in an incremental (and not in a differentiated)
form as WA(t) is not a differentiable vector stochastic process (with respect to time). Denoting the ith and
Jth scalar component processes of the vector process X(7) € R" as X(¢) and X(¢) respectively, the differential
quadratic variation may be shown to be:

dx;, X))(1) = Cyydt; i, j € [1,n], (A-8)



where

{Clan = 0], (015 (A9)

with the superscript “T” denoting matrix transposition.
Let fiX;, X», ..., X,) be a C* function. Then f{X}, X>, ..., X,,) is also an Ito process, whose stochastic dif-
ferential is given by the Ito formula:

df (X1(2), X2(2), ..., X (1)) :zn: @ SX1(0),X2(2), ..., X,(2)) dX;(2)

/X,
#3303 grar/ NOX0 KWK (10

It is of interest to observe that for a deterministic and differentiable vector process X(¢), one has
d[X;, X]](¥) = 0 and thus Ito’s formula reduces to the well-known relation for the total derivative:

47 _ > of X (A.11)

Appendix B. The stochastic Taylor expansion

To start with, it is instructive to derive the deterministic form of Taylor’s expansion. Let X(¢) € R" be a

deterministic and sufficiently differentiable process governed by the ODE-s:
O %) = atex (0. (B.1)

Let f(¢, X) be a scalar or a vector function (assumed to be sufficiently smooth with respect to its argu-
ments), so that one may write:

d _of  ~ Of
il X 0) =T+ 30 Fale ), (B2)
Thus one has:
t+h
S+ hX(e+h) = £(t.X) + / Lf (5, X(5)) ds, (B.3)
t
where the operator L is defined as:
0 - 0
L=— (1, X) —. B4
at+;al(t7 )aXl ( )
Now, letting f(¢, X(¢)) = X(¢), one immediately has from Egs. (B.3) and (B.4):

X(t+h) =X(1)+ /Hh a(s,X(s))ds. (B.5)



Further, using Eq. (B.3) for a(s, X(s)) in Eq. (B.5), one obtains:
t+h s
X(t+h)=X(1) +/ [a(l,X(t)) +/ La(sl,X(sl))dsl} ds
t t
t+h
=X (1) +a(l,X(l))h+/ (t+h —s)La(s, X (s))ds. (B.6)
t
Applying Eq. (B.3) once more to La(s, X(s)) in Eq. (B.6), the following expression is readily derived:

2 t+h ( +h— S)2
X(t+h)=X(t)+a(t,X(2)h +La(t,X(t))E+/ sza(s,X(s))ds. (B.7)
t
Continuing in this way m times (i.e., by iterating m times with the formula (B.3) on the integral expan-
sion (B.5)), one arrives at the well-known Taylor expansion of X(¢ + /) in powers of / in the neighborhood
of t:

X(t+h)=X(t)+at,X())h+ La(t,X(2)) %2 +o L a(t, X (1)) Z—”:
+/I %Lma(s,/\’(s))ds. (B.8)

Given a system of SDE-s, the corresponding expansion of the stochastic process X(¢) in a neighborhood
of ¢ is referred to as the stochastic Taylor expansion. Alternatively, such an expansion is also called the Ito—-
Taylor (or Stratonovich-Taylor) expansion depending upon the type interpretation of stochastic integral
being employed. In this paper, use has only been made of the Ito-Taylor expansion and thus the derivation
of such an expansion is briefly described here. Now consider the solution X(7) € R" of the system of SDE-s
(A.7), which may be written in the following alternative form:

dX(¢t) = a(t,X)dt + zq: o, (t,X)dW.(¢t), (B.9)

r=1

where the vector function o,(¢, X):R x R" — R" is the rth column of the diffusion matrix [¢],«,. In what fol-
lows, the scalar diffusion function a@ (t,X) would denote the [}, 7]th element of the matrix [g],.,. If f(z,X)
sufficiently smooth scalar or vector function, then by Ito’s formula (A.10) and the formula for the differen-
tial quadratic variation (A.8), one immediately gets for 7o < ¢ < st

F(5,X(s)) = f(t,X) +Z/ A f (51, X (s1)) AW, (s1) + /[SLf(sl,X(sl))dsl. (B.10)

The above equation may therefore be thought of as an integral form of Ito’s formula. Similar to the
deterministic case, the above equation provides a formula for the stochastic increment Af'= f(s, X(s)) —
f(t, X(¢)) of the function f, where the operators A, and L are given by:

(B.11)




Now applying Eq. (B.10) recursively to A,f(s1, X(s;)) and Lf{s;, X(s1)), one has:

t+h

fE+nX(1t+h)=f(t,X) +Z/1f/ dw.(s) + Lf ds
/ <Z/A/Lf 51, X(51)) AW, <sl>>dW<>

/ (/ LA f (s1, (1))dsl>dWr(S)
Z/ (/ ALf (s1, (1))dWr(S1)> ds

+/ </ Lf(s1, X (s ))ds1>ds. (B.12)

Just as in deterministic Taylor expansion, if Ito’s formula (B.10) is applied to expand
A, A, f(s1, X(51)), LA,f(s1, X(s1)), and A,Lf(sy, X(s1)), in Eq. (B.12), then the following expression results:

+

_|_

QEMQ EMQ

t+h

t+h
S+ hX(E+h) = ZA]/ aw(s)+1f [ ds

q 9 t+h
+ ZAA/ /dWsldW()

1 i=1

q t+h s S1
Z ZA(,—A,-A,/ / / AW ;(s2) dWi(s1) AW, (s)
=1 j=1 t t t
t+h s q t+h s
A,.Lf/ / dW,(sl)ds+ZLA,f/ /dsldW,.(s)
t t =1 t t

t+h s
+L2f/ / ds; ds + p, (B.13)
t t

where p is the set of remainder terms. When written out in long hand, these terms contain expressions
involving multiple integrals of third and fourth order compositions of operators A, and L. Still higher order
expansions (as in the higher order Newmark method described in this paper) may be derived by iterating
the error terms p using Eq. (B.10), i.e., the integral form of Ito’s formula. It is now clear that a distin-
guishing feature of the Ito-Taylor expansion vis-a-vis the deterministic Taylor expansion is that the
former has multiple integrals of the forms f”h L2 AW ,(s1)dW (s f’”’ 5L AW(si) dWi(s1) AW (s),
/; o J7 dW.(s1)ds etc. These integrals involve increments of scalar Wlener components d W,(7) and hence
are referred to as multiple stochastic integrals (MSI-s).

q
+
r=1

q
+
r=1

References

[1] T. Belytschko, T.J.R. Hughes (Eds.), Computational Methods for Transient Analysis, North Holland, Dordrecht, 1983.

[2] P. Bernard, G. Fleury, Stochastic Newmark scheme, Probab. Eng. Mech. 17 (2002) 45-61.

[3] T.K. Caughey, H.J. Stumpf, Transient response of a dynamic system under random excitation, ASME J. Appl. Mech. 28 (1961)
563-566.

[4] T.C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker Inc., 1988.
[5] F.C. Klebaner, Introduction to Stochastic Calculus with Applications, Imperial College Press, London, UK, 2001.



[6] P.E. Kloeden, E. Platen, Higher order implicit strong numerical schemes for stochastic differential equations, J. Stat. Phys. 66
(1992) 283-314.
[7] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1999.
[8] B. Miao, Direct integration variance prediction of random response of non-linear systems, Comput. Struct. 46 (6) (1993) 179-983.
[9] G.N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, Dordrecht, 1995.
[10] G.N. Milstein, Yu.M. Repin, M.V. Tretyakov, Symplectic integration of hamiltonian systems with additive noise, SIAM J. Num.
Anal. 39 (6) (2002) 2066-2088.
[11] R.M. Miranda, Ferencz, T.J.R. Hughes, An improved implicit-explicit time integration method for structural dynamics, Int. J.
Earthquake Engrg. Struct. Dyn. 18 (1989) 643-655.
[12] N.M. Newmark, A method for computation of structural dynamics, J. Engrg. Mech. (ASCE) 85 (1959) 67-94.
[13] Y. Ohtori, Spencer Jr. F. Billie, Semi-implicit integration algorithm for stochastic analysis of multi-degree-of-freedom structures,
J. Engrg. Mech. ASCE 128 (6) (2002) 635-643.
[14] J. Qiang, S. Habib, Second-order stochastic leapfrog algorithm for multiplicative noise Brownian motion, Phys. Rev. E 62 (5)
(2000).
[15] D. Roy, Explorations of the phase space linearization method for deterministic and stochastic non-linear dynamical systems, Int.
J. Nonlinear Dyn. 23 (2000) 225-258.
16] D. Roy, M.K. Dash, A stochastic Newmark method for engineering dynamical systems, J. Sound Vibr. 249 (1) (2002) 83-100.
17] M. Shinozuka, Y. Sato, Simulation of non-stationary random processes, J. Engrg. Mech. Div. ASCE 93 (EM4) (1967) 11-40.
18] C.W.S. To, The stochastic central difference method in structural dynamics, Comput. Struct. 23 (6) (1986) 813-818.
19] C.W.S. To, Direct integration operators and their stability for random response of multi-degree-of-freedom systems, Comput.
Struct. 30 (4) (1988) 865-874.
[20] C.W.S. To, Recursive expressions for a random response of non-linear systems, Comput. Struct. 29 (3) (1988) 451-457.
[21] C.W.S. To, Parametric effects on time step of the stochastic central difference method, J. Sound Vibr. 137 (3) (1990) 523-526.
[22] C.W.S. To, A stochastic version of the Newmark family of algorithms for discretized dynamic systems, Comput. Struct. 44 (3)
(1992) 667-673.
[23] A. Tocino, R. Ardanuy, Runge-Kutta methods for numerical solution of stochastic differential equations, J. Computat. Appl.
Math. 138 (2002) 219-241.
[24] S.W. Zhang, H.H. Zhao, Effects of time step in stochastic central difference method, J. Sound Vibr. 159 (1) (1992) 182-188.
[25] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vol. 2, McGraw Hill, UK, 1991.
[26] W. Rumelin, Numerical treatment of stochastic differential equations, SIAM J. Numer. Anal. 19 (1982) 604-613.
[
[

[
[
[
[

27] E.J. McShane, Stochastic Calculus and Stochastic Models, Academic Press, New York, 1974.

28] Y. Saito, T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal. 33 (1996)
2254-2267.

[29] C.C. Chang, Numerical solution of stochastic differential equations with constant diffusion coefficients, Math. Comp. 49 (1987)
523-542.

[30] S.F. Masri, Response of a multi-degree-of-freedom system to non-stationary random excitation, ASME J. Appl. Mech. 45 (1978)
649-656.

[31] C.W.S. To, R.I. Orisamolu, Response of a two-degree-of-freedom system to random disturbances, Computers and Structures 25
(1987) 311-320.

[32] L. Zhang, J.W. Zu, Z. Zheng, The stochastic Newmark algorithm for random analysis of multi-degree-of-freedom non-linear
systems, Computers and Structures 70 (1999) 557-568.



	Explorations of a family of stochastic Newmark methods in engineering dynamics
	Introduction
	The methodology
	A lower order Newmark method
	A higher order Newmark method
	Error estimates
	Error in lower order Newmark method
	Error in higher order Newmark method

	Determining the multiple stochastic integrals (MSI-s)
	The case of a single white noise
	The case of multiple white noise inputs

	Numerical examples

	Moment equations for linear systems
	Formulation of the moment equations
	Applications to MDOF systems
	Element matrices
	Numerical results and discussion


	Concluding remarks
	Acknowledgement
	A brief introduction to Ito’s formula
	Wiener processes
	Ito Integral
	Quadratic variation
	Stochastic differential equations (SDE-s) and Ito’s formula

	The stochastic Taylor expansion
	References


