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Abstract

A family of stochastic Newmark methods are explored for direct (path-wise or strong) integrations of stochastically

driven dynamical systems of engineering interest. The stochastic excitations are assumed to be modeled by white noise

processes or their filters and may be applied additively or multiplicatively. The family of stochastic Newmark maps are

developed through a two-parameter, implicit Ito–Taylor expansion of the displacement and velocity vectors associated

with the governing stochastic differential equations (SDE-s). Detailed estimates of local and global error orders for the

response variables are provided in terms of the given time step size, h. While higher order Newmark methods lead to

higher accuracies, far less random variables need to be modeled in the lower order methods to make it much more

attractive from a computational point of view. For the specific case of a linear dynamical system, the stochastic New-

mark map is used to obtain a closed form map for computing the temporal evolution of the response co-variance

matrix. A host of numerical illustrations, covering linear and non-linear, single- and multi-degree-of-freedom dynamical

systems, are provided to bring out the advantages and possible weaknesses of the methods proposed.
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1. Introduction

Newmark method is by far the most popular tool for direct integration of deterministic dynamical

systems [12,1,11,25]. For a given time step size, h, a Newmark map may be derived by expanding the
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displacement and velocity components up to O(h2) and O(h) respectively via a two-parameter implicit Tay-

lor series. This corresponds to a constant average acceleration for a sufficiently continuous and differentia-

ble deterministic system. The same logic, however, cannot be directly used for stochastic systems under

white noise inputs. It is well known that a white noise process, defined formally as the derivative of a Wie-

ner process, is not a valid mathematical or physical function of time. This is because a Wiener process, even
though continuous, may have an unbounded variation over any given time interval. Consequently, for such

engineering systems, the acceleration vector does not exist mathematically (at least, in the sense of sample

paths). Moreover, increments of a Wiener process change by O(h1/2) over a time interval of h. These two

non-deterministic aspects of a stochastic differential equation (SDE) explain why numerical integration

techniques for strong solutions of SDEs are often so different from their deterministic counterparts [4].

A consistent way to achieve higher order accuracy while developing numerical algorithms for pathwise

(strong) solutions of SDEs is to use a stochastic Taylor expansion [4], which in turn is derivable from re-

peated applications of Ito–Taylor or Ito–Stratonovich formulas to a functional [6]. Direct integration meth-
ods provide an attractive numerical approach due to their simplicity and applicability to MDOF non-linear

systems. A stochastic central difference method [18–21], and a Newmark family of algorithms [22] have

been proposed for systems described by second-order matrix differential equations. Although successful,

these methods are limited to non-linear elastic structures subjected to additive white noise excitations.

Zhang and Zhao [24] updated the algorithm to correctly handle autocorrelation functions of response pro-

cesses under Gaussian white noise excitations in a discrete form and clarified the effect of the time interval

on the calculations. To represent a filtered white noise excitation, an AR model [8] and an ARMA model

[32] were incorporated into the algorithms. Ohtori et al. [13] proposed a semi-implicit integration algorithm
for stochastic analysis of state-space equations. It solves the linearized equations by an implicit method

termed as ‘‘semi-implicit integration’’. By taking the mathematical expectation of the recursive expression

for the solution of the state-space equation, the algorithm calculates the mean and covariance of the re-

sponse of the structure. Bernard and Fleury [2] have recently proposed a stochastic Newmark scheme

for solution of dynamical equation of linear oscillators subjected to white noise excitation. Runge–Kutta

schemes in the strong sense have been proposed, for instance, by McShane [27], Rumelin [26], Chang

[29], Milstein [9], Kloeden and Platen [7] and the references of Saito and Mitsui [28]. Tocino and Ardanuy

[23] have proposed a class of explicit second order and two explicit third order RK schemes. A symplectic
stochastic integrator [10] and a second order leapfrog algorithm [14] are also available in the literature.

The central purpose of this paper is to theoretically develop and numerically implement a family of lower

and higher order stochastic Newmark algorithms for pathwise integration of SDE-s of relevance in stochas-

tic structural dynamics. At the outset, certain rather general continuity and boundedness requirements are

imposed on the drift and diffusion vectors. Secondly, lower and higher order stochastic Newmark maps are

derived based on appropriate stochastic Taylor expansions of displacement and velocity vectors in terms of

a given time step size, h. As in the deterministic case, the displacement and velocity expansions are per-

formed implicitly using a couple of arbitrary integration parameters, a and b. Given a time step size h,
the displacement and velocity expansions are computed by retaining terms up to O(h2) and O(h) respec-

tively in the lower order and terms up to O(h3) and O(h2) in the higher order. These expansions are not

complete in the sense that certain terms of the highest order in h, involving multiple stochastic integrals

(MSI-s) in terms of the Wiener increments, are dropped off from the expansions for the sake of computa-

tional convenience. Rigorous error estimates are carried out to determine the local and global error orders

for displacement and velocity vectors. Systematic procedures for the determination of MSI-s, crucial for

maintaining the pathwise integration accuracy in the stochastic regime, are provided. The method is devel-

oped within an adequately general framework to be readily implementable for large DOF mechanical sys-
tems. A host of numerical illustrations of the methods are undertaken for linear and non-linear, single- and

multi-degree-of-freedom mechanical oscillators under additive and multiplicative white noise inputs. It may

be noted that the lower order Newmark method has already been reported by the authors [16]. However,



for the sake of completeness, the lower order method is again briefly covered, albeit within a more general

framework.
2. The methodology

Since the stochastic Newmark method (SNM) is proposed to be developed in the context of engineering

dynamics, a natural starting point would be to consider the following n-DOF dynamical system:
€X þ CðX ; _X Þ _X þ KðX ; _X ÞX ¼
Xq
r¼1

GrðX ; _X ; tÞ _W r þ F eðtÞ; ð1Þ
where X = {x(1),x(2), . . . x(n)}T 2 R2n, CðX ; _X Þ, KðX ; _X Þ are n · n (state-dependent for non-linear systems)

damping and stiffness matrices, fGrðX ; _X ; tÞg is the rth element of a set of n · 1 drift vectors, {Wr(t)} con-
stitutes a q-dimensional vector of independently evolving zero mean Wiener processes with Wr(t),

r = 1,2, . . . q with Wr(0) = 0, E[jWr(t) 	Wr(s)j2] = (t 	 s), t > s and F eðtÞ ¼ ff ðjÞ
e ðtÞjj ¼ 1; 2; . . . ; ng is the

external (non-parametric) deterministic force vector. It may be noted that the white noise processes
_W rðtÞ do not have any realizable sample paths with finite measure and hence the description of the dynam-

ical system as in Eq. (1) is entirely formal. These second order equations may more appropriately be recast

as the following system of 2n first order equations in incremental form:
dxðjÞ1 ¼ xðjÞ2 dt;

dxðjÞ2 ¼ aðjÞðX ; _X ; tÞdt þ
Xq
r¼1

rðjÞ
r ðX ; _X ; tÞdW rðtÞ; j ¼ 1; 2; . . . ; n;

ð2Þ
where,
aðjÞðX ; _X ; tÞ ¼ 	
Xn
k¼1

CjkðX ; _X Þ _xðkÞ 	
Xn
k¼1

KjkðX ; _X ÞxðkÞ þ f ðjÞ
e ðtÞ;

rðjÞ
r ðX ; _X ; tÞ ¼ GðjÞ

r ðX ; _X ; tÞ:
ð3Þ
In order to ensure sample existence and boundedness of the solution vectors X 1 ¼ X ¼ fxðjÞ1 g and

X 2 ¼ _X ¼ fxðjÞ2 g, j = 1,2, . . .,n, it is assumed that the drift and diffusion vectors, a(j) and rðjÞ
r are measurable

(with respect to t 2 R1;X ; _X 2 Rn), continuous and satisfy the Lipschitz (linear) growth bound:
jaðjÞðbX ; tÞ 	 aðjÞðbY ; tÞj þXq
r¼1

rðjÞ
r ðbX ; tÞ 	 rðjÞ

r ðbY ; tÞj 6 QjbX 	 bY��� ���; 8j 2 ½1; n�; ð4Þ
where bX ; bY 2 R2n, Q 2 R+ is a sufficiently large positive real number and bX ¼ fX T _X
TgT ¼ fX T

1X
T
2 g

T
. The

norm kÆk is the Euclidean norm. Let the initial conditions be m.s. bounded, i.e., EjbX ðt0Þj2 < 1 and have
certain growth bounds (not necessarily linear). Thus the sample continuity (w.p.1) of any realization of

the (separable) vector flow /ðt;x; bX ðt0ÞÞ for any x 2 X (X being the event space) is assured. Let the subset

of the time axis over [0,s] be ordered such that 0 = t0 < t1 < t2 < � � � < ti < � � � < tL = s and hi = ti 	 ti	1

where i 2 Z+. It is now required to replace the non-linear system of SDEs (1) by a suitably determined (sto-

chastic) Newmark map over the ith time interval Ti = (ti	1, ti], given the initial condition vectorbX ðti	1Þ , bX i	1. It is assumed that the response random variable bX ðtiÞ , bX i is F(ti) measurable with

EjbX ij2 < 1 and F(ti) denoting the non-increasing family of r-subalgebras. Further, for convenience of dis-
cussion, an uniform time step size hi = h"i is assumed in what follows.

Now, towards deriving the stochastic Newmark map over the ith time interval, the first step is to con-
sider Eq. (2) and expand each element of the vectors X1(ti	1 + h) = X(ti	1 + h) and X 2ðti	1 þ hÞ ¼
_X 1ðti	1 þ hÞ in a stochastic Taylor expansion around X1(ti	1) = X1,i	1 and X2(ti	1) = X2,i	1 respectively.



Either Ito or Stratonovich calculus may be used for this purpose (see [6] or [9] for a detailed derivation of

Ito–Taylor and Ito–Stratonovich expansions). For purposes of a ready reference, a brief derivation of the

Ito–Taylor expansion is provided in Appendix B. In the present study, the derivation of the map is per-

formed following Ito�s formula (see Appendix A), i.e., by using the Ito–Taylor expansion. An integral form

of Ito�s formula (see Appendix B) of any functional of response processes, as adapted specifically for Eq.
(2), is stated below:
f ðX 1ðsÞ;X 2ðsÞ; sÞ ¼ f ðX 1ðti	1Þ;X 2ðti	1Þ; ti	1Þ þ
Xq
r¼1

Z s

ti	1

Krf ðX 1ðs1Þ;X 2ðs1Þ; s1ÞdW rðs1Þ

þ
Z s

ti	1

Lf ðX 1ðs1Þ;X 2ðs1Þ; s1Þds1; ð5aÞ
where f is any sufficiently smooth (scalar or vector) function of its arguments, s P ti	1 and the operators Kr

and L are given by:
Kr ¼
Xn
j¼1

rðjÞ
r

of ðX 1;X 2; tÞ
oxðjÞ2

; ð5bÞ

L ¼ of
ot

þ
Xn
j¼1

xðjÞ2

of

oxðjÞ1

þ
Xn
j¼1

aðjÞ
of

oxðjÞ2

þ 0:5
Xq
r¼1

Xn
k¼1

Xn
l¼1

rðkÞ
r rðlÞ

r

o2f

oxðkÞ2 oxðlÞ2

: ð5cÞ
2.1. A lower order Newmark method

Here the jth element, xðjÞ1 ðti ¼ ti	1 þ hÞ, of the n-dimensional vector X1(ti) is expanded over the semi-

closed interval (ti	1, ti] as:
xðjÞ1 ðtiÞ ¼ xðjÞ1 ðti	1Þ þ
Z ti

ti	1

xðjÞ2 ðsÞds ¼ xðjÞ1 ðti	1Þ þ
Z ti

ti	1

xðjÞ2 ðti	1Þ þ
Z s

ti	1

aðjÞðbX ðs1Þ; s1Þds1
�

þ
Xq
r¼1

Z s

ti	1

rðjÞ
r ðbX ðs1Þ; s1ÞdW rðs1Þ

�
ds: ð6Þ
At this stage, Ito�s formula (which forms the basis for stochastic Taylor expansions; Appendix A pro-

vides a brief account of Ito�s formula) may be applied on the functions rðjÞ
r and a(j) around ðbX ðti	1Þ; ti	1Þ

to obtain the stochastic Taylor expansion:
xðjÞ1 ðtiÞ ¼ xðjÞ1 ðti	1Þ þ xðjÞ2 ðti	1Þhþ aðjÞðbX ðti	1Þ; ti	1Þ
h2

2
þ
Xq
r¼1

rðjÞ
r ðbX ðti	1Þ; ti	1Þ

Z ti

ti	1

Z s

ti	1

dW rðs1Þdsþ qðjÞ
1 ;

ð7aÞ

where the jth remainder component, qðjÞ

1 , consists of the following multiple integrals:
qðjÞ
1 ¼

Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

KraðjÞðbX ðs2Þ; s2ÞdW rðs2Þds1 dsþ
Z ti

ti	1

Z s

ti	1

Z s1

ti	1

LaðjÞðbX ðs2Þ; s2Þds2 ds1 ds

þ
Xq
r¼1

Xq
l¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Klr
ðjÞ
r ðbX ðs2Þ; s2ÞdW lðs2ÞdW rðs1Þds

þ
Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

LrðjÞ
r ðbX ðs2Þ; s2Þds2 dW rðs1Þds: ð7bÞ



The above equations constitute a direct stochastic Taylor expansion for the displacement vector X1.

However, keeping in mind the deterministic Newmark technique, an implicitness is introduced in the expan-

sion by using a non-unique real integration parameter a and writing Eq. (7a) as:
xðjÞ1 ðtiÞ ¼ xðjÞ1 ðti	1Þ þ xðjÞ2 ðti	1Þhþ
Xq
r¼1

rðjÞ
r ðbX ðti	1Þ; ti	1Þ

Z ti

ti	1

Z s

ti	1

dW rðs1Þdsþ aaðjÞðbX ðti	1Þ; ti	1Þ
h2

2

þ ð1	 aÞaðjÞðbX ðti	1Þ; ti	1Þ
h2

2
þ qðjÞ

1 : ð8Þ
Now the fifth term on the RHS of the above equation is expressed in terms of aðjÞðbX ðtiÞ; tiÞ via a back-
ward stochastic Taylor expansion as:
aðjÞðbX ðti	1Þ; ti	1Þ ¼ aðjÞðbX ðtiÞ; tiÞ 	 qðjÞ
2 ; ð9aÞ
where the remainder qðjÞ
2 is given by:
qðjÞ
2 ¼

Z ti

ti	1

LaðjÞðbX ðsÞ; sÞdsþ
Xq
r¼1

Z ti

ti	1

KraðjÞðbX ðsÞ; sÞdW rðsÞ: ð9bÞ
Thus one has the following expression for xðjÞ1 ðtiÞ , xðjÞ1;i :
xðjÞ1;i ¼ xðjÞ1;i	1 þ xðjÞ2;i	1hþ
Xq
r¼1

rðjÞ
r ðbX i	1; ti	1Þ

Z ti

ti	1

Z s

ti	1

dW rðs1Þdsþ aaðjÞðbX i	1; ti	1Þ
h2

2

þ ð1	 aÞaðjÞðbX i; tiÞ
h2

2
þ RðjÞ; ð10aÞ

RðjÞ ¼ 	ð1	 aÞqðjÞ
2

h2

2
þ qðjÞ

1 : ð10bÞ
The jth velocity component xðjÞ2;i is now implicitly expanded as:
xðjÞ2;i ¼ xðjÞ2;i	1 þ
Xq
r¼1

rðjÞ
r ðbX i	1; ti	1Þ

Z ti

ti	1

dW rðsÞ þ baðjÞðbX i	1; ti	1Þhþ ð1	 bÞaðjÞðbX i; tiÞhþ RðjÞ
1 ; ð11Þ
where, the expression for the remainder is:
RðjÞ
1 ¼

Xq
r¼1

Z ti

ti	1

dW rðsÞ
Z s

ti	1

Xq
l¼1

Klr
ðjÞ
r ðbX ðs1Þ; s1ÞdW lðs1Þ

þ
Xq
r¼1

Z ti

ti	1

dW rðsÞ
Z s

ti	1

LrðjÞ
r ðbX ðs1Þ; s1Þds1 	 ð1	 bÞqðjÞ

2 h: ð12Þ
In the RHS of the above expression, qðjÞ
2 is given by Eq. (9b). Now a stochastic Newmark map for the jth

scalar displacement, xðjÞ1 , is given by Eq. (10a) without the last remainder term, R(j), on the RHS. Similarly, a

Newmark map for the jth scalar velocity, xðjÞ2 , is obtained via Eq. (11) without the remainder term RðjÞ
1 on the

RHS. These Newmark approximations to fbX g ¼ ffxðjÞ1 gTfxðjÞ2 gTjj ¼ 1; 2; . . . ; ngT will henceforth be de-

noted as feX g ¼ ff~xðjÞ1 gT; f~xðjÞ2 gTjj ¼ 1; 2; . . . ; ngT.

2.2. A higher order Newmark method

As in the deterministic case, stochastic analogs of higher order Newmark methods are possible, at least
theoretically. Such higher order methods may be derived by incorporating more terms in the associated



stochastic Taylor expansions (i.e, by iterating the error terms in lower order Newmark method via an inte-

gral form of Ito�s formula (see Appendix B for a general description of deriving the Ito–Taylor expansion).

However, in sharp contrast with the lower order Newmark method, one has the daunting task of modelling

MSI-s of third and higher levels for higher order Newmark methods. For notational simplicity, these multi-

ple integrals will henceforth be denoted by:
Ij1;j2;...;jk ¼
Z ti

ti	1

dW jk ðsÞ
Z s

ti	1

dW jk	1
ðs1Þ

Z s1

ti	1

� � �
Z sk	2

ti	1

dW j1ðsk	1Þ; ð13Þ
where the integers j1, j2, . . ., jk take values in the set {0,1,2, . . ., q} and Ij1;j2;...;jk may be considered as the kth

Ito multiple integral. Moreover, dW0(s) is taken to indicate ds. In most of the cases, these higher level sto-

chastic integrals cannot be evaluated in closed form and hence need to be determined numerically. Even a
numerical computation may sometimes become so computationally expensive as to render the higher order

method practically useless. With this in mind, only one higher order Newmark scheme, which can be ap-

plied to an engineering system of arbitrarily high DOF and under any number of additive and/or multipli-

cative white noise processes, hopefully within an affordably extra computational cost, is presented in what

follows.

Following the same stochastic expansion of Ito as in the lower order case and using the new symbol, as

in Eq. (13), for multiple stochastic integrals, the following higher order implicit expansion for xðjÞ1;i may be

arrived at:
xðjÞ1;i ¼ xðjÞ1;i	1 þ xðjÞ2;i	1hþ aðjÞðbX i	1; ti	1Þ
h2

2
þ
Xq
r¼1

rðjÞ
r ðbX i	1; ti	1ÞI r;0 þ

Xq
r¼1

Xq
l¼1

Klr
ðjÞ
r ðbX i	1; ti	1ÞIl;r;0

þ
Xq
r¼1

Xq
l¼1

Xq
u¼1

KuKlr
ðjÞ
r ðbX i	1; ti	1ÞIu;l;r;0 þ

Xq
r¼1

KraðjÞðbX i	1; ti	1ÞI r;0;0

þ
Xq
r¼1

LrðjÞ
r ðbX i	1; ti	1ÞI0;r;0 þ faLaðjÞðbX i	1; ti	1Þ þ ð1	 aÞLaðjÞðbX i; tiÞg

h3

6
þ RðjÞ

2 ; ð14Þ
where the higher order remainder RðjÞ
2 is given by:
RðjÞ
2 ¼ qðjÞ

3 	 ð1	 aÞqðjÞ
4

h3

6
: ð15Þ
The error components qðjÞ
3 and qðjÞ

4 are respectively given by:
qðjÞ
3 ¼

Xq
r¼1

Xq
l¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

LKlr
ðjÞ
r ðbX ðs3Þ; s3Þds3 dW lðs2ÞdW rðs1Þds

þ
Xq
r¼1

Xq
l¼1

Xq
u¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

Z s3

ti	1

LKuKlr
ðjÞ
r ðbX ðs4Þ; s4Þds4 dW uðs3ÞdW lðs2ÞdW rðs1Þds

þ
Xq
r¼1

Xq
l¼1

Xq
u¼1

Xq
v¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

Z s3

ti	1

KvKuKlr
ðjÞ
r ðbX ðs4Þ; s4ÞdW vðs4ÞdW uðs3ÞdW lðs2ÞdW rðs1Þds

þ
Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

LKraðjÞðbX ðs3Þ; s3Þds3 dW rðs2Þds1 ds

þ
Xq
r¼1

Xq
l¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

KlKraðjÞðbX ðs3Þ; s3ÞdW lðs3ÞdW rðs2Þds1 ds



þ
Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

L2rðjÞ
r ðbX ðs3Þ; s3Þds3 ds2 dW rðs1Þds

þ
Xq
r¼1

Xq
l¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

Klr
ðjÞ
r ðbX ðs3Þ; s3ÞdW lðs3Þds2 dW rðs1Þds

þ
Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

L2aðjÞðbX ðs3Þ; s3Þds3 ds2 ds1 ds

þ
Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

KrLaðjÞðbX ðs3Þ; s3ÞdW rðs3Þds2 ds1 ds; ð16aÞ

qðjÞ
4 ¼

Z ti

ti	1

L2aðjÞðbX ðsÞ; sÞdsþ
Xq
r¼1

Z ti

ti	1

KrLaðjÞðbX ðsÞ; sÞdW rðsÞ: ð16bÞ
The higher order implicit expansion for the jth velocity component, xðjÞ2;i , may similarly be derived as:
xðjÞ2;i ¼ xðjÞ2;i	1 þ
Xq
r¼1

rðjÞ
r ðbX i	1; ti	1ÞIr þ

Xq
r¼1

Xq
l¼1

Klr
ðjÞ
r ðbX i	1; ti	1ÞIl;r þ

Xq
r¼1

LrðjÞ
r ðbX i	1; ti	1ÞI0;r

þ aðjÞðbX i	1; ti	1Þhþ
Xq
r¼1

KraðjÞðbX i	1; ti	1ÞI r;0 þ
Xq
r¼1

Xq
l¼1

Xq
u¼1

KuKlr
ðjÞ
r ðbX i	1; ti	1ÞIu;l;r

þ fbLaðjÞðbX i	1; ti	1Þ þ ð1	 bÞLaðjÞðbX i; tiÞg
h2

2
þ RðjÞ

3 : ð17Þ
The jth error component, RðjÞ
3 , corresponding to the velocity component, xðjÞ2 , may be written as:
RðjÞ
3 ¼ qðjÞ

5 	 ð1	 bÞqðjÞ
4

h2

2
; ð18aÞ
where,
qðjÞ
5 ¼

Xq
r¼1

Xq
l¼1

Xq
u¼1

Xq
v¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

KvKuKlr
ðjÞ
r ðbX ðs3Þ; s3ÞdW vðs3ÞdW uðs2ÞdW lðs1ÞdW rðsÞ

þ
Xq
r¼1

Xq
l¼1

Xq
u¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

Z s2

ti	1

LKuKlr
ðjÞ
r ðbX ðs3Þ; s3Þds3 dW uðs2ÞdW lðs1ÞdW rðsÞ

þ
Xq
r¼1

Xq
l¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

KlLrðjÞ
r ðbX ðs2Þ; s2ÞdW lðs2Þds1 dW rðsÞ

þ
Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

L2rðjÞ
r ðbX ðs2Þ; s2Þds2 ds1 dW rðsÞ

þ
Xr
r¼1

Xq
l¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

KlKraðjÞðbX ðs2Þ; s2ÞdW lðs2ÞdW rðs1Þds

þ
Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

LKraðjÞðbX ðs2Þ; s2Þds2 dW rðs1Þds

þ
Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

KrLaðjÞðbX ðs2Þ; s2ÞdW rðs2Þds1 ds

þ
Z ti

ti	1

Z s

ti	1

Z s1

ti	1

L2aðjÞðbX ðs2Þ; s2Þds2 ds1 ds; ð18bÞ



and qðjÞ
4 is given by Eq. (16b). Obviously, the higher order stochastic Newmark map for the jth displacement

and velocity components, xðjÞ1 and xðjÞ2 , are respectively given via Eqs. (14) and (17) without the remainder

terms.
2.3. Error estimates

Since the sample path, bX ðtÞ traced by the given SDE is, in general, different from the approximated

Newmark solution, eX , an instantaneous error at t = ti may be defined as the 2n-dimensional vector

Ei ¼ ffEðjÞ
1;ig

T
; fEðjÞ

2;ig
TgT ¼ ffðxðjÞ1;i 	 ~xðjÞ1;iÞg

T
; fðxðjÞ2;i 	 ~xðjÞ2;iÞg

TgT where j = 1,. . .,n, and the instantaneous Euclid-

ean error norm is denoted as ei ¼ jbX i 	 eX ij. This error vector is treated as a set of conditional random vari-

ables such that the local initial condition, bX i	1, is deterministic and that bX i	1 ¼ eX i	1. In what follows, let cm
and cs respectively denote the orders of the mean and mean square of this conditional (local) error with

respect to the chosen time step size, h = ti 	 ti	1. In other words, one has the following bounds:
kEðbX i 	 eX iÞk 6 Qð1þ kbX i	1k2Þhcm ; ð19Þ

½EkbX i 	 eX ik2�
1
2 6 Qð1þ kbX i	1k2Þhcs : ð20Þ
Also let cs1/2 and cmcs + 1/2. Then, one has the following bound on the global error:
½EkbX i 	 eX ik2�
1
2 6 Qð1þ kbX 0k2Þhcs	

1
2: ð21Þ
This implies that the global order of accuracy of the method, constructed using a one-step approxima-

tion, is cg = cs 	 1/2. The monograph by Milstein [9, pp. 12–17] is referred for a step-by-step proof of this

observation.

2.3.1. Error in lower order Newmark method

From the remainder Eqs. (7b), (9b) and (12), it is clear that for evaluating the mean and mean-square

error orders, it is necessary to determine the first two statistical moments of the multiple Ito integrals, Ir
and Ir,0. At this stage, the following proposition becomes quite relevant.

Proposition 1. One has EðIj1;j2;...;jk Þ ¼ 0 if there exists at least one jl 5 0, l = 1,2, . . ., k. On the other hand,

EðIj1;j2;...;jk Þ ¼ OðhkÞ if jl = 0 " l 2 [0,k]. Moreover,
½EðIj1;j2;...;jk Þ
2�

1
2 ¼ OðhwÞ;

where w ¼
Xk
l¼1

ð2	 �jlÞ=2; �jl ¼ 1 if jl 6¼ 0; else �jl ¼ 0:
ð22Þ
Proof of the first part of the above proposition regarding the mean is quite straightforward. For the sec-

ond part, involving Eq. (17), reference is made to the monographs by Milstein [9] or Kloeden and Platen [7].

Now taking expectation of the remainder term R(j) associated with the jth displacement component xðjÞ1;i

(Eqs. (10a) and (10b)), one can readily see via Proposition 1 and the inequality (13) that:
jERðjÞj 6 Qð1þ kbX i	1k2Þh3: ð23Þ
Similarly, using Eq. (17) and the inequality (14), it follows that:
jEðRðjÞÞ2j
1
2 6 Qð1þ kbX i	1k2Þ

1
2h2: ð24Þ



Thus, for the proposed stochastic Newmark scheme as applied to displacements, one has (cm)x = 3,

ðcsÞx ¼ 2 > 1
2

� 	
; and thus the inequality (cm)x P (cs)x + 1/2 is satisfied. Hence the global error order for com-

puting the displacement vector is given by (cg)x = 1.5. One can also apply the above arguments for the

velocity equation (11) and the associated remainder equation (12) to obtain ðcmÞ _x ¼ 2, ðcsÞ _x ¼ 1ð> 1=2Þ.
Thus the inequality ðcmÞ _x P ðcsÞ _x þ 1=2 is again satisfied to yield ðcgÞ _x ¼ 1=2.

It is of interest to note here that the implicit stochastic Taylor expansion of Eq. (10a) used to obtain the

Newmark approximation, ~xðjÞ1;i , to the exact displacement component, xðjÞ1;i , is not complete in O(h2). This may

be verified form the expression of the remainder, R(j), (Eq. (10b) along with Eq. (7b)) which contains a mul-

tiple Ito-integral Il,r,0 = O(h2), l, r5 0. Since evaluation of multiple integrals involving more than one inte-

gration of Wiener increments is a computationally expensive affair, especially for large DOF engineering

problems, the O(h2) term involving Il,r,0 has not been accounted for in the lower order version of Newmark

displacement map. If, in addition, the other easily-evaluatable O(h2) term, u1 ¼ aaðjÞðbX i	1; ti	1Þ h2

2
þ

ð1	 aÞaðjÞðbX i; tiÞ h2

2
, is also left out of the expansion, then from Proposition 1 one would have (cm)x = 2,

(cs)x = 2. Since the inequality (cm)x P (cs)x + 0.5 is no longer satisfied, one must take (cs)x = 1.5 for evalu-
ating the global error order (cg)x [6]. Thus one finally has (cg)x = 1.5 	 0.5 = 1.0. Hence it is observed that

even though the presently adopted Newmark expansion is not complete in O(h2), retaining the term u1 leads

to an increase in (cg)x by 0.5. Now, consider the other possibility of retaining the term involving the O(h2)

integral Il,r,0 in the expansion instead of the term u1. In such a case, one readily obtains, again via Propo-

sition 1, (cm)x = 2, (cs)x = 2. Thus, one again gets (cg)x = 1.0, i.e., 0.5 less in order than is achieved by retain-

ing u1 instead of the term involving Il,r,0. However, if both these O(h2) terms are included, then (cm)x = 3.0,

(cs)x = 2.5, and hence (cg)x = 2.0, i.e., 0.5 more in order than the presently adopted scheme at the cost of an

enhanced computational effort, which sharply increases with an increase in the system DOF. Similar argu-
ments as above may be used to justify the inclusion of the O(h) term, u2 ¼ baðjÞðbX i	1; ti	1Þhþ baðjÞðbX i; tiÞh,
and not the term involving O(h) multiple Ito integral Il,r(l, r5 0). Thus, it may generally be noted that com-

putations of error order along with the retention of appropriate terms in the stochastic Newmark method

considerably differ from those for its well known deterministic counterparts.

2.3.2. Error in higher order Newmark method

Determination of local and global error orders for displacement and velocity components follows the

same steps as detailed in Section 3.1. Thus taking the expectation of the error component RðjÞ
2 , as in Eq.

(15a), corresponding to the displacement scalar xðjÞ1 , it is readily seen that:
jERðjÞ
2 j 6 Qð1þ kbX i	1k2Þh4: ð25Þ
Moreover, using proposition (1), one also has:
jEðRðjÞ
2 Þ2j

1
2 6 Qð1þ kbX i	1k2Þ

1
2h3: ð26Þ
Hence the local and global error orders for the (higher order) Newmark displacement vector, eX 1, are

respectively O(h3) and O(h2.5). Similarly it may be shown using Eq. (18a) that the local and global error

orders for the (higher order) Newmark velocity vector, eX 2, are respectively O(h2) and O(h1.5). It is thus

apparent that the higher order Newmark scheme yields response approximations which are consistently

one integral order higher than those obtained using the lower order Newmark scheme. However, this obser-
vation is true provided one can obtain the associated MSI-s sufficiently accurately.
2.4. Determining the multiple stochastic integrals (MSI-s)

Accurate computation of these integrals constitutes a crucial factor in maintaining the error orders as

obtained in Section 3. First consider the lower order Newmark scheme, wherein one needs to compute only



two kinds of multiple integrals, viz., Ir and Ir,0, r = 1,2, . . ., q. Fortunately, given the associated Wiener

increments, both these integrals may be computed exactly. For the first level integral, Ir, one has

Ir ¼ W rðtiÞ 	 W rðti	1Þ , DiW r. To model Ir,0, it is first noted (via integration by parts) that:
Ir;0 ¼
Z ti

ti	1

Z s

ti	1

dW rðs1Þds ¼ hDiW r 	 I0;r: ð27Þ
Moreover, using the Ito definition of a stochastic integral, one has:
EðI0;rÞ ¼ 0 and EðI0;rÞ2 ¼
h3

3
: ð28Þ
It is therefore possible to model Ir,0 as the random variable v2 = hDiWr 	 v1, where the zero-mean ran-

dom variable v1 has the normal distribution Nð0;
ffiffiffiffiffiffiffiffiffi
h3=3

q
Þ.

For the higher order Newmark scheme, the additional multiple integrals to be modeled are Ir,l, Ir,l,0,

Ir,0,0, I0,r,0, Ir,l,u and Ir,l,u,0 where r, l,u = 1,2, . . ., q. In order to consistently generate these random variables

numerically within a computer program, the following scaling is first effected.
grðhÞ ¼
W rðhhÞffiffiffi

h
p with W rð0Þ ¼ 0; 0 6 h 6 1: ð29Þ
Obviously, gr(h), r = 1,2, . . ., q are standard Wiener processes with unit variance. Let the scaled kth sto-

chastic integral in terms of increments of new Wiener processes, gr(h) be denoted as:
Ij1;j2;...;jk ¼
Z 1

0

Z h

0

. . .

Z hk	2

0

dgj1ðhk	1Þdgj2ðhk	2Þ . . . dgjk ðhÞ; ð30Þ
where it is implied, as before, that dg0(h) = dh. One thus has the following set of relations between the

scaled and original multiple integrals:
Ir ¼ h
1
2Ir; I r;0 ¼ h

3
2Ir;0; I0;r ¼ h

3
2I0;r; I r;l;0 ¼ h2I r;l;0; Ir;l;u;0 ¼ h

5
2I r;l;u;0; . . . etc:; ð31Þ
for all r, l,u = 1,2, . . ., q. Since the present objective is to generate the third or higher level integrals approx-

imately via a numerical scheme, the following proposition becomes quite useful (Milstein [9]).

Proposition 2. Let a numerical scheme with an order of accuracy m, generates the following one-step

approximation:
eX iþ1 ¼ bX i þ Aðti;X i; h;DW rðsÞjti 6 s 6 ti þ h ¼ tiþ1 and r ¼ 1; 2; . . . ; qÞ: ð32Þ

Suppose that the vector function A contains terms of the form P(ti,Xi)f(DWr(s)), where f(.) is a known func-

tions of its random arguments. If an approximate numerical method is used to generate the function f such that

f = # + d (where # is the approximate value and d is the remainder), then the order of accuracy, m, of the ori-

ginal method remains unaltered if the following inequalities hold.
jEdj 6 Qhmþ1 and ½Ed2�
1
2 6 Qhmþ

1
2: ð33Þ
2.4.1. The case of a single white noise

This particular case, involving only one Wiener process W1(t) is simpler to implement and is therefore
dealt with first. It has been shown [9] that recursively using an expansion of the two-parameter Hermite n-

polynomial, Hn(ks,cW1(s)), followed by equating the like powers of k and c, one can arrive at the following

exact expressions of the still undetermined multiple integrals:



I11ðhÞ ¼
W 2

1ðhÞ 	 h
2

; I110ðhÞ ¼
1

2

Z h

0

W 2
1ðsÞds	

h2

4
;

I100ðhÞ ¼ hI10 	
Z h

0

sW 1ðsÞds; I010ðhÞ ¼ 2

Z h

0

sW 1ðsÞds	 hI10;

I111ðhÞ ¼
W 3

1ðhÞ
6

	 1

2
hW 1ðhÞ; I1110ðhÞ ¼

1

6

Z h

0

W 3
1ðsÞds	

1

2

Z h

0

sW 1ðsÞds:

ð34Þ
Thus for an implementation of the higher order Newmark scheme, it suffices to approximately model the

following basic multiple stochastic integrals: A1 ¼
R h
0
W 2

1ðsÞds; A2 ¼
R h
0
sW 1ðsÞds; and A3 ¼

R h
0
W 3

1ðsÞds. Ex-
pressed in terms of the standard Wiener process, g1ðhÞ ¼ W 1ðhhÞ=

ffiffiffi
h

p
; h ¼ s=h 2 ½0; 1�, these integrals take

the form:
A1 ¼ h2
Z 1

0

g21ðhÞdh ¼ h2A1;

A2 ¼ h5=2
Z 1

0

hg1ðhÞdh ¼ h5=2A2;

A3 ¼ h5=2
Z 1

0

g31ðhÞdh ¼ h5=2A3:

ð35Þ
Now the following four SDEs may be solved over h 2 [0, 1] to determine these integrals:
dA0 ¼ dg1ðhÞ; dA1 ¼ A
2

0dh; dA2 ¼ hA0ðhÞdh; dA3 ¼ A
3

0ðhÞdh: ð36Þ

The above equations are subject to initial conditions Akð0Þ ¼ 0; k = 0,1,2,3. Moreover, the approximate

numerical technique and the time step size, h1, to be used to solve for these equations have to be so chosen

as to satisfy the requirements of Proposition 2. In order to maintain local error orders O(h3) and O(h2)

respectively for displacement and velocity components in the higher order Newmark scheme, the following

inequalities need to be satisfied (via Proposition 2):
E½ðA1ðh ¼ 1Þ 	 A1N ðh ¼ 1ÞÞ2�
1
2 6 Oðh1:5Þ;

E½ðA2ðh ¼ 1Þ 	 A2N ðh ¼ 1ÞÞ2�
1
2 6 OðhÞ;

E½ðA3ðh ¼ 1Þ 	 A3N ðh ¼ 1ÞÞ2�
1
2 6 OðhÞ;

ð37Þ
where, A1N , A2N and A3N are numerical approximations to A1, A2 and A3 respectively and the above set of

SDEs are subject to initial conditions AkN ð0Þ ¼ 0, for k = 1,2,3. It is noted that no such restrictions are put

on the variable A0, since it can be modeled exactly using A0;j ¼ A0;j	1 þ Djg1ðh1Þ, where Djg1(h1) is an

Nð0;
ffiffiffiffiffi
h1

p
Þ random variable. At this stage, suppose that a stochastic Heun scheme (SHS) of global order

O(h) is used to approximately obtain A1ð1Þ, A2ð1Þ and A3ð1Þ via the map:
A1N ;i ¼ A1N ;i	1 þ 0:5ðA2

0;i	1 þ A
2

0;iÞh1;
A2N ;i ¼ A2N ;i	1 þ 0:5ðhi	1A0;i	1 þ hiA0;iÞh1;
A3N ;i ¼ A3N ;i	1 þ 0:5ðA3

0;i	1 þ A
3

0;iÞh1:
ð38Þ
Now in order to satisfy the first of inequalities (37), one must have h1 = h
1.5, so that a smaller time step

size, h1, is warranted for accurately obtaining the required integrals. For instance, if a step size h = 0.01 is

used for integrating the original system of equations, then a corresponding step size h1 = 0.001 needs to be

chosen for approximately obtaining the multiple integrals over each interval. In other words, about 1000
random variables have to be generated over each time interval of h = 0.01. On the other hand, if one



forcibly chooses h1 = h to economize on the computational time, the local error order for displacement

components reduce to O(h2.5), while the local error order of O(h2) for velocity components remains unaf-

fected. In fact, depending on specific forms of the governing differential equations, there may not be any

need to model many such multiple integrals and thus one may still achieve the desired order of O(h3)

for the displacement components with h1 = h. Take, for instance, the common case where the multiplicative
noise coefficients rðjÞ

r ðX 1;X 2; tÞ are not functions of the velocity vector, X2. In such cases, KlrðjÞ
r ¼

KlKurðjÞ
r ¼ 0 and hence, as seen from the higher order Newmark displacement expansion of Eq. (14), all

the terms involving Il,r,0 and Il,r,u,0 identically vanish, thereby ensuring a local error order of O(h3) for

the displacement components with h1 = h.

2.4.2. The case of multiple white noise inputs

A procedure similar to the case of a single white noise input may be adopted in this case too. The only

difference in this case is that a simplified recursive relationship between the multiple integrals based on Her-
mite expansions is not possible here. Thus all the multiple integrals of third and higher levels have to be

determined by constructing a set of simple SDE-s and solving the latter numerically. As in Section 2.4.1,

these SDE-s are formed in terms of the increments of a set of standard (scaled) Wiener processes

grðhÞ ¼ W rðhhÞffiffi
h

p , so that 0 6 h 6 1, r = 1,2, . . ., q (q P 2). With a time step size h1, the first level scaled inte-

grals, I rð1Þ, may be exactly generated using the map ðIrÞj ¼ ðI rÞj	1 þ Djgrðh1Þ with Irð0Þ ¼ ðIrÞ0 ¼ 0. More-

over, Eqs. (27) and (28) may be used to exactly obtain the second level integrals I r;0 and I0;r. Next, one has

the following set of SDE-s for the approximate evaluations of other scaled multiple integrals over [0, 1] with

a step size h1:
dIl;r ¼ Il dgrðhÞ; dI l;r;0 ¼ Il;r dh; dIr;0;0 ¼ Ir;0 dh;

dI0;r;0 ¼ I0;r dh; dIu;l;r ¼ Iu;l dgrðhÞ; dIu;l;r;0 ¼ Iu;l;r dh
ð39Þ
subject to initial conditions Il;rð0Þ ¼ 0; Il;r;0ð0Þ ¼ 0; . . . Iu;l;r;0ð0Þ ¼ 0. The following general relation between

the scaled and original kth level multiple integrals may be readily noted:
Ij1;j2;...:;jk ðh; fW rðhÞjr ¼ 1; . . . ; qgÞ ¼ h

Pk
m¼1

ð2	�jmÞ=2
I j1;j2;...:;jk ð1; fgrð1Þjr ¼ 1; . . . ; qgÞ; ð40Þ
where �jm ¼ 0 if jm = 0 else �jm ¼ 1. Now suppose that a Heun scheme be used to determine the scaled multi-

ple integrals as:
ðIl;rÞj ¼ ðIl;rÞj	1 þ 0:5ððIlÞj	1 þ ðIlÞjÞDjgrðh1Þ;

ðIl;r;0Þj ¼ ðIl;r;0Þj	1 þ 0:5ððIl;rÞj	1 þ ðIl;rÞjÞh1;

ðIr;0;0Þj ¼ ðI r;0;0Þj	1 þ 0:5ððIr;0Þj	1 þ ðIr;0ÞjÞh1;

ðI0;r;0Þj ¼ ðI0;r;0Þj	1 þ 0:5ððI0;rÞj	1 þ ðI0;rÞjÞh1;

ðIu;l;rÞj ¼ ðIu;l;rÞj	1 þ 0:5ððIu;lÞj	1 þ ðIu;lÞjÞDjgrðh1Þ;

ðIu;l;r;0Þj ¼ ðIu;l;r;0Þj	1 þ 0:5ððIu;l;rÞj	1 þ ðIu;l;rÞjÞh1;

ð41Þ
for all u, l, r 2 [1,q]. It must be noted that the above set of equations would have to be solved in the same

hierarchical order as shown. For instance, to solve for ðIl;r;0Þj using the second of the above set of equations,

one must first solve for ðIl;rÞj using the first equation. At this stage, given the fact that the above Heun

scheme has a global accuracy order of O(h1), it is required to determine the appropriate value of the step

size h1 in terms of the original time step size h, so that the desired respective local error orders of O(h3) and

O(h2) for displacement and velocity components are ideally maintained. Since the lowest order of a numer-
ically approximated (using Eq. (41)) multiple integral that appears in the higher order Newmark velocity



expansion is Il,r and one has the relation (using Eq. (40)) Il;r ¼ hIl;r, it directly follows from Proposition 2

that one must have h1 = h
1.5 to maintain the O(h2) local error in velocity. Similarly, from displacement point

of view, the lowest order of a numerically approximated (using Eq. (41)) multiple integral in the higher or-

der Newmark scheme is Il,r,0. Since I l;r;0 ¼ h2Il;r;0, one again derives via Proposition 2 that h1 = h
1.5 so that

the local error remains O(h3). However, in the special case of the multiplicative noise coefficients,

rðjÞ
r ðj ¼ 1; 2; . . . ; nÞ, not being explicit functions of the velocity vector X 2 ¼ fxðjÞ2 g (and this is the case with

most of the engineering systems), the choice of h1 = h is enough to maintain the desired error orders. All

linear and non-linear engineering systems with only additive random noises also fall within this category.

Still higher order stochastic Newmark maps may be theoretically derived, but it should be clear from the

above discussion that the associated numerical difficulties increase too sharply to make such maps practi-

cally useful in general. Thus consider a higher order Newmark scheme of O(h3) in velocity components. As

in the previous cases, one has to numerically obtain scaled multiple integrals of the type I l;rð1Þ, where
l, r5 0,l5 r. If a Heun scheme with step size h1 is again used for this purpose, one must necessarily use

h1 = h
2.5 to arrive at O(h3) local accuracy order in velocity. For instance, if h = 0.01 then one has

h1 = 0.00001, i.e., it is needed to model 105 random variables for each step of the original Newmark map

and this is indeed an enormous numerical task.

Finally, it is worth noting that the following scheme may be adopted to generate Wiener increments,

DiWr(s), r = 1,2, . . ., q, for implementing the stochastic Newmark algorithms. To begin with, r sets of inde-

pendent and N(0,1) random variables, Sr ¼ f-ðrÞ
1 ;-ðrÞ

2 ; . . . ;-ðrÞ
i ; . . .g, are generated. These Gaussian vari-

ables may be obtained from uniformly distributed pseudo-random variables in [0,1] via Box–Muller or

Polar–Marsaglia transformations. Next, the desired Wiener increments are generated via the scaling:

DiW rðsÞ ¼ -ðrÞ
i

ffiffi
s

p
.

2.5. Numerical examples

The basic aim of the present paper is the theoretical derivation of a class of useful stochastic Newmark

algorithms, and as such a limited set of illustrations are presented in this section for a non-linear, hardening

(single-well) Duffing oscillator under additive, multiplicative and filtered white noise excitations. In addi-

tion to being a workhorse example for single-degree-of-freedom (SDOF) non-linear engineering systems,

the Duffing equation is known to behave very much similar to a large class of non-linear problems in struc-
tural dynamics.

Example 1. For the first example, consider the non-linear second order stochastic differential equation

(SDE) for Duffing oscillator under a deterministic sinusoidal and an additive white noise inputs. Such a
system is adequately described by the following five-parameter equation [15]:
€xþ 2pe1 _xþ 4p2e2ð1þ x2Þx ¼ 4p2e3 cosð2ptÞ þ 4p2e4 _W 1ðtÞ: ð42aÞ

Since _W 1ðtÞ is physically meaningless (in the sense of sample paths), the SDE may be more properly writ-

ten in the following incremental state-space form:
dx1ðtÞ ¼ x2ðtÞdt;
dx2ðtÞ ¼ ð	2pe1x2 	 4p2e2ð1þ x21Þx1 þ 4p2e3 cosð2ptÞÞdt þ 4p2e4 dW 1ðtÞ:

ð42bÞ
Using Eqs. (10) and (11) with n = 1, one obtains the following lower order Newmark approximationeX ¼ f~x1;i;~x2;igT for the desired solution bX ¼ fx1;i; x2;igT:
~x1;i ¼ x1;i	1 þ x2;i	1hþ 4p2e4I1;0 þ aaðbX i	1; ti	1Þ
h2

2
þ ð1	 aÞaðeX i; tiÞ

h2

2
; ð43aÞ

~x2;i ¼ x2;i	1 þ 4p2e4I1 þ baðbX i	1; ti	1Þhþ ð1	 bÞaðeX i; tiÞh; ð43bÞ



where,
aðbX ; tÞ ¼ 	2pe1x2 	 4p2e2ðx1 þ x31Þ þ 4p2e3 cosð2ptÞ: ð43cÞ

Note that the superscript (j) has been omitted from the state variables since n = 1. As is clear from the

above equations, a specific advantage of the lower order scheme is its simplicity. Moreover, no laborious

numerical generation of multiple integrals are involved. If one intends to use the higher order Newmark

scheme for the above problem, then Eqs. (14) and (17) may respectively be used to determine the associated

implicit maps for displacement and velocity components. This leads to:
~x1;i ¼ x1;i	1 þ x2;i	1hþ 4p2e4I1;0 þ aðbX i	1; ti	1Þ
h2

2
	 8p3e1e4I1;0;0 þ aLaðbX i	1; ti	1Þ

h3

6

þ ð1	 aÞLaðeX i; tiÞ
h3

6
; ð44aÞ

~x2;i ¼ x2;i	1 þ 4p2e4I1 þ aðbX i	1; ti	1Þh	 8p3e1e4I1;0 þ bLaðbX i	1; ti	1Þ
h2

2
þ ð1	 bÞLaðeX i; tiÞ

h2

2
; ð44bÞ
where,
Laðx1; x2; tÞ ¼ 	2pe1aðx1; x2; tÞ 	 4p2e2ð1þ 3x21Þx2 	 8p3e3 sinð2ptÞ; ð44cÞ

and the expression for the drift coefficient a(x1,x2, t) is still given by Eq. (43c). Compared with the lower

order case, the only additional multiple integral to be modeled here is I1,0,0. This may be readily done fol-

lowing the scaling as detailed in the previous section followed by using a Heun map over [0,1] with h1 = h to

obtain for the scaled integral I1;0;0ð1Þ, which in turn is related to I1,0,0(h) via I1;0;0ðhÞ ¼ h2:5I1;0;0ð1Þ.
Another advantage of the stochastic Newmark algorithms is that the basic steps of its computer imple-

mentation as described above basically remains the same irrespective of the dimensionality of the engineer-

ing system. In case the system is non-linear (as in the present case), then for a,b 5 1 the associated
Newmark maps constitute a set of coupled non-linear algebraic equations, which may be solved via a New-

ton-Raphson approach.

In order to compare Newmark solutions in the stochastic regime with those obtained via an acceptable

stochastic numerical scheme, the stochastic Heun scheme (SHS) is adopted for this example. It is known

that SHS has local and global truncation errors of O(h3/2) and O(h) respectively [4], provided that the system

is driven by only one white noise process. In case of more than one independently evolving white noise pro-

cesses, local and global accuracy orders for SHS reduce to O(h) and O(h0.5) respectively (i.e., the same as

Euler method). It is also to be noted here that there exist certain stochastic Runge–Kutta schemes [4] which
lead to a higher local error order, provided that certain very stringent equalities involving the first and sec-

ond derivatives of the drift and diffusion vectors are satisfied. Indeed, these equalities are not satisfied for

the hardening Duffing system (or, for that matter, for most other engineering systems), thereby leaving the

SHS method as the most accurate known integration tool. Thus referring to the hardening Duffing SDE

(42) under a single additive noise (wherein higher accuracy orders for SHS are maintained), one has the

following map over the time interval Ti = (ti	1, ti] to integrate the SDE based on SHS:
z1;i ¼ x1;i	1 þ 0:5ðx2;i	1 þ ~z2;nÞhi;
z2;i ¼ x2;i	1 þ 0:5ðwðx1;i	1; x2;i	1; ti	1Þ þ wð~z1;i;~z2;i; tiÞÞhi þ 4p2e4I1;

ð45Þ
where,
hi ¼ ti 	 ti	1; ~z1;i ¼ x1;i	1 þ x2;i	1hi;
~z2;i ¼ x2;i	1 þ wðx1;i	1; x2;i	1; ti	1Þhi þ e4I1;
wðx1; x2; tÞ ¼ 	2pe1x2 	 4p2e2ð1þ x21Þx1 þ 4p2e3 cosð2ptÞ:

ð46Þ



In Eq. (45), {z1,i,z2,i}
T is the SHS approximation vector to (x1,i,x2,i) and {x1,i	1,x2,i	1}

T constitute the

known initial condition vector. In order to pathwise compare the results of lower and higher order stochas-

tic Newmark methods (respectively acronymed as LSNM and HSNM) with that of SHS, it is needed to use

the same realizations of standard Wiener increments, I1 = DiW1(h). A consistent time step size h = 0.01 has

been adopted in all the following numerical results. To understand the effect of arbitrary solution param-
eters, a and b, on LSNM and HSNM, displacement and velocity histories for a specific choice of param-

eters are plotted in Figs. 1 and 2 for different choices of these parameters in [0,1]. It can be seen that the

trajectories do not sensitively depend on the choice of a and b. While choosing a = b = 1 makes the New-

mark map explicit (and hence computationally faster), an implicit scheme is known to have far better sta-

bility characteristics, especially for larger time step sizes, and hence a = b = 0.5 has been consistently chosen

in this study. In Figs. 3–5, displacement and velocity histories of LSNM and HSNM-based solutions of the

oscillator under weak, medium and strong intensities of additive white noise inputs are shown. Sinusoidal

deterministic inputs are assumed to be acting on the oscillator in these examples. Comparisons of time his-
tories obtained via Newmark algorithms with those via SHS are also provided in these figures and they ap-

pear to be quite close. In fact, the deterministic forcing amplitude parameter e3 has been so chosen that

there is, in the phase plane, an unsymmetrical (about the velocity axis) and dumb-bell shaped one-periodic

orbit of the oscillator under no noise. Even though HSNM is the most accurate out of all the three methods

employed, it is observed that LSNM works well in all the three cases, even under a strong additive noise
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Fig. 1. Response histories under a single additive noise via LSNM for different a, b; e1 = 0.25, e2 = 1.0, e3 = 1.0, e4 = 0.2.
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Fig. 2. Response histories under a single additive noise via HSNM for different a, b; e1 = 0.25, e2 = 1.0, e3 = 1.0, e4 = 0.1.
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Fig. 3. Response histories under a single, weak-intensity additive noise via LSNM, HSNM and SHS: e1 = 0.25, e2 = 1.0, e3 = 4.0,

e4 = 0.1, a = 0.5, b = 0.5.
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Fig. 4. Response histories under a single, medium-intensity additive noise via LSNM, HSNM and SHS: e1 = 0.25, e2 = 1.0, e3 = 4.0,

e4 = 0.5, a = 0.5, b = 0.5.
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Fig. 5. Response histories under a single, high-intensity additive noise via LSNM, HSNM and SHS: e1 = 0.25, e2 = 1.0, e3 = 4.0,

e4 = 2.0, a = 0.5, b = 0.5.
intensity. In Fig. 6(a)–(c), the noisy phase plots of the orbit under weak, medium and strong additive noise

intensities are plotted via HSNM. As seen from Fig. 6(b) and (c), the periodic structure of the orbit gets

more and more diffused as the noise intensity grows. It is now of interest to see how the stochastic New-

mark methods, especially the lower order one, behaves for locally unstable orbits, such as those encoun-

tered during chaos or quasi-periodicity. One such chaotic attractor under a weak additive stochastic

excitation (e4 = 0.5) is plotted in Fig. 7(a) and (b) using LSNM and HSNM respectively. In Fig. 8(a)

and (b), phase plots of the strange attractor, respectively obtained via LSNM and HSNM, under a stronger
additive noise intensity (e4 = 20) are shown. Even though the global error in velocity computation is O(h1/2)

in LSNM as against O(h3/2) in HSNM, the phase plots obtained for this kind of orbits via LSNM appear to

be quite acceptable. In all the cases, however, one achieves a lower global displacement error of O(h3/2) via

LSNM than a global error order of O(h) in SHS.

It needs to be stressed that in case of multiple and independently evolving white noise inputs, there are no

restrictions on the applicability of the Newmark procedure, even though SHS is generally not applicable with

the same accuracy (as for a single noise input) in such cases. One such example is considered next.
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Fig. 6. Phase plots under a single additive noise via HSNM: e1 = 0.25, e2 = 1.0, e3 = 4.0, a = 0.5, b = 0.5: (a) weak noise intensity,

e4 = 0.1; (b) medium noise intensity, e4 = 0.5; (c) high noise intensity, e4 = 2.0.
Example 2. Notwithstanding the simplicity of the LSNM, one has to exercise caution in assessing the

accuracy of the method in certain cases, especially for multiplicative noise inputs, primarily due to its poor

velocity approximation. The HSNM, on the other hand, may be relied upon to yield acceptably accurate

results even in such cases. Consider, for instance, the hardening Duffing equation driven by combined

additive and multiplicative noise excitations. The governing second order SDE takes the form:
dx1ðtÞ ¼ x2ðtÞdt;
dx2ðtÞ ¼ aðx1; x2; tÞdt þ 4p2ðe4 dW 1ðtÞ 	 e5x1 dW 2ðtÞÞ;

ð47Þ
where W1(t) and W2(t) are two independently evolving Wiener processes. The lower order Newmark map

for this equation over the time interval Ti = [ti	1, ti = ti	1+h) is given by:
~x1;i ¼x1;i	1 þ x2;i	1hþ 4p2ðe4I1;0 	 e5x1;i	1I2;0Þ þ afaðbX i	1; ti	1Þ þ ð1	 aÞaðeX i; tiÞg
h2

2
;

~x2;i ¼x2;i	1 þ 4p2ðe4I1 	 e5x1;i	1I2Þ þ bfaðbX i	1; ti	1Þhþ ð1	 bÞaðeX i; tiÞgh: ð48Þ



-6 -4 -2 0 2 4 6

-80

-60

-40

-20

0

20

40

60

80
 LSNM

Ve
lo

ci
ty

Displacement
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Fig. 7. Chaotic phase plots via LSNM under a single, weak-intensity additive noise: e1 = 0.25, e2 = 1.0, e3 = 41.0, e4 = 0.1, a = 0.5,

b = 0.5.
As in Example 1, one need not approximately model any multiple integral while employing

LSNM here too. The higher order Newmark map for Eq. (47) over the same time interval takes the

form:
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HSNM
~x1;i ¼ x1;i	1 þ x2;i	1hþ 4p2ðe4I1;0 	 e5x1;i	1I2;0Þ þ aðbX i	1; ti	1Þ
h2

2
þ 8p3e1ðe5x1;i	1I2;0;0 	 e4I1;0;0Þ

	 4p2e5x2;i	1I0;2;0 þ faLaðbX i	1; ti	1Þ þ ð1	 aÞLaðeX i; tiÞg
h3

6
;

~x2;i ¼ x2;i	1 þ 4p2ðe4I1 	 e5x1;i	1I2Þ 	 4p2e5x2;i	1I0;2 þ aðbX i	1; ti	1Þh
	 8p3e1e4I1;0 	 8p3e1e54x1;i	1I2;0 þ fbLaðbX i	1; ti	1Þ þ ð1	 bÞLaðeX i; tiÞgh2=2:

ð49Þ
As one can see, only three third level integrals need to be approximately modeled while implementing

HSNM. These are I1,0,0, I2,0,0 and I0,2,0. The procedure to do this has already been dealt with in detail

and hence is not repeated here. As was mentioned previously, SHS is no better than the stochastic Euler

scheme (SES) in the present case. The explicit stochastic map for Eq. (47) based on SES is given by:
x̂1;i ¼ x1;i	1 þ x2;i	1h;

x̂2;i ¼ x2;i	1 þ 4p2ðe4I1 	 e5x1;i	1I2Þ þ aðx1;i	1; x2;i	1; ti	1Þh:
ð50Þ
In Figs. 9–11, displacement and velocity history plots via HSNM, LSNM and SES are shown for weak,

medium and strong multiplicative noise intensities, while holding the additive noise intensity constant at
low, medium and strong levels. Treating the results via HSNM as the reference (since this scheme is by

far the most accurate), it is seen that while LSNM works reasonably well for weak and medium multipli-

cative noise intensities, it fares rather poorly for strong multiplicative intensities. The explicit SES scheme

(having the same error order as the SHS for the present problem), on the other hand, behaves in a highly

unstable manner and simply becomes unbounded within a short interval even for a low multiplicative noise

intensity.

Even though more accurate, from the computational point of view HSNM is considerably slower than

LSNM. One therefore sees that a certain amount of judgment, mostly based on an extensive numerical
investigation, has to be exercised in deciding about the kind of stochastic Newmark algorithm to be applied

to a given system.

Example 3. As a third example, consider a hardening Duffing oscillator under filtered white noise

represented by the following stochastic differential equations (SDE-s).
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Response histories under combined weak-intensity additive and weak-intensity multiplicative noise excitations via LSNM,

and Euler method: e1 = 0.25, e2 = 1.0, e3 = 41.0, e4 = 0.1, e5 = 0.1, a = 0.5, b = 0.5.
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Fig. 10. Response histories under combined weak-intensity additive and medium-intensity multiplicative noise excitations via LSNM,

HSNM and Euler method: e1 = 0.25, e2 = 1.0, e3 = 41.0, e4 = 0.1, e5 = 0.5, a = 0.5, b = 0.5.
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Fig. 11. Response histories under combined weak-intensity additive and high-intensity multiplicative noise excitations via LSNM,

HSNM and Euler method: e1 = 0.25, e2 = 1.0, e3 = 41.0, e4 = 0.1, e5 = 1.5, a = 0.5, b = 0.5.
€xþ 2pe1 _xþ 4p2e2ð1þ x2Þx ¼ 4p2e3 cosð2ptÞ þ gðtÞ; ð51aÞ

€g þ 2nx _g þ x2g ¼ 4p2e4 _W 1; ð51bÞ

where, n and x in Eq. (51b) are damping coefficient and natural frequency respectively.

The SDE-s may be more properly written in the following incremental state-space form:
dx1ðtÞ ¼ x2ðtÞdt;
dx2ðtÞ ¼ ð	2pe1x2 	 4p2e2ð1þ x21Þx1 þ 4p2e3 cosð2ptÞ þ gðtÞÞdt;
dg1ðtÞ ¼ g2ðtÞdt;
dg2ðtÞ ¼ ð	2nxg2 	 x2g1Þdt þ 4p2e4 dW 1ðtÞ:

ð51cÞ
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Fig. 12. Response histories under a low additive filtered white noise excitation via LSNM and SHS method: e1 = 0.25, e2 = 1.0,

e3 = 0.0, e4 = 0.5, a = 0.5, b = 0.5.
Using Eqs. (10) and (11) with n = 2, one obtains the following lower order Newmark approximationeX ¼ f~xð1Þ1;i ;~x
ð2Þ
1;i ;~x

ð1Þ
2;i ;~x

ð2Þ
2;i g

T
for the desired solution bX ¼ fxð1Þ1;i ; x

ð2Þ
1;i ; x

ð1Þ
2;i ; x

ð2Þ
2;i g

T
:

~xð1Þ1;i ¼ xð1Þ1;i	1 þ xð1Þ2;i	1hþ aað1ÞðbX i	1; ti	1Þ
h2

2
þ ð1	 aÞað1ÞðeX i; tiÞ

h2

2
; ð52aÞ

~xð1Þ2;i ¼ xð1Þ2;i	1 þ bað1ÞðbX i	1; ti	1Þhþ ð1	 bÞað1ÞðeX i; tiÞh; ð52bÞ

~xð2Þ1;i ¼ xð2Þ1;i	1 þ xð2Þ2;i	1hþ 4p2e4I1;0 þ aað2ÞðbX i	1; ti	1Þ
h2

2
þ ð1	 aÞað2ÞðeX i; tiÞ

h2

2
; ð52cÞ

~xð2Þ2;i ¼ xð2Þ2;i	1 þ 4p2e4I1 þ bað2ÞðbX i	1; ti	1Þhþ ð1	 bÞað2ÞðeX i; tiÞh ð52dÞ
where,
að1ÞðbX ; tÞ ¼ 	2pe1x
ð1Þ
2 	 4p2e2ðxð1Þ1 þ xð1Þ

3

1 Þ þ 4p2e3 cosð2ptÞ þ xð2Þ1 ; ð52eÞ

and,
að2ÞðbX ; tÞ ¼ 	2nxxð2Þ2 	 x2ðxð2Þ1 Þ: ð52fÞ

Displacement and velocity plots (Eq. (51a)) have been obtained from Figs. 12–14 with increase in addi-

tive intensity via LSNM and SHS. Phase plots have been obtained in Fig. 15 for one medium (e4 = 5.0) and

the other strong (e4 = 20.0) intensity additive noise. Both the results are in good agreement for all the re-

sponse plots.
3. Moment equations for linear systems

In this section, the LSNM maps for displacement and velocity have been extended for linear MDOF

dynamic structural systems to compute the mean square response in a direct way without a resort to expen-

sive Monte Carlo Simulation (MCS).
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Fig. 13. Response histories under a medium additive filtered white noise excitation via LSNM and SHS method: e1 = 0.25, e2 = 1.0,

e3 = 0.0, e4 = 5.0, a = 0.5, b = 0.5.
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Fig. 14. Response histories under a strong additive filtered white noise excitation via LSNM & SHS method: e1 = 0.25, e2 = 1.0,

e3 = 0.0, e4 = 20.0, e5 = 0.0, a = 0.5, b = 0.5.
3.1. Formulation of the moment equations

Thus, consider the governing equation in matrix form for a linear n-DOF system:
M €X þ C _X þ KX ¼
Xq
r¼1

rðjÞ
r ðtÞ _W rðtÞ þ F eðtÞ; j ¼ 1; 2; . . . ; n; ð53Þ
Pq
r¼1r

ðjÞ
r ðtÞ _W rðtÞ and Fe(t) denote input dynamic stochastic excitation vector and an external deterministic

force vector respectively. Let the displacement vector be denoted as X 1 ¼ fxðjÞ1 j j ¼ 1; 2 � � � ngT and the

velocity vector be denoted as X 2 ¼ fxðjÞ2 j j ¼ 1; 2 � � � ngT. M,C,K are system (globally assembled) mass,

damping and stiffness matrices respectively. Via a suitable arrangement of the Newmark displacement
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and velocity maps for the lower order case (see Eqs. (10) and (11) without the remainder terms), one obtains

after some algebraic manipulations:
AeX i ¼ F e
bX i	1 þ C1 þ C2; ð54Þ
where
bX ¼
X 1

X 2

� �
and eX ¼

eX 1eX 2

( )
; ð55aÞ

F eðtÞ ¼ ff ðjÞ
e ðtÞ j j ¼ 1; 2 � � � ngT ð55bÞ

A ¼ M þ ð1	 aÞ h
2

2
K ð1	 aÞ h

2

2
C

ð1	 bÞhK M þ ð1	 bÞhC

24 35; ð55cÞ

B ¼ M 	 a
h2

2
K hM 	 a

h2

2
C

	bhK M 	 bhC

24 35; ð55dÞ

C1 ¼
Pq

r¼1r
ðjÞ
r I r0Pq

r¼1r
ðjÞ
r I r

( )
jj¼1;2���n

; ð55eÞ

C2 ¼ ð1	 aÞ h
2

2
F eðtiÞ

ð1	 bÞhF eðtiÞ

8<:
9=;þ a

h2

2
F eðti	1Þ

bhF eðti	1Þ

8<:
9=;: ð55fÞ
Post-multiplying both sides of Eq. (54) with their respective transposed vectors and taking the ensemble

averages, the Newmark map for the co-variance matrix of the system may be derived as follows:
Ri ¼ N 3Ri	1N 4 þ NSi	1N 2 þ N 1Si	1N 8 þ N 9C
T
1;i	1N 2 þ N 10; ð56Þ



where,
R ¼ eX eX T
; S ¼ C1C

T
1 ;

N 1 ¼ A	1; N 2 ¼ ðATÞ	1
; N 3 ¼ N 1F e; N 4 ¼ F T

e N 2; N 5 ¼ C2; N 6 ¼ CT
2 ;

N 7 ¼ C2C
T
2 ; N 8 ¼ N 6N 2; N 9 ¼ N 1N 5; N 10 ¼ N 1N 7N 2:
In Eq. (56), R stands for co-variance matrix of displacement and velocity vectors and S stands for co-

variance matrix of stochastic load vector evaluated at the end of the previous time step.

3.2. Applications to MDOF systems

Consider a beam-column element with six degrees of freedom as shown in Fig. 16.

The nodal displacement for the member �1–2� shown in Fig. 16 can be represented as:
fu1v1h1u2v2h2gT ¼ fx11x21x31x12x22x32g
T
:

In general, for a beam element i 	 j, the nodal displacement vector is given by:
xðeÞ1 ¼ ½xð3i	2Þ
1 xð3i	1Þ

1 xð3iÞ1 xð3j	2Þ
1 xð3j	1Þ

1 xð3jÞ1 �T:

Similarly, the element nodal velocity vector is given by:
xðeÞ2 ¼ ½xð3i	2Þ
2 xð3i	1Þ

2 xð3iÞ2 xð3j	2Þ
2 xð3j	1Þ

2 xð3jÞ2 �T: � �

The joint displacement and velocity vector is given by bX ðeÞ

¼ X 1

X 2
.

The element equations are first formulated in the element coordinate system, and then transformed to

the global coordinate system by standard procedure before element assemblage. Transformation of dis-
placement and velocity parameters at nodes j from element coordinates to global coordinates can be per-

formed by standard transformation matrix given by:
T ¼
t 0

0 t

� �
6�6

;

where
t ¼
cos h 	 sin h 0

sin h cos h 0

0 0 1

264
375;
and h is the angle of inclination of the local axis in an anticlockwise sense as positive angle from the global

X-axis (Fig. 16).
u2,fx2

u1,fx1

v2,fy2

θ1,m1

θ2,m2

1

2

v1,fy1

X

Y

θ

Fig. 16. Beam element in local co-ordinate (DOF per node = 3), X and Y correspond to global direction.



3.3. Element matrices

The element matrices required are stiffness matrix k(e), mass matrix m(e), and damping matrix c(e). The

element stiffness matrix is formulated by superimposing the bending stiffness matrix kðeÞb and geometric stiff-

ness matrix kðeÞg of the basic beam element and the stiffness matrix kðeÞm of the linear bar element. The element

mass matrix is obtained by superimposing mðeÞ
t and mðeÞ

r the consistent mass matrices of the basic beam ele-
ment for lateral translational inertia and rotational inertia, respectively, and mðeÞ

m the consistent mass matrix

of the linear bar element. These matrices are given as follows.

(a) Bending stiffness matrix kðeÞb :
kðeÞb ¼ EI

L3

12 6L 	12 6L
6L 4L2 	6L 2L2

	12 	6L 12 	6L
6L 2L2 	6L 4L2

2664
3775:
(b) Geometric stiffness matrix kðeÞg :
kðeÞg ¼ fx2
30L

36 3L 	36 3L
3L 4L2 	3L 	L2

	36 	3L 36 	3L
3L 	L2 	3L 4L2

2664
3775:
(c) Axial stiffness matrix kðeÞm :
kðeÞm ¼ AE
L

1 	1

	1 1

� �
;

where L is the initial length of the beam axis, EI is flexural rigidity. fx2 is the axial nodal force at node

2, and AE is the axial rigidity. The degrees of freedom as relevant to the construction of kb and kg are

ub and those for constructing km are um. The vectors ub and um are given by: ub = {v1 h1 v2 h2}
T

and um = {u1 u2}
T with reference to Fig. 16.

(d) Consistent mass matrix for lateral translation mðeÞ
t :
mðeÞ
t ¼ qAL

420

156 22L 54 	13L
22L 4L2 13L 	3L2

54 13L 156 	22L
	13L 	3L2 	22L 4L2

2664
3775:
(e) Consistent mass matrix for rotation mðeÞ
r :
mðeÞ
r ¼ qI

30L

36 3L 	36 3L
3L 4L2 	3L 	L2

	36 	3L 36 	3L
3L 	L2 	3L 4L2

2664
3775:
(f) Consistent mass matrix for axial translation mðeÞ
m :
mðeÞ
m ¼ qAL

6

2 1

1 2

� �
;

where L is the undeformed length of beam axis; qA and qI are inertia constants and are defined as

qA ¼
R
AqdA and qI ¼

R
Aqy

2 dA where q is the mass density, y is the distance from the axis of centroid

to the an infinitesimal area dA on the cross section.



(g) Rayleigh Damping matrix c(e):

Cij = a0[Mij] + a1[Kij], a0 and a1 are proportionality constants.

3.4. Numerical results and discussion
Example 4. An SDOF system:

Consider an SDOF linear system given by its equation of motion as:
(

€X þ 2xn _X þ x2X ¼ _W ðtÞ: ð57Þ
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Fig. 17. Variance of displacement response of linear oscillator: x = 1.0; (a) n = 0.02, (b) n = 0.05.
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Fig. 18. Variance of velocity response of linear oscillator: x = 1.0; (a) n = 0.02, (b) n = 0.05.
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Fig. 19. Covariance response of displacement and velocity of linear oscillator: x = 1.0 rad/s; (a) n = 0.02, (b) n = 0.05.
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Fig. 20. Variance and covariance response of a 2-DOF system: (a) n = 0.01, (b) n = 0.05.
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Fig. 22. Displacement response at the free end in axial and vertical direction without damping: (a) Without axial shortening and (b)

with axial shortening.
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(a) Without axial shortening and (b) with axial shortening.



Exact solutions for the transient displacement and velocity variance functions for the above equation

had been reported by Caughey and Stumpf [3]. The variance and covariance evolutions of displacement

and velocity have presently been obtained through the present method (SNM) and plotted in Figs. 17–

19. The results have been compared with exact solutions for two typical values of n = 0.02, n = 0.05 and

for a fixed x = 1.0. The results are in very good agreement with each other.

Example 5. A 2-DOF system:

Consider a two-degree-of freedom linear system modeled by the vector equations of motion:
Fig. 24

dampi
m1 0

0 m2

� �
€X 1

€X 2

( )
þ

c1 þ c2 	c2
	c2 c2

� �
_X 1

_X 2

( )
þ

k1 þ k2 	k2
	k2 k2

� �
X 1

X 2

� �
¼

F 21

F 22

� �
: ð58Þ
The system parameters are: m1 = 1.0 kg; m2 = 0.1 kg; k1 = 1.0 N/m; k2 = 0.1 N/m; n = 0.05.

The excitations are:
F 21 ¼ ½expð	0:1tÞ 	 expð	1:5tÞ�W 21;

F 22 ¼ 0:1F 21
where W21 is a Gaussian white-noise process.
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The variance and covariance results for the response variables of the 2-DOF system (Eq. (58)) have been

obtained via LSNM for two damping values of 1% and 5% and plotted in Fig. 20. The results match well

with the reported results of Masri [30] and To and Orisamolu [31].

Example 6. A cantilever beam shown in Fig. 21 is analysed for response under an axial deterministic load-
ing and a vertical stochastic load. The material and geometric properties are as shown in the figure.

The example illustrates the application of stochastic Newmark method to a simple multi-dimensional

problem having total degree of freedom equal to 6. However with fixed support condition at the node

�1�, there are only 3 DOF-s to be determined at node �2�. As a result, the dimension of the problem is
n = 3. There are three displacements and three velocity components respectively denoted as (u,v,h)T and

ð _u; _v; _hÞT at node 2. In Fig. 22, displacement response plots at the free end of the cantilever displacement

beam in axial and lateral direction for two different cases, with or without the effects of axial shortening

are shown without damping effects. In this example, the geometric stiffness accounts for axial shortening
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Fig. 25. Variance and covariance of displacement and velocity in the vertical direction at the free end of cantilever beam with damping

(a0 = 0.05,a1 = 0.05).



in the beam element. Considering viscous damping of the system with assumed proportionality constants a0
and a1 as 0.05 each, similar displacement and velocity response at the free end in axial and vertical direction

for both the cases (with and without the effects of axial shortening) are shown in Fig. 23. Variance and

covariance plots for displacement and velocity in the vertical direction at the free end of the cantilever beam

are shown in Figs. 24 and 25 with and without damping respectively. It is observed that displacements and
velocity variance in the vertical direction (corresponding to stochastic load) of the cantilever beam grows

with time when there is no damping in the system. However, with introduction of small damping in the

system, variance bounds are formed, as expected.
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Fig. 28. Variance and co-variance at nodes 5 and 6 in X-direction.
Example 7. For the shear frame shown in Fig. 26, the following are the geometric and material properties:

Column C.S = 0.0625 m2, Column M.I = 0.0004 m4, Beam C.S = 0.125 m2, Beam M.I = 0.003 m4,

E = 3.5 · 109 kg/m2, Sp. Weight = 2500 kg/m3.

The frame under consideration in Fig. 26(a) is subjected to horizontal ground acceleration modeled as a

non-stationary stochastic process. The record of the ground acceleration is shown in Fig. 26(b). The

ground acceleration is modeled as the product of modulated white noise and an enveloping function c(t)
[17] shown in the diagram. The displacement and velocity plots as well as their variance and co-variance

plots in axial direction (X-axis of frame) are shown from Figs. 27 and 28 for two typical nodes 5 and 6 of

the frame. The proportionality constants a0 and a1 are assumed to be 0.05 in the calculation of Rayleigh

damping matrix. The example further illustrates the application of LSNM to MDOF systems for response

calculations.
4. Concluding remarks

A new family of stochastic Newmark algorithms for direct time integration of engineering dynamical

systems driven by additive, multiplicative or filtered white noise processes (defined as formal derivatives
of Gauss–Markov Wiener processes) is derived in this Paper. The basis of this new development is a

two-parameter implicit stochastic Taylor expansion for both displacement and velocity components. Given

a time step size, h, the displacement and velocity components are expanded up to O(h2) and O(h) respec-

tively in the lower order scheme and up to O(h3) and O(h2) in the higher order scheme. While both lower

and higher order Newmark maps are readily adaptable for path wise solutions of linear and non-linear

multi-degree-of freedom (MDOF) stochastic engineering systems, far less number of random variables need

to be modelled in the lower order method, thereby making it computationally faster. The higher order

method, on the other hand, is more accurate and in certain cases, especially for non-linear dynamical sys-
tems under multiplicative noise inputs, yields conspicuously more accurate results. Rigorous estimates of

local and global error orders in displacement and velocity components have been included in the Paper.

A detailed discussion on the exact or approximate modelling of the MSI-s has also been provided. A host

of numerical illustrations on the application of these schemes for pathwise integration of a non-linear hard-

ening Duffing oscillator under additive, multiplicative and filtered white noise excitations has been included.



Some of these results, wherever appropriate, have been compared with some other available stochastic inte-

gration schemes.

Implementation of the stochastic Newmark integration technique based on Ito–Taylor expansion re-

quires computation of MSI-s which is an involved task, particularly for higher order schemes. This encour-

ages development of another single step alternative, wherein one can avoid or drastically reduce the
computation of MSI-s. Such a stochastic integration scheme known as �Locally Transversal Linearization

(LTL)� method has been developed and will be discussed in another paper.
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Appendix A. A brief introduction to Ito’s formula

A.1. Wiener processes

A q-dimensional Wiener process {Wr(t)jr = 1, . . ., q} is a vector stochastic process with the following

properties:

1. Normal increments: Wr(t) 	Wr(s) has normal distribution with mean zero and variance (t 	 s) for every

r 2 [1,q].

2. Independence of increments: Wr(t) 	Wr(s) is independent of the past, i.e., of Wr(u), u 6 s < t for every

r 2 [1,q].

3. Continuity of paths: Wr(t,x) is a continuous function of time t for every realization x and for every

r 2 [1,q] (x is an element of the event space X).

4. Any two Wiener processes Wr(t) and Wl(t) are mutually independent stochastic processes for
r5 l, r, l 2 [1,q].
A.2. Ito Integral

Let 0 ¼ tN0 < tN1 < � � � < tNN ¼ T be a partition of the interval [0,T] such that dn ¼ maxi2½0;N	1�ðtNiþ1 	 tNi Þ !
0 as N! 1 and X(t) be a stochastic process. Then the Ito integral

R T
0
X ðtÞdW rðtÞ is defined as:
Z T

0

X ðtÞdW rðtÞ ¼ lim
dN!0
N!1

XN	1

i¼0

X ðtNi ÞðW rðtNiþ1Þ 	 W rðtNi ÞÞ: ðA:1Þ
For instance, one may readily show that
Z T

0

W rðtÞdW rðtÞ ¼
1

2
ðW 2

r ðT Þ 	 T Þ: ðA:2Þ
In defining the Ito integral in Eq. (A.1), attention is restricted to the class of predictable stochastic pro-

cesses X(t),t 2 [0,T] such that:
Z T

0

X 2ðtÞdt < 1 almost surely ðA:s:Þ: ðA:3Þ



Moreover, the process X(t) is assumed to be Ft measurable, where Ft is the increasing family of r-alge-
bras generated by {Wr(s)js 2 [0, t);r 2 [1,q]}. It may be be shown [5] that the Ito integral is an N(0,r) ran-
dom variable such that:
r2 ¼ Var

Z T

0

X ðtÞdW rðtÞ
� �

¼
Z T

0

E½X 2ðtÞ�dt: ðA:4Þ
A.3. Quadratic variation

Given a partition ftNi ji 2 ½0;N �g of the interval [0, t] as before, the quadratic variation of a process X(t) is
defined as:
½X ;X �ðtÞ ¼ lim
N!1
dN!0

XN	1

i¼0

jX ðtNiþ1Þ 	 X ðtNi Þj
2
; ðA:5Þ
where the above limit is taken in probability. For instance, one may show that
½W r;W r�ðtÞ ¼ t; ðA:6:1Þ

and,
 Z t

0

X ðsÞdW rðsÞ;
Z t

0

X ðsÞdW rðsÞ
� �

ðtÞ ¼
Z t

0

X 2ðsÞds: ðA:6:2Þ
The above two equations provide an amazing and counter-intuitive result in the theory of stochastic pro-

cesses. For instance, from an inspection of the left hand side of Eq. (A.6.1), one would normally expect it to

be a random variable (for a given t). But, it turns out that it is indeed a deterministic number. It is also
interesting to note that the quadratic variation of a differentiable and bounded process (as generally

encountered in deterministic dynamics of many engineering systems) over any finite time interval is identi-

cally zero. For instance, the quadratic variation of each (complex valued) scalar function

XmðtÞ ¼ expð
ffiffiffiffiffiffiffi
	1

p
mtÞ of the Fourier basis set {Xm(t),m 2 Z} in the Hilbert space of continuous and

bounded functions is zero. This is probably the most conspicuous difference of a stochastic process from

a deterministic (non-stochastic) one.
A.4. Stochastic differential equations (SDE-s) and Ito’s formula

Consider the vector stochastic process X(t) 2 Rn governed by the SDE:
dX ðtÞ ¼ aðt;X Þdt þ rðt;X ÞdW ðtÞ; ðA:7Þ
where W(t) 2 Rq is a q-dimensional vector Wiener process, r(t,X) 2 Rn·q is the diffusion matrix and

a(t,X) 2 Rn is the drift vector. The SDE (A.7) is expressed in an incremental (and not in a differentiated)

form as W(t) is not a differentiable vector stochastic process (with respect to time). Denoting the ith and
jth scalar component processes of the vector process X(t) 2 Rn as Xi(t) and Xj(t) respectively, the differential
quadratic variation may be shown to be:
d½X i;X j�ðtÞ ¼ Cij dt; i; j 2 ½1; n�; ðA:8Þ



where
fC�n�n ¼ ½r�n�q½r�
T

q�n ðA:9Þ
with the superscript �T� denoting matrix transposition.

Let f(X1,X2, . . ., Xn) be a C
2 function. Then f(X1,X2, . . ., Xn) is also an Ito process, whose stochastic dif-

ferential is given by the Ito formula:
df ðX 1ðtÞ;X 2ðtÞ; . . . ;XnðtÞÞ ¼
Xn
i¼1

o

oX i
f ðX 1ðtÞ;X 2ðtÞ; . . . ;XnðtÞÞdX iðtÞ

þ 1

2

Xn
i¼1

Xn
j¼

o2

oX ioX j
f ðX 1ðtÞ;X 2ðtÞ; . . . ;XnðtÞÞd½X i;X j�ðtÞ: ðA:10Þ
It is of interest to observe that for a deterministic and differentiable vector process X(t), one has

d[Xi,Xj](t) = 0 and thus Ito�s formula reduces to the well-known relation for the total derivative:
df
dt

¼
X
i

of
oX i

_X i: ðA:11Þ
Appendix B. The stochastic Taylor expansion

To start with, it is instructive to derive the deterministic form of Taylor�s expansion. Let X(t) 2 Rn be a
deterministic and sufficiently differentiable process governed by the ODE-s:
dX ðtÞ
dt

¼ _X ðtÞ ¼ aðt;X ðtÞÞ: ðB:1Þ
Let f(t,X) be a scalar or a vector function (assumed to be sufficiently smooth with respect to its argu-

ments), so that one may write:
d

dt
f ðt;X ðtÞÞ ¼ of

ot
þ
Xn
i¼1

of
oX i

aiðt;X Þ: ðB:2Þ
Thus one has:
f ðt þ h;X ðt þ hÞÞ ¼ f ðt;X Þ þ
Z tþh

t
Lf ðs;X ðsÞÞds; ðB:3Þ
where the operator L is defined as:
L ¼ o

ot
þ
Xn
i¼1

aiðt;X Þ o

oX i
: ðB:4Þ
Now, letting f(t,X(t)) = X(t), one immediately has from Eqs. (B.3) and (B.4):
X ðt þ hÞ ¼ X ðtÞ þ
Z tþh

t
aðs;X ðsÞÞds: ðB:5Þ



Further, using Eq. (B.3) for a(s,X(s)) in Eq. (B.5), one obtains:
X ðt þ hÞ ¼ X ðtÞ þ
Z tþh

t

�
aðt;X ðtÞÞ þ

Z s

t
Laðs1;X ðs1ÞÞds1

�
ds

¼ X ðtÞ þ aðt;X ðtÞÞhþ
Z tþh

t
ðt þ h	 sÞLaðs;X ðsÞÞds: ðB:6Þ
Applying Eq. (B.3) once more to La(s,X(s)) in Eq. (B.6), the following expression is readily derived:
X ðt þ hÞ ¼ X ðtÞ þ aðt;X ðtÞÞhþ Laðt;X ðtÞÞ h
2

2
þ
Z tþh

t

ðt þ h	 sÞ2

2
L2aðs;X ðsÞÞds: ðB:7Þ
Continuing in this way m times (i.e., by iterating m times with the formula (B.3) on the integral expan-

sion (B.5)), one arrives at the well-known Taylor expansion of X(t + h) in powers of h in the neighborhood

of t:
X ðt þ hÞ ¼ X ðtÞ þ aðt;X ðtÞÞhþ Laðt;X ðtÞÞ h
2

2
þ � � � þ Lm	1aðt;X ðtÞÞ h

m

m!

þ
Z tþh

t

ðt þ h	 sÞm

m!
Lmaðs;X ðsÞÞds: ðB:8Þ
Given a system of SDE-s, the corresponding expansion of the stochastic process X(t) in a neighborhood

of t is referred to as the stochastic Taylor expansion. Alternatively, such an expansion is also called the Ito–

Taylor (or Stratonovich–Taylor) expansion depending upon the type interpretation of stochastic integral

being employed. In this paper, use has only been made of the Ito–Taylor expansion and thus the derivation

of such an expansion is briefly described here. Now consider the solution X(t) 2 Rn of the system of SDE-s

(A.7), which may be written in the following alternative form:
dX ðtÞ ¼ aðt;X Þdt þ
Xq
r¼1

rrðt;X ÞdW rðtÞ; ðB:9Þ
where the vector function rr(t,X):R · Rn! Rn is the rth column of the diffusion matrix [r]n·q. In what fol-

lows, the scalar diffusion function rðjÞ
r ðt;X Þ would denote the [j, r]th element of the matrix [r]n·q. If f(t,X)

sufficiently smooth scalar or vector function, then by Ito�s formula (A.10) and the formula for the differen-

tial quadratic variation (A.8), one immediately gets for t0 6 t 6 s:
f ðs;X ðsÞÞ ¼ f ðt;X Þ þ
Xq
r¼1

Z s

t
Krf ðs1;X ðs1ÞÞdW rðs1Þ þ

Z s

t
Lf ðs1;X ðs1ÞÞds1: ðB:10Þ
The above equation may therefore be thought of as an integral form of Ito�s formula. Similar to the

deterministic case, the above equation provides a formula for the stochastic increment Df = f(s,X(s)) 	
f(t,X(t)) of the function f, where the operators Kr and L are given by:
Kr ¼
Xn
j¼1

rðjÞ
r

o

oX j
;

L ¼ o

ot
þ
Xn
j¼1

ajðt;X Þ
o

oX j
þ 1

2

Xq
r¼1

Xn
i

Xn
j¼1

rðiÞ
r rðjÞ

r

o2

oX ioX j:

ðB:11Þ



Now applying Eq. (B.10) recursively to Krf(s1,X(s1)) and Lf(s1,X(s1)), one has:
f ðt þ h;X ðt þ hÞÞ ¼ f ðt;X Þ þ
Xq
r¼1

Krf
Z tþh

t
dW rðsÞ þ Lf

Z tþh

t
ds

þ
Xq
r¼1

Z tþh

t

Xq
p¼1

Z s

t
KpKrf ðs1;X ðs1ÞÞdW pðs1Þ

 !
dW rðsÞ

þ
Xq
r¼1

Z tþh

t

Z s

t
LKrf ðs1;X ðs1ÞÞds1

 !
dW rðsÞ

þ
Xq
r¼1

Z tþh

t

Z s

t
KrLf ðs1;X ðs1ÞÞdW rðs1Þ

 !
ds

þ
Z tþh

t

Z s

t
L2f ðs1;X ðs1ÞÞds1

 !
ds: ðB:12Þ
Just as in deterministic Taylor expansion, if Ito�s formula (B.10) is applied to expand

KpKrf(s1,X(s1)),LKrf(s1,X(s1)), and KrLf(s1,X(s1)), in Eq. (B.12), then the following expression results:
f ðt þ h;X ðt þ hÞÞ ¼ f ðt;X Þ þ
Xq
r¼1

Krf
Z tþh

t
dW rðsÞ þ Lf

Z tþh

t
ds

þ
Xq
r¼1

Xq
i¼1

KiKr

Z tþh

t

Z s

t
dW rðs1ÞdW iðsÞ

þ
Xq
r¼1

Xq
i¼1

Xq
j¼1

KjKiKr

Z tþh

t

Z s

t

Z s1

t
dW jðs2ÞdW iðs1ÞdW rðsÞ

þ
Xq
r¼1

KrLf
Z tþh

t

Z s

t
dW rðs1Þdsþ

Xq
r¼1

LKrf
Z tþh

t

Z s

t
ds1 dW rðsÞ

þ L2f
Z tþh

t

Z s

t
ds1 dsþ q; ðB:13Þ
where q is the set of remainder terms. When written out in long hand, these terms contain expressions

involving multiple integrals of third and fourth order compositions of operators Kr and L. Still higher order

expansions (as in the higher order Newmark method described in this paper) may be derived by iterating

the error terms q using Eq. (B.10), i.e., the integral form of Ito�s formula. It is now clear that a distin-
guishing feature of the Ito–Taylor expansion vis-à-vis the deterministic Taylor expansion is that the

former has multiple integrals of the forms
R tþh
t

R s
t dW rðs1ÞdW iðsÞ,

R tþh
t

R s
t

R s1
t dW rðs12ÞdW iðs1ÞdW jðsÞ,R tþh

t

R s
t dW rðs1Þds etc. These integrals involve increments of scalar Wiener components dWr(t) and hence

are referred to as multiple stochastic integrals (MSI-s).
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