
Security management architecture for access control
to network resources

G.Prem Kumar
P. Ve n ka ta ra m

Indexing terms: Network security management, Access control techniques, User access control, Access control to network resources

Abstract: Threats to network resources increase
exponentially with the growth of the network/
users and the technological developments. In the
paper, the authors describe a security
management framework for access control to the
network resources. They deal with this in three
steps. In the first part, user access control to a
given network is discussed. In the second part,
access control to the network resources, both by
self-usage and delegation, revocation of
delegation is presented. The third part explains
the access control to the resources belonging to
the other networks. A neural network based
model is developed for intrusion detection to
overcome most of the limitations of the existing
systems.

1 Introduction

As the network resources and their availability
increase, so does the threat for the resources to be
misused by both legitimate and unauthorised users.
From the network management point of view, security
management [1-3] plays a vital role in maintaining the
privacy and integrity of the network. The types of
threats in access control to network resources range
from masquerade (or false claim of the origin), illegal
associations, nonauthorised access, denial of service,
repudiation (or false denial of performing the task) and
Trojan horses. Two major ways of solving the security
management problem are preventative measures by
employing strong underlying security architecture, and
reactive measures by using intrusion detection
techniques.

This paper focuses on the preventative measures of
security management by proposing efficient security
protocols and on reactive measures by developing a
neural network based intrusion detection model. The
proposed preventative approach is dcscribed in three
parts (see Fig. 1). The first part of it is the user access
control to the network (UA-protocol), which deals with
providing access to the network for authorised users.

This part is mainly concerned about user login from
any host in the network to any other host within the
network. In the second part, access control to the
services is modelled as a client-server model (CS-
protocol). In the CS-protocol, each of the services
offered by the network has been modelled as a specific
server and the user approaches to them as a client.
Access control mechanism is developed for this class of
services is further divided into two parts: a legitimate
user directly accessing the service and a legitimate user
delegating other user(s) of the network to access the
service. We also consider revocation of the delegation.
The third part of the proposed preventative approach
defines the secure access of the resources belonging to
other networks/domains (interdomain protocol or ID-
protocol). In the proposed reactive approach, the
information in the security management information
base (SMIB) is used to identify the intrusion that may
take place and alert the security manager of the
possible event. A neural network based on the
backpropagation is suitably tuned to devise the
intrusion detection system (IDS).

SMA
SMIB

UA-protocol CS-protocol ID-protocol

I 1
self - usage delegation

i

(invocation J (revocation J
Fig. 1
SMA = security management architecture
SMIB = security management information base
UA-protocol = user access protocol
CS-protocol = client-server protocol
ID-protocol = interdomain protocol
IDS = intrusion detection system

Proposed model for network security architecture

2 User access control

Access control mechanisms, which are extensively being
tried, could be either one-way or two-way authenti-
cated. Access control involves two entities (i) identify
and (ii) identifier. Identity is the user who approaches
the access control system and claims to be an author-
ised user of the system. Identifier is the access control
system that authenticates the identity after proper veri-
fication. In one-way authentication mechanism, the

identity has to provide the proof to the identifier that
heishe is the authorised user. On the other hand, in
two-way authentication, both the identity and identifier
have to prove to one another their identity before
access to the device is permitted.

2. I One-way authentication
Access control to thl: Unix kind of system uses one-
way authentication mechanism by means of passwords.
The user supplies the password along with hidher login
identification (id) during the login. The system then
compares the one-way encrypted password with the
stored password and the successful match permits the
login. A drawback with this kind of system is that there
is no method to judge whether the user has logged into
the intended host or not.

2.2 Two-way authentication
In the two-way authentication mechanism, the
identifier poses a challenge to the identity. If the
identity gets convinced with the challenge and trusts
the identifier, it returns a response. On a successful
match with the expezted response, the identifier gives
access to the identity. This method is also known as
challenge-response pair access control. A smart card
can be used to have encrypted and lengthy challenge/
response [4]. On each successful attempt, the sequences
in challenge-response pair are updated at both the
identity and the identifier. Although the challenge-
response pair of authentication mechanism seems to be
foolproof, it has its own limitation in that any user
who possesses the srnart card can have access to the
device without further verification.

To overcome the problems faced by the above
schemes and provide a higher level of security, we pro-
pose a hybrid method for user access to the hosts in a
communication network.

2.3 Proposed method for user access control
We consider a cornrnunication network as a 6 tuple,
(HS, LK, U, LS, S, SM) where HS is a set of hosts, LK
is a set of links connecting the hosts, U is a set of users
(grouped hostwise), LS is a login server (one LS per
each host or only one for the entire network), S is a set
of servers like print server(s), mail server(s), file serv-
er(s), and SM is the security manager to deal with key
distribution and localiinter network security issues.

At the time of login creation, each user is given a
smart card and a password which can be changed on
any successful login. The smart card has a sequence of
words, called challeqzes, whose copies are held sequen-
tially with the login server. The smart card has a pri-
vate key of its own and a public key of the login server,
counterparts of which are held with the LS. We intend
to use the method of public key cryptography for a
higher level of security, details of which can be found
in [S , 61.

Whenever a user u attempts to login, through a host
h to the registered host H, the user provides id and H
to host h. Then smart card (SC) throws a signed chal-
lenge, encrypted with public key of LS, to the host h.
The host h signs and encrypts the message and for-
wards it to the LS on host H. The LS, on verifying the
host h and the smart card, reads the challenge and
compares with the expected challenge of that user. If
the verification succeeds, the LS signs and encrypts the
challenge, along with the one-way encrypted password
of the user. On successfully comparing the challenge,

the smart card prompts the user for password. If the
user password matches with the one sent from the LS,
the smart card sends a (signed and encrypted) message
to the LS (through h) to create a login connection and
concludes the access control phase successfully (see
Fig. 2).

host, h

user

Note that, in the proposed model, the traditional
challenge-response pair access control mechanism is
reversed. In other words, the identity (user) first poses
the challenge to the identifier (login server), since LS
does not know who is the next user going to login. We
call this UA-protocol access control mechanism as
challenge-password pair (CP-pair) based approach.

(i) ‘u + b : { p , , ..., pTt}’ indicates that a is conveying a
set of parameters {p ,} to b, where p i may be one of
messages, addresses, challenge, request, permission, id,
address of the host, password etc.
(ii) ‘a : Action’ indicates that a is performing Action.
(iii) Message,l indicates that the message is
encrypted by the public key of Y and signed by X using
the private key of X . For more details on the syntax
used to describe the protocols in this paper, refer to [7].
UA-protocol
(i) u + h : {id, H }
(ii) SC + h : { (~ h a l l e n g e) ~ ~ I , ~ ~ }

(iii) h -+ LS : {[id, H, (challenge)Sc I , ~ ~] / ; - I , ~ ~ }

(iv) LS : Decrypts and verifies identity of h and SC.
Then compares the challenge with the stored. If the
challenge matches, returns the one-way encrypted pass-
word. Otherwise, sends an abort message
(v) LS -+ h : {[id, H,(challenge, one-way encrypted

(vi) h -+ SC : { (challenge, one-way encrypted pass-

(vii) SC : Decrypts the message from LS. If the chal-
lenge matches, the SC prompts the user for password
by concluding that the host h is trustworthy. Other-
wise, sends an ubovt message
(viii) u -+ SC: {password}
(ix) SC : One-way encrypts the password and if it
matches with the one sent by the LS then updates its
challenge sequence else uborts
(x) SC -+ h : {id, H, (challenge, ‘CREATE’),C-I,~,}
(xi) h + LS . {[id, H, (challenge, ‘CREATE’)S~I,LS]

(xii) LS : Creates a login connection for u at h and
updates the corresponding challenge sequence

No tu t ion :

password)LS ‘ , S C] L S l , k)

word)Ls-l,sc)

I1 ’ LSS

2.4 Analysis of the proposed model
Now, we turn to analyse the proposed protocol.
(i) The length of the challenge posed by the smart card
is generally longer, and thus avoids easy guessing.
(ii) By using the two-way authentication, both the
identity and the identifier are assured that the other is
legitimate.
(iii) Replacing the automated response part of the chal-
lenge-response pair mechanism by password:
(a) will not make any person whoever carries the smart
card as a legitimate user unless helshe knows the pass-
word. This avoids stealing of smart cards.
(b) reduces the hardware meant for response sequence
in the smart card and the memory usage with the login
server. Instead, the password is remembered by the
user and an encrypted version of the password is stored
at the LS.
(iv) If a finite number of challenges are used, the
sequence repeats after all the challenges are posed
which may lead to guessing of the challenges. This can
be avoided by a method proposed in [8] where the used
challenges are modified indefinitely at both identity
and identifier in the same fashion.
(v) Since the challenges are nonrepeating, ‘challenge’ in
Step 5 of the UA-protocol avoids replay of old mes-
sages.
(vi) The use of signed and encrypted messages ensures
privacy and integrity of the message [9].
(vii) The use of passwords along with the challenges
doubly authenticates the legitimate users’ possession of
the smart card.
(viii) LS verifies the trustworthiness of the host h, in
Step 4 of the protocol.
(ix) The case of group-login, where the same id is
shared by many users, can be handled by maintaining
as many challenge sequences with the LS as the
number of smart cards issued for that id. The group-
login id in the protocol is defined as ‘i4 #user’ where
#user is the number given to the group-user.
(x) UA-protocol can be applied to distributed systems.
A login to a distributed system enables the user to
access the entire system of hosts without having to
specify the registered host H.
(xi) Coming to the performance measures of the pro-
posed protocol, probability of false rejection is abso-
lutely zero as it is an electronic access control system
(assuming a lossless underlying network), while the
false acceptance ratio is almost zero since it is tedious
to send a signed-encrypted message twice to the LS.
(Breaking the secrecy of public key cryptography is
notoriously difficult [5] and doing this process twice
further reduces the possibility.)
(xii) All the information, at different stages of the pro-
tocol, regarding any attempt to illegal access is saved in
the security management information base.

3 Client-server protocol

The next part of the preventative approach is to ensure
that the legitimate users only allowed to access various
services within the network. We refer to this as a client-
server model.

We classify client-server model into two categories:
(i) a lcgitimate user directly approaching the server,

user, u server, s

3. I Client-server: self-usage
The proposed client-server model is shown in Fig. 3 . A
user u generates a client process c to get a service by a
server s, owned by w. The servers can be owned by a
single owner or multiple owners and there may be
transfer in ownership of the server but this transfer is
transparent to the client. It is enough if the server
keeps track of its owner(s).

The proposed access control model is based on the
public key cryptography where each of the servers pos-
sess the public and private keys like any other user.
Whenever a client process c is generated to get work
done from a server s, the request with specific require-
ments is forwarded through the host. The server, on
receiving the client’s request, forwards it to its owner w
for the permission. The owner of the service, depending
on the security measures and the capacity of the server,
may give ‘Permission’ to access the service in the form
of a ticket. The ticket is issued to the server if it is a
one-time job or to both: the user and the server, if it
has to be used more than once. In the former case, the
server will directly render the service without informing
the user and in the later case, the client gets the service
on producing the ticket on every occasion.

CS-protocol
(i) u + s : {(Request),-I,,} where Request = {nonce,
period, #times, PersonallProxy, List of Proxies, Any
other options } and nonce is the id of the request.
(ii) s + w : {(Request),l,,}
(iii) w : May allow the use of service or reject the
request. If the service does not involve bulk transfer of
data, GOESTO Step 6 (a). Otherwise, procures the ses-
sion key from SM and sends it to both server and the
user along with the ticket
(iv) w 4 SM : {(nonce, Session=Key_Request),q-l,sM}
(v) SM + w : {(nonce, Session=Key)sM,l,,}
(vi)(a) w + s : {(Permission, Session=Key),i,,y}

.

The protocol proceeds as follows:

SM owner, w

Table 1: Table maintained by the server of the service during CS-protocol

User Nonce Time duration No. of times Proxy/personal Proxy list Any other option

James 34589 tl-tZ(absolute) 2 Proxy Joy, Joe, Urgent

Mary 34690 t5-t6(absolute) 1 Personal - -
Mary

(b) w : If the Requesi is a one-time request, GOESTO
Step 7.
(c) w -+ u : { [(Permis::ion),i,,, Session=Key],,i,,} where
Permission = {u, nonce, period, #times, Personal/
Proxy, List of Proxies, Any other options} and #times
is the number of timeis the service can be offered.
(vii) s : If the Requesi is one-time request then renders
the service and GOESTO Step 9. Otherwise, stores the
Permission and keeps track of it as shown in Table 1.
(viii) (u + s>. : { [(Permission),-i,,~, Current-Request],
I , ~ } where the format of Current-Request is similar to
that of Request indicates its restricted usage and (u +
s>. indicates n messages from u to s.
(ix) (a) s : Renders the service {(Reply),,-I,~} and
GOESTO Step 10 if it is a one-time request or when
the limit exceeds.
(b) s : Updates the Table 1 and further keeps track of
it by awaiting further requests starting from Step 8.
(x) s -+ w : { [(Request),n-i,,~],~-i,,~, Service=Rendered}
where (Request >” indicates II requests served by s.
A few points about the protocol are worth mentioning.
(i) Apart from several intricate details that are incorpo-
rated in our protocol, it differs from Kerberos [12], in
the following ways:
(a) Instead of timestamp, nonce (a unique identifier) is
used and the period is only specified to represent the
permissible usage period subjected to other constraints;
(b) The ticket is issue13 only when the client is going to
use the request more than once or when it is used for
delegation; and
(c) The delegation mechanism is generalised.
(ii) In the protocol, the nonce contained within the
Request is used as id of that process, which is suffi-
ciently long and thus cannot be easily reproduced. If
the nonce already exists with the server, a different
number is substituted and the new nonce is communi-
cated to the client. (The idea here is to reuse the nonce
as the id of the request since it is a unique and long
number.)
(iii) The nonce also !serves to avoid the replay of old
messages.
(iv) The period field in the Request is the time during
which the client is intending to get the service. During
that period, the owner of the service may accept allow-
ing the client, maybe with some other restrictions.
Table 1 specifies one such access control list (ACL).
(v) The period field in the Request specifies the time
duration in which the client can get the service. During
the period, server accepts the client’s request(s) and
maintains it in access control list during the process (as
shown in Table 1).
(vi) If the period is over or the service limit is exceeded,
the request is revoked (as discussed in Section 3.3), the
entry in the ACL is removed and the same will be noti-
fied to the user and the proxies.

3.2 CS-protocol: delegation
The protocol provides the access to the illegitimate
users of the service through the legitimate users. The
basic philosophy is to delegate the work to the illegiti-
mate users. Here, the scheme incorporates the capabil-
ity mechanism by means of delegation.

We propose to use chained delegation. The legitimate
user u, who has the permission from the owner of the
service w to use the server s, delegates the task to a del-
egate d.

(i) u -+ d : {s, ‘Proxy’, [(Permission),-1 ,,
Opti~nal_Session=Key]~-~ d }

(ii) d + s : {u, ‘Proxy’, [(Permission), I , ~ ,
Current=RequestId I \ }
(iii) s : Renders the service to the delegate as in Step 9
of the client-server: self-usage protocol.
The server verifies the Proxies list and permits only
authorised delegates.

3.3 Revocation of delegation
It may be necessary for the user to revoke a delegation.
The protocol provides the revocation procedure for the
purpose.
(i) u + s : {d, ‘Revoke’, [d, nonce, (Permission),-i ?,

Revoke_Request],-i, ,} where Revoke_Request =
{nonce, ReducediRemoved permissions to delegate d) .
(ii) s : Updates the entry corresponding to the delega-
tion in ACL and intimates the delegate of the same.

4 lnterdomain protocol

The interdomain protocol (ID-protocol) uses either
hierarchical or distributed security managers to provide
access control to the services belonging to the other
networks. It is proposed that the security managers of
the networks have a way of communicating messages
in a secure manner among themselves. This could again
be achieved by using the publiciprivate keys of each of
the SMs. Any service access that belongs to a different
network can be requested by the SM of the local net-
work after appropriate authentication of the user or its
client process. Alternatively, any request to access the
remote resource should first exchange the keys and
then use the client-server: self usage protocol, as
described in Section 3.1. But, we prefer to use the SM
to interact with the other domains as the process over-
head is higher in the second method and each client/
user has to exchange the publidprivate keys with the
servers of the other machines and manage them inde-
pendently.

A request or a message that has to be securely sent
from a client in one network to the server in the other
will start by sending a request to the former’s SM to
forward it to the remote server. The local SM (LSM)
then communicates with the remote SM (RSM), in a
suitable way, and requests the service. RSM then runs
it as a client with the server as though it is a local

The protocol proceeds as follows:

request and gets back the reply on the reverse path.
The protocol is shown in Fig. 4.

user, u LS M

Fig.4 ID-protocol

The protocol proceeds as follows:
ID-protocol
(i) u 4 LSM : {‘Remote Request’, s, RSM,

(ii) LSM + RSM : {‘Remote Request’, s,

(iii) The service is accessed replacing, u by RSM, in Cli-
ent-serwr: sev-usage protocol.
(iv) RSM 4 LSM : {‘Remote Request Reply’,

(v) LSM + u : {‘Remote Request Reply’,

(Request)u-~,LSM3

(Request) LSM-I, RSM 3

(Reply)RSM 1,LSMl

(Rep1Y)LSM-l .I
5 Intrusion detection system

As a part of network management, network intrusion
detection has received lot of attention. In this Section,
the second part of the proposed security management
architecture, the reactive approach, namely, intrusion
detection system is discussed. We briefly describe the
existing methods for intrusion detection and then
present a new approach using a neural network.

5. I Prior works
Since one cannot expect any networked system to be
foolproof in spite of so many protocols developed to
keep the resources secure, there is always a necessity to
develop an intrusion detection system that identifies a
possiblc intrusion even before it takes place and stop
such an event [2, 131.

Statistical methods have been used extensively in
intrusion detection systems [11. In this approach, the
user behaviour over time is observed and if the
standard deviation exceeds the expected value (or
mean), it is identified as an intrusion. State transition
analysis is carried out to identify the intrusions in [14].
In the state transition method, the series of events that
would cause an intrusion are represented as states. An
intrusion is reported when the specified events take
place in that particular order until the final state.
Petrinets are used for state transition analysis in [15]
for intrusion detection.

A1 techniques have been widely used in intrusion
detection systems [16]. Rule-based systems have been
used for intrusion detection [1, 171. In rule based sys-
tems, the possible intrusions are coded as ‘if-then’
rules. When all the conditions in the ‘if part of a rule
are matched, ‘then’ part of the rule is ‘fired’ by raising
an intrusion. Intrusion detection based on the time
interval between the successive keystrokes while typing

a known sequence of characters is suggested by using a
multilayer neural network system in [lS] and that based
on fuzzy algorithms in [19]. Few researchers have
attempted to design a neural network based IDS to
predict every next command of the user [20]. This tech-
nique classifies the unpredicted command as an intru-
sion and reports to the security manager to initiate
necessary action.

5.2 Observations from the existing models
A careful study of the existing models on intrusion
detection suggests that:
(i) use of statistical methods to analyse the intrusion on
the exhaustive data is very time consuming for both the
intrusion detection system and the intrusion detection
expert.
(ii) since the users have the tendency to learn or try out
new commands from time-to-time, it may be difficult
to predict a next command in their usage of the net-
work. Adaptation of user fancy and style in the predic-
tion system is a complex task.
(iii) the use of key stroke, based on speed or pressure,
matching for intrusion detection is limited to the user
login in most of the cases. The user speed/pressure to
enter the commands may vary over time which then
may raise false alarms.
(iv) in case of state transition method, if the events do
not take place in sequence, the intrusion cannot be
foreseen until it reaches in the last state of the
intrusion. If all such combinations have to be included
in the state transition diagram, it leads to state
explosion.
(v) in the case of co-operating users or the same user
making an attempt for intrusion at different times in
various steps, it may be difficult to identify the intru-
sion unless the information is collected globally and
tracked.
(vi) hard coding of rules using rule-based systems is not
advisable since no intrusion detection system can be
assumed to be complete and there is always a necessity
to learn new intrusions (rules).

6

To overcome some of the limitations in the existing
models on intrusion detection, we propose a new
approach for IDS that uses a neural network model
based on the backpropagation learning algorithm.

6. I Formal description of the system
A general IDS system can be described to comprise the
users U = { u l , u2, ..., urn], the set of commands exe-
cuted by the users C = {cl, c2, ..., cN}, a finite set of
possible intrusions that can take place I = {i,, i,, ..., ip},
the recognised intrusion sequences R = { I ~ , v2, ..., y4}
and unrecognised intrusion sequence N = { n l , n2, ...,

Further, we classify the commands into two catego-
ries. The first category consists of the commands (C,)
that a single user carries out to cause an intrusion.

Proposed model for intrusion detection

a,).

c1 = {.Z(C)) (1)
where ui(C) is the set of commands that user ui has exe-
cuted, out of the commands C.

The second category comprises the set of commands
carried out by co-operating users (C,) which can lead

to the intrusions. They are collected on the global basis
from the SMIB and not based on the individual user.

c, c c
Every intrusion is either reported from the recognised

set of intrusions or it has to be brought out from yet
unrecognised set of intrusions.

I = R U N (2)
In other words,

I = { d { C h I) l (({ C h I c " ({Chi c
A ((S ' ({ C h H E R) " (d { C h)) E N)))

(3)
where g(.) is a function that associates a set of com-
mands {eh} to a set ol-intrusions.

6.2 Approach
The proposed neural network based IDS model is
developed in two steps. In the first step, the expert
knowledge is captured offline in the form of a set of
rules and then in the second, based on the principle of
induction, the system is allowed to work online to learn
any possible unencountered intrusions. The order in
which the events have taken place has least significance
in the NN-based systems. Thus the events of co-operat-
ing users and the events carried out by a single user at
different instances of 1-ime are handled together to fore-
see the intrusion. The rule-based system, implemented
as a connectionist (a neural network) model, minimises
the search.

6.3 Neural network model
The neural network model devised for intrusion detec-
tion is based on the backpropagation model [21, 221
(see Fig. 5) .

input hidden output
laver laver laver

Fig.5 NN modeljbr IDS

The neural network has an input layer that is
designed to accept the binary inputs, representing the
events of interest (commands {ej} of users {u,,}) those
have appeared in the SMIB.

The output layer of NN is expected to indicate the
possible intrusions.

The N N also has one or more hidden layers depend-
ing on the complexity of the problem (i.e. approximate
number of events of interest, number of rules, and the
number of intrusions). The number of neurons in the
hidden layer also depend on the estimate of the number
of the exemplars probided for training [23].

Each layer of the NN consists of one or more neu-
rons. The output of one layer is fed as the input of the
next. The neurons in one layer are connected to those
in the next with an a.daptive weight. The net input to

the neuron is (hi).

(4)
j

where wii is the weight of the link connecting neuron j
in the preceding layer to the neuron i in the current
layer and inputi is the input from the neuron j . The
input to bias neuron in the preceding layer is set to -1
and the weight is adjustable. Essentially, the weight on
the bias link in the previous layer indicates the thresh-
old of each neuron in the current layer.

The output of each neuron is determined by applying
a transfer function f(.) to the net input to the neuron.
We use the activation function:

The training of the neural network is done in two
passes. The forward pass is used to evaluate the output
of the neural network for the given input with the exist-
ing weights. In the reverse pass, the difference in the
neural network output with the desired output is com-
pared and fed back to the neural network as an error
to change the weights of the neural network.

In the reverse pass, suppose for the particular neuron
i in output layer L, the output is y," while the desired
value is d k . The backpropagated error 6: is:

where hk represents the net input to the ith neuron in
the Lth layer and,f(.) is the derivative off(.).

For layers 1 = 1, ..., (L - l), and for each neuron i in
layer 1 the error is computed using:

f (x) = (1 +e-")-l (5)

6; = f ' (hk)[d ," - yf] (6)

(7)
j

The adaptation of the weight of the link connecting
neurons i of layer I and neur0n.j of layer (1 - 1) is done
using:

where K is the learning constant that depends on the
rate at which the neural network is expected to con-
verge.

This neural network algorithm essentially minimises
the mean square error between the neural network out-
put and the desired output using gradient descent
approach.

The criteria for the neural network to turn from
offline mode to online mode can be one of: (i) when the
desired output is same as the neural network output for
all the training patterns; (ii) when the mean square
error between the neural network output and the
desired output is less than the specified threshold (for
example, when the mean squared error per unit output
is less than 0.01); (iii) when the gradient is sufficiently
small (by definition, the gradient will be zero at the
minimum).
Algorithm intrusion detection
Begin
(i) Construct a neural network with 1, 2, ..., L layers.
And in each layer select number of neurons that suits
the problem [23].
(ii) Set the input of the bias neuron in each layer to -
1 .o.
(iii) wi, = 6 'di, j , a random value in the range (0, 1).
(iv) Choose an input pattern from the set of exemplars
if the IDS is in offline mode. Otherwise, take events of
interest from SMIB as the input.

w!. "3 1 w l . 2.7 + K * 6; * y-' (8)

(v) Propagate the signal forward through the neural
network until the output layer.
(vi) For each of the neuron i in the output layer (layer
L), compute the error:

6: = f’(h,L”,L - YZLI
(vii) For 1 = 1, ..., (L - l), and for each neuron i in
layer I compute the error

3

(viii) Update the weights using:

wt, = wf, + K * 6: * yi-’

where I< is the learning rate.
(ix) If the error in the output layer (Cl[dF - y:]*) is
within permissible limits, switch from offline mode to
online mode of operation.
(x) Repeat by going to Step 4, till IDS is active.
End

7 Experiment with IDS

We demonstrate the features of the proposed IDS with
an example.

Consider a model where the events are collected for
the following three cases:
(i) during the user login
(ii) access to network resources
(iii) access to interdomain resources.
The input corresponding to the first layer neuron is set
to ‘1’ if the event is present and to ‘0’ otherwise.

(i) rloginltelnetiftp is denied for remote connections.
(ii) rloginitelnetiftp is denied since remote host is not
permitted as directed by ietci hosts.deny
(iii) rloginitelnetiftp is denied. (Here, remote host not
denied but the user intrusion attempt has failed.)
(iv) (from root account) cp ibinlsh usrlroot is executed.

The IDS considers the following events:

(root shell is copied to user area.)
(v) (from root account) chvnod 4755 usrlroot is exe-
cuted. (User is permitted to use root shell.)
(vi) usrlroot is executed. (User is running the root shell.)
(vii) command cd to change directory to unrelated
groups.
(viii) attempt is made to delete the files of other users/
area.
(ix) xu succeeded.
(x) su failed.
(xi) printifax is denied to the user.
(xii) printifax is denied to the user as the limit exceeded
their permitted values.

The intrusions are:
(i) remote host attempting a connection.
(ii) unauthorised user of an unauthorised system is
attempting to login.
(iii) root shell is copied.
(iv) root shell is copied and executed.
(v) with proxy root shell, directory is changed.
(vi) with proxy root shell, files are deleted.
(vii) su succeeded, trace subsequent commands.
(viii) su failed, identify the user and the terminal that
initiated su.
(ix) user is denied to access pvintlfax.
(x) user printifax limit is exceeded, initiate the appro-
priate measures.
Table 2 describes 16 events and 10 intrusions of the
IDS with the initial knowledge (in the form of 12 rules)
in a public network.

The commands that fall in the co-operating user
intrusion are the events 4-6. The usage of these
commands is collected globally from SMIB and not
from each user’s record. Where as the other events (1-3
and 7-12) are gathered user-wise and fed as a pattern
to the neural network to evaluate the possibility of any
intrusion.

Table 2: Initial knowledge used by the IDS

S. no.

1.

2.

3.

4.

5.

6.

7 .

8.

9.

10.

11.

12.

Events

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Intrusions

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 3: New rule

S. No. Events Intrusions

13. 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

7. I Illustrative example
Consider S. No. 6. of Table 2. The events 4, 5, 6 i.e.
(cp lbinlsh usrlroot), (chmod 4755 usrlroot) and (usrl
root) are set to ‘1’ and the other events are set to ‘0’.
This raises an intrusion 4: root shell is copied and exe-
cuted. Further, the events specified in s. No. 7 and 8
have more than one intrusion. In case of S. No. 7, the
events 4, 5, 6 and 7 raise intrusions 4 and 5 whereas the
events 4, 5 , 6 and 8 in S. No. 8 raise intrusions 4 and 6.

7.2 Inclusion/dellstion of rules
Let us suppose that the IDS encounters a set of events
that requires a new set of intrusions to be raised. Since
the neural network is being trained in online mode,
such a combination can be incorporated as a new rule
if it occurs often enough. Similarly, if an existing rule
becomes invalid, the neural network unlearns it over-
time.

A neural network rnodel with a few spare input and
output neurons can accommodate new eventslintru-
sions. As shown in Table 2, although there are 12
events and 10 intrusion, we have chosen a neural net-
work with 16 input neurons, 15 output neurons and 6
hidden neurons. To illustrate the inclusion of a new
rule, consider the rule given Table 3.

In the new rule, a new event 13 is added to the exist-
ing event 12. This resiilts in a new intrusion 11
Event 13: printfax is issued too many times
Intrusion 11: Trace the user

30

25

20

? 15
L

10

5

5

\

0 500 l(100 1500 2000 2500 3000
number of iterations

Fig.6
0. I
+ six hidden neuron
* four hidden neuron

Error behaviour for dqferent hidden neurons with learning rutc =

30 I

0 500 10110 1500 2000 2500 3000
number of iterations

Fig. 7
rons
+ learning rate = 0.1
* learning rate = 0.2

Error behaviour .for dflerent learning rates with six bidden neu-

7.3 Results
The neural network is devised with 16 neurons in the
input layer and 15 neurons in the output layer. The
neural network model is developed in C++ program-
ming language on a Sun Sparc 20 workstation, running
SUN 0s 4.2. The hidden layer is chosen with varying
number of neurons. Similary, different learning rates
were incorporated to train the neural network. For
illustration, we consider a neural network convergence
with the following parameters:
(i) with four and six hidden neurons;
(ii) with learning rates 0.1 and 0.2.
In each case, the error in the neural network for the
above parameters is measured while presenting the
exemplars given in Table 2. The error computed is the
sum of the squared error of each of the output neurons
for all the 12 possible rules at iteration instances in
multiples of 300. It is observed that the neural network
started converging after a total 800 iterations of the
exemplars.

In the case of the neural network with alearning rate
of 0.1 and with six hidden neurons shows better per-
formance over the one with four hidden neurons for
the same learning rate (i.e. less error) after 500 itera-
tions (see Fig. 6).

Similarly, an experiment is conducted for different
values of learning rates (0.1 and 0.2) when the hidden
neurons are six (see Fig. 7). The graph shows that the
neural network with learning rate of 0.2 converges
much faster than the one with 0.1. But the learning rate
in general is a compromise chosen by the rate at which
the neural network is expected to converge and also to
avoid the noise in inputting of the desired output.

8 Conclusion

A comprehensive network security management archi-
tecture is developed in two parts, namely, preventative
approach and reactive approach. In the first, an
attempt is made to improve the robustness of the pro-
tocols. In the second, a neural network based intrusion
detection system is developed. The model is analysed
thoroughly and the results are impressive [24].

9 Acknowledgments

The authors thank the anonymous referees for their
comments to improve the content of the paper.

10 References

DENNING, D.E.: ‘An intrusion-detection model’, IEEE Trans.,

MUKHERJEE, B., HERBERLEIN, L.T., and LEVITT, K.N.:
‘Network intrusion detection’, IEEE Network, 1994, pp. 26-41
O’MOHONY, D.: ‘Security considerations in a network manage-
ment environment’, IEEE Network, MaylJune 1994, pp. 12-17
SHERMAN, S.A., SKIBO, R., and MURRAY, R.S.: ‘Secure
network access using multiple applications of AT&T’s smart
card’, AT&T Tech. J., 1994, 73, (5), pp. 61-72
DIFFIE, W., and HELLMAN, M.: ‘New directions in cryptogra-
phy’, IEEE Trans., 1976, IT-22, (6) , pp. 644654
RIVEST, R.L., SHAMIR, A,, and ADLEMAN, L.: ‘A method
for obtaining digital signatures and public-key cryptosystems’,
Comm. ACM, 1978, 21, (2), pp. 120-126
BURROWS, M., ABADI, M., and NEEDHAM, R.M.: ‘A logic

SWAMY, V.C.J.: ‘Electronic access control system: a new
approach’. MSc (Eng.) dissertation, Department of Electrical
Communication Engineering, Indian Institute of Science, 1994
WOO, T.Y.C., and LAM, S.S.: ‘Authentication for distributed
systems’, IEEE Cornp., 1992, 25, (l), pp. 39-52

1987, SE-13, pp. 222-232

of authentication’, A C M Trans., 1990, Cs-8, (l), pp. 18-36

10 NEUMAN, B.C.: ‘Proxy-based authorization and acouiiting for
distributed systems’. IEEE Computer Society syinposiuni on
Security and privacy, 1993, pp. 283-291

11 VARADHRAJAN, V., ALLEN, P., and BLACK, S.: ‘An analy-
sis of the proxy problem in distributed systems’. IEEE Computer
Society symposium on Secnrity and privacy, 1991, pp. 255-275

12 STEINER, J.G., NEUMANN, B.C., and SCHILLER, J.J.: ‘Ker-
beros: an authentication service for open network systems’. Pro-
ceedings of winter USENIX conference, 1988, pp. 191-201

13 ESMAILI, M., SAFAVI-NAINI, R., and PIEPRZYIC, J.: ‘Intru-
sion detection: a survey’. Proceedings of 12th international con-
ference on Computer communications, Seoul, Korea, August 1995,
pp. 409414

14 ILGAN, K., KIMMERER, R.A., and PORRAS, P.A.: ‘State
transition analysis: a rule-based intrusion detection approach’,
IEEE Trans., 1995, SE-21, (3), pp. 181-199

15 KUMAR, S., and SPAFFORD, E.H.: ‘A pattern matching
model for misuse intrusion detection’, (Submitted for publication)

16 FRANK, J.: ‘Artificial intelligence and intrusion detection: cur-
rent and future directions’, (Submitted for publication)

17 BAUER, D.S., and KOBLENTZ, M.E.: ‘NIDX - An expert sys-
tem for real-time network intrusion detection’. Proceedings of
IEEE Computer network security symposium, 1988, pp. 98-106

18 OBAIDA’I‘. M S . , I I I ~ MA(’C’HAIROLO, D.T.: ‘A iiiultilayer
ncural I I C I W O I . I \ b \ \ i c i n 101 coinoutel- access securitv’. IEEE

tion oI ~‘nc.cy ;ilgoritliins in ii computer access security system’,

20 DEBAR. H.. 13E(’l<IilI. M.. and SIBONI, D.: ‘A neural network
Pii f / Rrc,og:.. L ~ ~ i i . , I9XO7 9, 1213. 1 9 ~ 4 3

component 101- ail in~rnsion dctection system’. Proceedings of
IEEE symposium on Rescorch in computer security and privacy,
1992. nn. 240-250

21 LIPPMAN, R.P.: ’An introduction to computing with neural

22 RUMELHART. D.E.. HINTON. G.E.. and WILLIAMS, R.J.:
nets’, IEEE ASSP Mug., April 1987, pp. 4-22

‘Learning internal representations by ’ error propagation’, in
RUMELHART, D.E., and MCCLELLAND, J.L. (Eds.): ‘Paral-
lel distributed processing: explorations in the Microstructure of
Congnition, Vol. 1: Foundations’ (MIT Press, 1986)-

23 BARTO, A.G., SUTTON, R.S., and ANDERSON, C.W.: ‘Neu-
ronlike elements that can solve difficult learning control prob-
lems’, IEEE Trans., 1983, SMC-13, pp. 835-846

24 KUMAR, G.P.: ‘Integrated network management using extended
blackboard architecture’. PhD

