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Abstract: Methods of images for electrostatic 
fields and steady conduction fields are fairly well 
known. Whenever applicable, they have made the 
solution of field problems much simpler. 
However, when dealing with lossy dielectrics both 
permittivity and nonzero conductivity are to be 
considered. A generalised method of images is 
developed which can deal with such linearly lossy 
(conducting) dielectrics. For linearly conducting 
dielectrics, a point charge is equivalent to a point 
current source and vice versa. At t = 0+, only the 
dielectric image will be seen. Subsequently, 
because of the finite nonzero conductivities of the 
associated media, a current will flow and surface 
charges will accumulate at the interface due to the 
mismatch in the material properties. The equattion 
governing this surface-charge accumulatioin is 
derived. Linearity of the media permits fields in 
either medium to be obtained by superposing the 
fields due to the dielectric images and that due to 
the interfacial charges. The field can be obtained 
in either medium by replacing these surface 
charges by an equivalent point charge kept ait the 
appropriate image point. This equivalent point 
charge satisfies a similar differential equation in 
time to that of the surface charge. The cases of 
time-varying chargeicurrent sources and the 
source-current requirement for keeping any point 
very close to the source at a specified potential 
are also discussed. 

1 introduction 

The method of images for ideal dielectrics and conduc- 
tors has long been well known [l, 21. This principle per- 
mits simplified analyses and solution of many field 
problems. However, when an electric field in a linearly 
conducting dielectric is to be analysed using this 
method, its permittivity and nonzero conductivity can- 
not be considered simultaneously. In a large nurnber of 
cases, these problems need to be studied over time 
intervals for which neither the ideal dielectric behaviour 
nor the ideal conductor approximation is strictly valid. 
For example, in analyses of fields in semiconductors 
and soil, both permittivity and conductivity need con- 

sideration. Thus, a general method of images which 
permitted consideration of both the nonzero conductiv- 
ity and the permittivity would be useful. For the 
steady-state sinusoidal fields, such an image formula- 
tion has been realised by simply expressing material 
properties in the complex material notations. For 
example, in the calculation of fields around polluted 
insulators at power frequencies using the charge simu- 
lation method (CSM), image charges with complex 
notation have been used successfully [3, 41. Similarly, in 
Sommmerfeld-half-space problems, more general com- 
plex images are used [5 ] .  To our knowledge, for the 
general time-domain case, a method of images is not 
available in the literature. This work presents such a 
formulation of a method of images in linearly conduct- 
ing dielectric media for a point charge and a point cur- 
rent source. Note that the present work is applicable 
only to static and quasistatic cases wherein the field 
variations are slow enough to neglect wave-propaga- 
tion and eddy-current effects. 

2 Theory 

2. I Preliminaries 
In this work, only images in two semi-infinite media 
separated by a Cartesian plane are considered. As in the 
conventional theory of images, only linear homogene- 
ous isotropic materials are considered. To apply this 
theory, the time variation of charges and currents 
should be slow enough to permit use of Poisson’s equa- 
tion as the governing equation. This is assured if the 
electric field produced by the current flow is predomi- 
nant compared with the electric field produced by the 
changing magnetic field (produced by the same cur- 
rent). If w is the dominant angular frequency of the 
source (charge/current) time variation, the above condi- 
tion can be written as lio >> cop, where p is the mag- 
netic permeability of the media and o is its electrical 
conductivity. When this condition is satisfied, only the 
point form of Far_aday’s law of Maxwell’s equations is 
relevant, i.e. V x E = 0. This is readily satisfied by the 
electrostatic potential which is the basic field variable 
of Poisson’s equation. 
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Now, let P be a point in medium 1 and P’ its image 
point (in the conventional sense) in medium 2 (see 
Fig. 1). Considering both the media to be ideal dielec- 
trics, it is well known that, if a point charge q is placed 
at P, then, for the calculation of field quantities in 
medium 1, the entire space is assumed to be filled with 
medium 1 with a pair of charges: q at P and q’ at P’. 
To obtain the field quantities in medium 2, the entire 
space is assumed to be filled with medium 2 with a 
charge q” at P. Here 

and 

4” = (&) 4 

E is used to represent E ~ E ,  throughout the paper. Simi- 
larly, considering both media to be conducting, if a 
point current source i were to exist at P, the equivalent 
set of sources for the calculations in medium 1 is i at P 
and i’ at P’ with the whole space replaced by medium 1. 
For medium 2, whole space is replaced by medium 2, 
and the image source is i“ at P. Here 

and 

Linearly conducting dielectrics are now considered. As 
mentioned above, the present work deals only with 
point sources. Other types of source can be constructed 
in terms of such point sources. If a point charge qo is 
placed at P at t = 0, tken at+ any point in space, the 
electric field is given by E =_DIE. This field+will cause a 
current flow governed by J = o E  = oDle. Thus, a 
charge q is equivalent to a ‘point current source’ of 
magnitude oq/E. Constructing a small sphere around P 
and reducing the relevant continuity equation using the 
divergence theorem, 

where v is the volume of the sphere and s is the spheri- 
cal surface bounding it, i and q are, respectively, the 
total current diverging out and the total charge 
enclosed by the sphere. From the above, the charge q 
seen by the media at P is governed by 

aq - + - q = O  
at € 

If the charge at t = 0 is qo, the above reduces to 

4 = 40exp (-; t )  
By making the radius of the sphere small, the influence 
of other charges (including image charges) and other 
materialsiboundaries can be made negligible. There- 
fore, the above result will hold irrespective of the 
geometry of the media, charges present and the sur- 
rounding media. Similarly, if a point current source 
io(t) is placed at P in medium 1, then 

will hold. In other words, the current source seen at P 
will satisfy 

- a2 + -2  0 .  = - zo ( t )  0 .  

at F F - ”  - 

which, for a constant current source io, reduces to 

i(t> = io { 1 - exp ( -%t>}  

( 3 )  

(4) 
Therefore, the current source i(t) seen by the media will 
be different from the impressed source io. It is worth 
emphasising that, except at the source lo_ation, the net 
charge in the domain is zero, i.e. V . J = 0. Charges 
will accumulate only at the material interfaces. 

Now, consider the behaviour of the field at the inter- 
face. The following boundary conditions must be satis- 
fied [6] at all times: 

(5) 
where As is the interfacial (surface) charge density. With 
zero initial interfacial charge, the above equation can 
be written as 

A$] = (An - J2,)dt .b 
Assuming that there are no sources (point charges and/ 
or point current sources) at the interface, the integrand 
of above equation is always finite and hence h,[O+] = 0. 
Therefore, at that instant El, = E2t and D1, ; D2, will 
hold. In other words, only dielectric images will be seen 
at the first instant irrespective of whether a point cur- 
rent source or point charge is kept at P. 

2.2 lmage of a point charge 
First consider a point charge qo placed at P at time t = 
0. As discussed above, this charge will decay with a 
time constant of ~ ~ / q .  At t = O+, only dielectric images 
will be seen and therefore, for that instant, the field in 
medium 1 is governed by q at P and q’ at P‘, while the 
field in medium 2 is given by q” kept at P. The 
dissipation of these charges gives rise to point current 
sources. As time progresses, owing to the mismatch of 
the current at the interface, a charge As will build up at 
the interface. It is shown in the Appendix (Section 6.1) 
that A, satisfies 

2h 

with Ax being zero at t = 0+. Here, h is the distance of 
the point P from the interface, Y the distance of the 
point on the interface from the line of symmetry (i.e. 
the line joining P and PI). It is shown in the Appendix 
(Section 6.2) that, for the calculation in both the 
media, this surface charge density can be replaced by 
point charges kept at the respective image points. For 
the present case, the equivalent point charges qs,,2, are 
given by 

x [ exp { - (e) €1 + € 2  t } - exp (- t ) ] qo ( 7 )  

Therefore, for calculation in medium 1, the field due to 
a point charge qo kept at P, the set of equivalent 
charges are charge q(t) at P, dielectric image charge q’ 
and the equivalent point charge representing the 



surface charge distribution qsl ,  both kept at the image 
point P’. Similarly, for calculations in mediuni 2, the 
relevant set of charges are the dielectric image charge 
q“ and the point charge equivalent of the surface 
charge distribution q52, both at P. The whole space is 
assumed to be of the respective medium. Note that 
these sets of charges are equivalent to a set of point 
current sources, as discussed above. Consider a special 
case of medium 1 with zero conductivity. Then it 
follows from the above analysis that, initially, only a 
dielectric image will appear. As the time progresses, 
due to the current flow, interfacial charge will build up 
which is governed by 

From eqn. 7 with a value of q = 0, the equivalent 
point charges of the interfacial charge distribution can 
be obtained. Note that these equivalent point charges 
are to be kept at the respective image points. As t - a, 
this equivalent point charge for medium 1 builds up to 
-(q + 4‘) and that for medium 2 builds up to -4”. 
Therefore, as the time progresses the total image, which 
is the sum of the dielectric image and the equivalent 
point charge of the interfacial charges, builds up to -q 
for the calculation in medium 1 and 0 for that in 
medium 2. This condition corresponds to medium 2 
behaving like a perfect conductor. 

2.3 Image of a point current source 
Note that the concept of a point current source is 
rather an unusual concept but has been used as a tool 
even by Maxwell in his classic work ‘A treatise on elec- 
tricity and magnetism’ [2]. Subsequently, Sunde [7] has 
also utilised it successfully. Such point sources serve as 
effective basic building blocks to construct all other 
types of source. Now consider a point current source io 
kept at P. The actual current source seen by the media 
is given by eqn. 4. Also, note that these point current 
sources are equivalent to point charges. Initially, as dis- 
cussed above, only the permittivities will determine the 
potential distribution and hence only images of the 
charges in dielectrics will be seen. Owing to the mis- 
match of current density at the interface, there will be 
interfacial charge accumulation A,. An expression for A, 
is derived in the Appendix (Section 6.1). For the 
present situation, q(t) appearing in eqn. 11 is given by 

As shown in the Appendix (Section 6.21, this interfacial 
charge can be replaced by a set of equivalent point 
charges qJ1 kept at the respective image points. Since 
any point charge is equivalent to a point current 
source, point current sources i,, can be used instead of 
equivalent point charges q5 ,,2. These equivalent point 
current sources follow 

g1 + 0.2 
€1 + €2 

01 €2 - Q2 €1 

€1(€1 + € 2 )  

For the present case, these equivalent current sources 
are given by 

i s , ,  = (z) (-to) 2F 1.2 (2) €1 + € 2  

-“(-)..P{-( €1 f € 2  (01 + 0 2 )  t } ]  
€1 01 t 0 2  €1 + € 2 )  

(9) 
Therefore, the set of image current sources for the 
present case is as follows: For medium 1, point current 
source i(t) at P and the dielectric image source i‘, the 
equivalent point current source i, , for the interfacial 
charges, both kept at the image point P’, are relevant. 
Here, 

i ( t )  = i o  { 1 - exp (-:t)} 

and 

For the medium 2, the dielectric image source 

and the equivalent point current source is2 for the 
interfacial charges, both kept at P, are relevant. As 
above, during calculations, the whole space is assumed 
to be of the respective medium. Further, as time 
progresses, these set of sources will converge into a set 
of images in conductors. For the above two cases, i.e. a 
point charge and a constant point current source, the 
condition on conductivity and magnetic permeability 
(stated in the beginning of Section 2.1) can be further 
quantified as follows: l / a  >> d ( \ l ( ~ ~ , u , / ~ ~ ~ ~ )  or l / o  >> 
376.631d~,, a condition which is readily satisfied by all 
practical insulating materials, many types of soils and 
semiconductors. 

3 Generalisation 

If the point charges or current sources placed at P are 
time varying, then a generalisation of the above analy- 
sis is possible under the condition that the time varia- 
tion of the associated charges and currents is slow 
enough to still have Poisson’s equation as the govern- 
ing equation. 

In the following, during the calculations using 
images, the whole of the space is assumed to be of the 
respective medium, as the conventional image theory. 
Consider first the time-varying charge. If at P the 
charge is qo(t), then, for the calculations in medium 1 
the relevant set of charges is q(t) at P, its dielectric 
image charge 

q’(t) = (=) q ( t )  
€1 + € 2  

and the point-charge equivalent of the interfacial 
charge qr, both located at image point P’. Similarly, for 
medium 2, the dielectric image charge 

q”(t) = (A) q ( t )  
€1 + € 2  

and q5 the point-charge equivalent of interfacial charge 
distribution are relevant. qc,,2 can be obtained by 
solving eqn. 13. As mentioned above, for the steady- 
state sinusoidal fields, complex images have been used 
in the literature [3, 41. If the point charge at P is 
varying sinusoidally in time, it will set up a sinusoidally 
varying field everywhere. Computing the equivalent 

  



point charge of interfacial charge distribution and 
taking only the steady-state part, it can be verified that, 
for the medium 1, 

Adding this to the dielectric image for medium 1, and 
rearranging the terms, the total image seen is 

(€1 - +) - (€2  - T)  
(€1 - T) + ( € 2  - %) { j O 1  j a 2  } 40 

which is exactly the complex image formulation 
employed for the steady-state sinusoidal case [3, 41. 
This would suggest an alternative method for the 
deduction of the generalised images through the fre- 
quency-domain analysis. The Fourier transform of the 
source (charge or current) can be convoluted with the 
complex images for obtaining the time-domain solu- 
tion. However, such an approach does not portray the 
true physical picture of the phenomena. Also, in many 
practical applications of the method of images, as in 
CSM, spatial and temporal distributions of the source 
are not known a priori. This complicates the problem 
further and can make it very difficult to solve. Assum- 
ing that the source characteristics are fixed a priori, the 
frequency-domain technique is an indirect method and 
cannot be simpler than the direct time-domain method, 
except probably in specific cases. 

The time-varying point-current source is more gen- 
eral than the time-varying point-charge case and is now 
considered. If a point current source io(t) is kept at P, 
then the actual current source i(t) seen by the medium 
can be obtained by solving eqn. 3. The relevant current 
sources for the calculation in medium 1 are i ( t )  at P, 
the dielectric image source i’(t) and equivalent surface 
charge source is,,, both located at the image point P’. 
For that in medium 2, the relevant set of sources is the 
dielectric-image source i ”( t) and equivalent surface- 
charge source isz, both located at P, where 

i’(t) = (--) €1 - € 2  i(t) 
€1 + € 2  

The equivalent surface-charge sources are obtained by 
solving eqn. 8. 

In many practical situations, the voltages are fixed 
rather than the charges or currents. It will thus be rele- 
vant to study the source-current requirement for such 
cases. In the following, the source current io(t) required 
for keeping the potential of the spherical surface of 
radius a constructed around P is considered. The radius 
a is chosen to be very small compared with the the 
smallest dimension in the problem geometry. Using 
eqn. 12 of the Appendix (Section 6.2) and eqn. 3, the 
expression for the source current is 

(10) 
where 

Note that if v(t = 0’) is not zero, then there will be a 
current surge at t = 0+ to build the capacitive-voltage 
distribution. 

The important feature here is that the field problems 
involve permittivities and conductivities participating 
simultaneously in determining the equivalent charges 
and/or current sources, and hence the potential distri- 
bution. The governing equation still remains the same: 
Poisson’s equation. Thus there is no direct dependency 
on time and these time-independent equations are 
linked by a time-dependent material boundary condi- 
tion yielding a time-dependent field distribution. Such 
field problems are termed ‘capacitive-resistive’ fields 
and are discussed in [8] for the Laplacian fields. 

The generalised method of images developed above 
has been used successfully for modelling of the stepped 
leader of a lightning stroke. For modelling the charge 
in the leader sheath, cylindrical and spherical charge 
distributions have been used. The magnitude of the 
charge has been determined by field conditions and 
varies dynamically. The full modelling details which 
include transient-field calculation, conduction through 
a nonlinear leader and, importantly, the air-breakdown 
process will form the subject of a future paper. Also, 
this example portrays the simplicity of the direct time- 
domain technique for the generalised images over the 
frequency-domain approach which seems to be 
impractical for this problem. 

4 Conclusions 

Problems involving images in linearly conducting 
dielectrics require simultaneous consideration of 
permittivities and conductivities. Here, owing to the 
mismatch (at the interface) of the material properties, 
interfacial charges build up with time. The general 
equations governing the build up for a time-varying 
point charge and a point current source have been 
derived. It is also shown that, for the field calculation 
in either medium, this interfacial charge can be 
replaced by point sources kept at the respective image 
points. Expressions for the magnitude of the images of 
a point charge and a point current source (kept in a 
system of two isotropic linear semi-infinite media) have 
also been derived. It is shown that the general images 
reduce to the complex images employed for the steady- 
state sinusoidal excitation. 

The source-current requirement for satisfying the 
specified potential in the vicinity of the source has also 
been deduced. 

In all the analyses, only the geometric properties are 
used and hence general images for other geometries can 
be deduced on similar lines. 
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6 Appendixes 

6. I Derivation of equation for charge build- 
U P  
In this Appendix, the differential equation governing 
the accumulation of the interfacial charges is derived. 
Let medium 1 with conductivity ol and permittivity E~ 

and medium 2 with conductivity 9 and permittivity E~ 

meet in a Cartesian plane. Let P be a point in medium 1 
and P’ be its image point in the conventional seinse (see 
Fig. 1). The origin is the intersection of the line joining 
PP’ and the interface. If a point charge 4(t) is present at 
P, then it will set up a field. This field will cause a 
current flow in both the media. Therefore, dissipation 
of these charges gives rise to point-current sources iq at 
P and ib at P’ for calculations in medium 1 and i’b at P 
for calculations in medium 2. The subscript q is used to 
distinguish these sources from the set of image sources 
in conductors. If z C T ~ / E ~ ,  then there will be a 
mismatch of the current densities at the interface 
resulting in accumulation of an interfacial charge As. 
This interfacial charge density As is seen as a sheet of 
charge of density ~ { E ~ / ( E ~  + E ~ ) } &  from medium 1 and 
density ~ { E ~ / ( E ~  + E2)}A; r  from medium 2. Equivalent 
current sheets follow similarly. If, at any instant., 4(t) is 
the charge seen at P and if is the interfacial charge 
density then the field at any point can be calculated by 
considering them independently. First, considering the 
point charge alone, dielectric images can be used 
continuously. The field due to the interfacial charge 
distribution can then be added to obtain the total field. 
At the interface, therefore, the current densities are 

J2n  = f72E2n 

Substituting these values of current densities in eqn. 5 
and then replacing the dielectric-image charges in terms 
of 4(t), the governing equation for the interfacial 
charge can be obtained as 

Ol€2 - 0 2 € 1  
A, = 

(11) 
with A,(t = 0’) = 0. Note that the charge 4(r) at P may 
be due to either a point charge or a point current 
source. 

6.2 Equivalent point charge 
The basic advantage of the method of images is simpli- 
fication of the analysis and computation of fieldis. With 
the charge build-up at the interface, it may be thought 
that the original simplicity will be lost. It is now shown 
that the interfacial charge distribution can be replaced 

by a simple equivalent charge kept at the respective 
image point. 

The equation for the charge build-up has been 
derived in Section 6.1. Applying Laplace transforma- 
tion to eqn. 11, and then solving for As, the following 
expression results: 

where 
Ole2 - 0 2 f 1  A =  

F[s] = 

E l ( E 1  + € 2 )  

1 
m + u a  

S + t l + E Z  
and 4 [ ~ ]  is the Laplace transform of q(t), the charge 
seen at P. From eqn. 12 it is clear that the spatial pat- 
tern of the interfacial charge distribution will depend 
only on the geometrical parameters and time depend- 
ency will only affect its amplitude. In the following, a 
sample calculation is shown for medium 1. 

The normal field at the interface due to As is 

Substituting for A,, 

A F b I  
dsl h 2t1 El, = - 

4ntl ( ~ 2  + h2); €1 + €2 

The potential along the axis of symmetry can be com- 
puted from the expression for potential of a ring charge 
along its axis: 

00 2tl 2tl  
€ l + € Z  2nrdr = 4 [ s l G G  A q s ]  1 4m1(r2 + h2)g 47r€1 ( Z  f h) 

v (z )  = 

At the boundary at infinity, it can seen that the 
potential due to A, vanishes. Note that the normal field 
at the interface and the potential along the axis both 
satisfy the same differential equation in time as that 
governing the interfacial charge distribution. From the 
expression for the field at the interface (boundary), the 
potential along the axis and the vanishing potential at 
the far boundary, it can be identified that all these are 
as same as that produced by a point charge of 
magnitude: 

located at the image point P‘. As both the field due to 
the interfacial charge distribution and this equivalent 
charge satisfy Laplace’s equation in medium 1 and 
both of them satisfy the same boundary conditions, 
they produce the same field distribution in medium 1. 
Therefore, one can be replaced by the other for all field 
calculations in medium 1. A similar analysis can be car- 
ried out for medium 2. 

Thus, the field of the interfacial surface-charge distri- 
bution in media 1 and 2 can be obtained from these 
equivalent point charges qs1,2 kept at the respective 
image points. The equation governing these charges is 
then 

(13) 


