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Abstract: We study the hydrodynamic properties of strongly coupled SU(N)

Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density

of R-charge in the framework of gauge/gravity duality. The gravity dual description

involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3

dimensions which is obtained by a consistent truncation of the spinning D1-brane in

10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk

viscosity as a function of the chemical potential conjugate to the R-charges of the

D1-brane. We show that the ratio of bulk viscosity to entropy density is indepen-

dent of the chemical potential and is equal to 1/4π. The thermal conductivity and

bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show

that at the boundary of thermodynamic stability, the charge diffusion mode becomes

unstable and the transport coefficients exhibit critical behaviour. Our method for

evaluating the transport coefficients relies on expressing the second order differential

equations in terms of a first order equation which dictates the radial evolution of the

transport coefficient. The radial evolution equations can be solved exactly for the

transport coefficients of our interest. We observe that transport coefficients of the

D1-brane theory are related to that of the M2-brane by an overall proportionality

constant which sets the dimensions.
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1. Introduction

There has been recent interest in constructing holographic duals which model phe-

nomena and properties observed in macroscopic low energy physics. Such holographic

duals may provide new insights because the properties and phenomena of interest

usually lie in a regime which is strongly coupled in the field theory description but

semi-classical from the gravity point of view. Transport properties of various systems

which admit holographic duals have been evaluated from the gravity description. A

universal result which has emerged out of these investigations is that the ratio of

shear viscosity η to the entropy density s for field theories which admit gravity duals

in the two derivative approximation is given by [1, 2] 1

η

s
=

~
4πkB

, (1.1)

where ~ is the Planck’s constant and kB is the Boltzmann’s constant. This ratio has

been evaluated for well known AdS/CFT pairs likeN = 4 super Yang-Mills as well as

simple phenomenological gravity models. Other gauge/gravity duals which involve

near horizon geometries which are not asymptotically anti-de Sitter backgrounds

like that of Dp-branes, p ≥ 2 [4, 5] have also been studied. This ratio for these

backgrounds has also been shown to be ~/4πkB [6].

In [7], we began an investigation of macroscopic properties of the 1 + 1 dimen-

sional field theory of the D1-branes. In 1 + 1 dimensions, there is no shear, therefore

it is necessary to study non-conformal field theories to obtain non-trivial hydrody-

namic coefficients. D1-branes are interesting as they provide the simplest and the

most symmetric non-conformal 1+1 dimensional field theory which admits a gravity

dual. The theory is the maximally supersymmetric Yang-Mills with SU(N) gauge

group. It can be obtained as a dimensional reduction of N = 4 SYM from 3 + 1

dimensions. In [7], we isolated the sound mode in gravity and evaluated the speed

of sound vs and the bulk viscosity ζ in the following regimes

(i)
√
λN−2/3 � T �

√
λ, (1.2)

(ii)
√
λN−1 � T �

√
λN−2/3.

Here, λ = g2
YMN is the t’ Hooft coupling and T is the temperature. In the above

regimes, the field theory of the D1-branes admits a gravity dual [5] which for the

purposes of evaluating transport coefficients reduces to an Einstein-dilaton theory in

3 dimensions. In [7], it was shown that

vs =
c√
2
,

ζ

s
=

~
4πkB

, (1.3)

1See [3] for a recent review and list of references on related topics.
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for hydrodynamics of the D1-brane theory, here c is the velocity of light. It was also

seen that theories arising form D1-branes at cones over Sasaki-Einstein 7-manifolds

give rise to the values in (1.3). It was suggested that there might be a class of non-

conformal field theories which admit 3d gravitational backgrounds for which ζ/s =

~/4πkB. For the rest of the paper, we will work with units in which ~ = kB = c = 1.

In [8], it was shown that the supergravity fluctuations which determine the hy-

drodynamic coefficients of the uncharged D1-branes were related by dimensional

reduction to that of the M2-branes. The dimensional reduction related the shear

viscosity of the conformal hydrodynamics of the M2-brane to that of the bulk vis-

cosity of D1-branes. This explained why ζ/s = 1/4π, it can essentially be traced to

the relation (1.1) for the M2-branes. It also explained why the value of the speed of

sound of the D1-brane theory behaves as though it is a conformal theory in 2 + 1 di-

mensions. One expects a similar connection for the transport coefficients between the

D1-brane theory with finite charge density and the corresponding M2-brane theory.

This would imply that the ratio ζ/s will be independent of the chemical potential

and continues to be 1/4π since it is related to the ratio η/s of the M2-brane theory.

There should also be similar relationships between other transport coefficients like

conductivity. This is one of our motivations to explore the hydrodynamics of charged

D1-branes. There is a need to develop novel theories for 1+1 dimensional condensed

matter systems as many higher dimensional models can’t be applied here and there

is a profusion of knowledge through experiments about new such systems and their

properties [9]. So another reason is to study the macroscopic properties of strongly

coupled 1 + 1 dimensional field theories which admit gravitational duals. Gravity

duals of 1 + 1 dimensional systems with a well defined field theory have not been

extensively studied 2. These systems play an important role in many quantum phe-

nomena and it is worthwhile to see what insights the gauge/gravity correspondence

gives in this context with a well defined field theory in mind.

In this paper, we study the hydrodynamics of D1-branes at finite charge density

in a regime which admits a gravity description. The gravity dual description involves

a charged black hole in an Einstein-dilaton-Maxwell scalar system in 3 dimensions

which is obtained by a consistent truncation of spinning D1-branes in 10 dimensions.

We study two situations:

1. The case in which the charge density corresponding to a single U(1) of the

SO(8) R-symmetry of the D1-brane theory is turned on, we call this the single

charged D1-brane.

2. The situation in which equal charge densities along the 4 Cartan’s are turned

on, we call this the equal charged D1-brane.

2Holographic duals of 1+1 dimensional systems from a bottom up approach without a known

boundary field theory were studied in [10, 11].
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In both these cases, we see that both the speed of sound and the ratio of bulk viscosity

to entropy density is given by (1.3). The values of these quantities are independent of

the chemical potential. We also evaluate the charge conductivity, the charge diffusion

constant, the sound diffusion constant and the thermal conductivity for both the

situations and compare the results for which the corresponding M2-brane calculation

has been done. We see that apart from an overall proportionality constant which

sets the dimensionality of the transport coefficients in these theories, the transport

coefficients are identical in the two theories. The results are summarized in the

following table.

Transport Single-charged Equal-charged Equal-charged

Coefficients D1 brane D1 brane M2 brane

σDC
1

16πG3

(2k+3)2

9
√

1+k
1

16πG3

(3−k)2

9(1+k)2
1

16πG4

(3−k)2

9(1+k)2

ζ
r4H

16πG3L4

√
1 + k

r4H
16πG3L4 (1 + k)2 −−

η −− −− r4H(1+k)2

16πG4L′4

Dc
L3(3−2k)

6r2H
√

1+k

L3(k+3)

6r2H(1+k)2

Ds
L3

12r2H
√

1+k
L3

12r2H(1+k)2
L′3

12r2H(1+k)2

κT
r2H

8LG3

(2k+3)(1+k)
k

r2H
8LG3

(3−k)(1+k)
k

r2H
8L′G4

(3−k)(1+k)
k

Table 1. Transport coefficients of D1-branes and M2-branes.

rH : radius of the horizon k: (R-charge)2 in units of rH .

G3, G4: Newton’s constant in 3 and 4 dimensions.

L,L′: radius of the orthogonal S7 for D1, M2-branes.

σDC: electrical conductivity, ζ: bulk viscosity, η: shear viscosity.

Dc, Ds: charge diffusivity, sound diffusivity, κT : thermal conductivity.

Hydrodynamics of uncharged M2-branes were first studied in [12, 13]. We ob-
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tained the shear viscosity of the charged M2-branes from the fact that η/s = 1/4π

[14]. The conductivity of charged M2-branes was obtained from [15]. The charge

diffusion constant for the M2-branes at non-zero chemical potential has not yet been

evaluated in the literature as far as we are aware. However for M2-branes at zero

chemical potential, the charge diffusion constant has been evaluated in [16] 3 and

it agrees with the k = 0 limit of the D1-brane theory answer. The sound diffusion

constant for the charged M2-branes has been calculated by using Ds = η/2(ε + p)

where ε, p are the energy density and the pressure of the M2-branes. Notice that

the bulk viscosity of the D1-brane theory is proportional to the shear viscosity of

the M2-brane theory. Another observation of our study of the transport coefficients

of the charged D1-brane is the following relationship between the bulk viscosity and

the thermal conductivity

κT µ̂
2

ζT
= 4π2 (1.4)

where κT is the thermal conductivity, T the temperature and µ̂ the chemical po-

tential. This relationship is analogous to the Wiedemann-Franz law and a similar

relationship between shear viscosity and the thermal conductivity has been observed

in the case of single charged D3-branes [17]. Since the charged D1-brane theory is ob-

tained as a consistent truncation of spinning D1-branes, there is a maximum allowed

spin or charge beyond which the solution is thermodynamically unstable [18]. We

show that the transport coefficients exhibit critical behaviour at the boundary of the

thermodynamical instability. For the single charged case, we observe that the charge

diffusion mode becomes unstable at the boundary of instability. This suggests that

for this case, the thermodynamical instability can be better understood by studying

the charged diffusion mode in more detail.

This paper is organized as follows: In the next section, we introduce the single

charged D1-brane background and obtain the consistent truncation of the solution

to 3 dimensions. We also review the thermodynamics of this solution and obtain

the boundary of thermodynamic instability. In section 3, we study hydrodynamics

of a charged fluid in 1 + 1 dimensions and obtain the dispersion relations of the

two hydrodynamic modes, the charge diffusion mode and the sound mode in terms

of thermodynamic variables. We then use the thermodynamics of the D1-brane

solution to explicitly evaluate the dispersion relations. We also determine the form

of the retarded correlation functions of the stress tensor and the charge current

using conservation laws. In section 4, we study the supergravity fluctuations of

the single charged D1-brane solution and isolate the gauge invariant fluctuations

which correspond to the two hydrodynamical modes in the field theory. In section

5, we determine the various transport coefficients from gravity using the relevant

Kubo’s formula. To do this, we reduce the problem to solving a set of coupled first

3See below equation (3.32) in [16].

– 5 –



order non-linear differential equations which are exactly solvable in limit required

by the Kubo’s formulae. These first order equations dictate the radial evolution of

the transport coefficient. In section 6, we discuss the properties of the transport

coefficients, their behaviour at the boundary of thermodynamic instability. We then

discuss the connection of the D1-brane theory to that of M2-branes. It will be

interesting to compare our results with what is known for these systems. Appendix

A contains the details of the consistent truncation which is required to obtain the

charged D1-brane solution in 3 dimensions. Appendix B contains the details of the

evaluation of the transport coefficients for the equal charged D1-brane.

2. The R-charged D1-brane

In this section, we introduce the gravity dual of SU(N) Yang-Mills with 16 super-

charges in 1+1 dimensions at finite R-charge density and state its domain of validity.

We then discuss its thermodynamic properties. This section will also serve to set up

notations and conventions.

In [5], it was argued that SU(N) Yang-Mills with 16 supercharges in 1 + 1

dimensions at large N is dual to the near horizon geometry of N D1-branes. Heating

up this theory to a finite temperature T , the gravity dual is given in terms of the

near horizon geometry of non-extremal D1-brane solution. The gravity dual can be

trusted in the domain
√
λN−

2
3 << T <<

√
λ, (2.1)

where λ =
√
g2

YMN is the t’Hooft coupling of the theory. The only non-trivial

viscous transport coefficient of this system was evaluated using this gravitational

dual in [7]. We now wish to turn on finite R-charge density in the field theory. By

the usual gauge/gravity correspondence, the SO(8) isometry of the S7 present in the

near horizon geometry of the D1-branes corresponds to the SO(8) R-symmetry of

the Yang-Mills. Therefore to turn on R-charge density, it is necessary to consider

D1-branes with angular momentum. The near horizon supergravity solution of non-

extremal D1-branes spinning along one of the Cartan directions of SO(8) is given by

[18].

ds2 = H
−3/4
1 (−fdt2 + dz2)− 2H

−3/4
1

L3r3
0

∆r6
l sin2 θdtdφ,

+H
1/4
1

(
1

h̃
dr2 + r2(∆dθ2 +H sin2 θdφ2 + cos2 θdΩ2

5)

)
,

eΦ = H
1/2
1 ,

A(2) = −
(
dt

H1

+
r3

0

L3
l2 sin2 θdφ

)
∧ dz, (2.2)
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where

∆ = 1 +
l2 cos2 θ

r2
, H = 1 +

l2

r2
, (2.3)

H1 =
L6

∆r6
, f = 1− r6

0

∆r6
,

h̃ =
1

∆

(
1 +

l2

r2
− r6

0

r6

)
.

The above solution is written in the Einstein frame. dΩ2
5 is the metric of a unit

5-sphere and

L6 = g2
YM26π3N(α′)4, g2

YM =
gs

2πα′
(2.4)

with gs, α
′ being the string coupling and the string length respectively. A(2) is the

gauge potential for the RR 2-form sourced by the D1-branes. Note that the above

solution reduces to the non-spinning near horizon solution of the non-extremal D1-

brane when one sets the angular velocity l = 0. For completeness, we mention that

the background in (2.2) is a solution of type IIB supergravity equations of motion in

10 dimensions obtained from the following action

S =
1

16πG10

∫
d10x
√
g

[
R− 1

2
∂Mφ∂

Mφ− 1

2 · 3!
eφ(F3)2

]
. (2.5)

To study the hydrodynamics of this solution, one needs to consider perturba-

tions of this solution along the brane directions (t, z) and the radial direction. The

fluctuations along the 7-sphere do not play any role. Thus to simplify our analysis,

it is convenient to perform a Kaluza-Klein reduction of this solution to 3 dimen-

sions. Using the results of [19], it can be shown that the 10 dimensional solution in

(2.2) admits a consistent reduction on the S7 sphere to the following solution in 3

dimensions

ds2 =
(
−c2

Tdt
2 + c2

Xdz
2 + c2

Rdr
2
)
, (2.6)

c2
T =

( r
L

)8

K, c2
X =

( r
L

)8

H, c2
R =

H

K

( r
L

)2

,

At = − r3
0l

L2(r2 + l2)
, φ = −3 log

( r
L

)
, Ψ = 1 +

l2

r2
.

Here H and K are defined as

H = 1 +
l2

r2
, K = 1 +

l2

r2
− r6

0

r6
. (2.7)

The details of this Kaluza-Klein reduction are given in Appendix A. The rotation

along one of the Cartan directions reduces to the charge denoted by the gauge po-

tential At in 3 dimensions. Note that the deformation of round S7 metric in (2.2)

parametrized by ∆ results in an additional scalar Ψ in 3 dimensions. It can also be
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shown using this consistent reduction that the background in (2.6) is a solution of

the equations of motion of the following action

I =
1

16πG3

∫
d3x
√
−g
(
R(g)− 8

9
∂µφ∂

µφ− 1

4
Ψ2e−

4
3
φFµνF

µν

− 1

2Ψ2
∂µΨ∂µΨ +

2

3Ψ
∂µφ∂

µΨ +
12

L2
e

4
3
φ(1 + Ψ−1)

)
, (2.8)

where
1

G3

=
2π4L7

3!G10

, G10 = 23π6g2
s(α

′)4. (2.9)

Thus the 10 dimensional rotating D1-brane solution reduces to a charged black hole

of an Einstein-Maxwell-dilaton system along with a scalar. The R-charge is given by

the gauge potential At corresponds to rotation along the S7 in 10 dimensions. As a

simple consistency check, note that both the action in (2.8) and the solution in (2.6)

reduces to the truncation studied in [7] 4 for the uncharged D1-brane. Since the above

solution is a consistent truncation to 3 dimensions, any solution to hydrodynamic

fluctuations studied in 3 dimensions can by lifted to 10 dimensions. For completeness,

we write down the equations of motion of the action given in (2.8).

Gµν −
1

2
gµνA+ Cµν = 0,

A = −8

9
∂µφ∂

µφ− 1

2Ψ2
∂µΨ∂µΨ +

2

3Ψ
∂µφ∂

µΨ− Ψ2

4
e−4φ/3FµνF

µν (2.10)

+
12

L2
e4φ/3(1 + Ψ−1), (2.11)

Cµν = −8

9
∂µφ∂νφ−

1

2Ψ2
∂µΨ∂νΨ +

1

3Ψ
(∂µφ∂νΨ + ∂νφ∂µΨ) (2.12)

−1

2
Ψ2e−4φ/3FµρFν

ρ, (2.13)

�φ+
6

L2
e4φ/3(2 + Ψ−1) = 0, (2.14)

� log Ψ− Ψ2

2
e−4φ/3FµνF

µν +
8

L2
e4φ/3(1−Ψ−1) = 0, (2.15)

∂µ[
√
−gΨ2e−4φ/3F µν ] = 0. (2.16)

We refer to the solution in (2.6) as the single charged D1-brane. The equal charged

D1-brane solution in which equal charge density along all the 4 Cartans of the SO(8)

are turned on is given in (A.20) of Appendix A.

2.1 Thermodynamics of the R-charged branes

The thermodynamic properties of spinning D-branes were studied in complete gen-

erality in [18] from which we can read out the thermodynamic properties of the

4See equations (4.3), (4.5), (4.6), (4.7).
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black hole of interest given in (2.6). We now summarize the relevant thermodynamic

properties. The Hawking temperature and the entropy density are given by

T =
1

2πL3

r5
H

r3
0

(3 + 2k), s =
1

4G3

r3
0rH
L4

, (2.17)

where k is given by

k =
l2

r2
H

, (2.18)

and rH is the radius of the horizon which is given by the largest root of the equation

r6
H + r4

H l
2 − r6

0 = 0. (2.19)

The energy density and the free energy density is given by

ε =
1

4πG3

r6
0

L7
, p = −f =

1

8πG3

r6
0

L7
=
ε

2
. (2.20)

Here we have also identified the pressure using its thermodynamic relationship with

free energy density. The charge density ρ and its conjugate the chemical potential µ

are given by

ρ =
1

8πG3

r3
0l

L5
, µ = At(r)|r→∞ − At(r)|rH =

lr4
H

L2r3
0

. (2.21)

Note that we have defined the chemical potential as the voltage difference between

the boundary r → ∞ and the horizon. In writing these thermodynamic quantities,

we have used the relation (2.19).

For the black hole solution given in (2.6) with very large charge, there exists a

thermodynamic instability. This instability is equivalent to the instability occurring

in D1-branes which are rotating too fast [18]. Given the energy density of the system,

the thermodynamic stability is determined by the condition

Hs = det

(
∂2ε(s,ρ)
∂s2

∂2ε(s,ρi)
∂s∂ρ

∂2ε(s,ρi)
∂ρ∂s

∂2ε(s,ρ)
∂ρ2

)
> 0. (2.22)

To evaluate it, it is convenient to write the above Hessian as

Hs =

(
∂T

∂r0

∂µ

∂l
− ∂T

∂l

∂µ

∂r0

)(
∂s

∂r0

∂ρ

∂l
− ∂s

∂l

∂ρ

∂r0

)−1

, (2.23)

where we have used the chain rule and standard thermodynamic relations. Using

the expressions for the thermodynamic variables given in (2.17), ( 2.20) and (2.21),

it can be shown that the Hessian reduces to

Hs = 2G2
3L

4 (3− 2k)

r4
H(1 + k)2

. (2.24)
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Thus the condition for thermodynamic stability implies the following restriction on

the values of the R charge

k <
3

2
. (2.25)

Finally, for completeness, we mention that the condition for the validity of the su-

pergravity solution of the non-extremal spinning D1-brane remains the same as that

of the non-extremal brane and is given by
√
λN−

2
3 << T <<

√
λ. (2.26)

The bound k < 3/2 in terms of field theory chemical potential can be written as

µ̂ =
µ

L
<
πT√

6
. (2.27)

Therefore the transport coefficients evaluated in this paper are valid in the regime

given by (2.26) and (2.27) of the field theory.

3. Hydrodynamics of a charged fluid in 1 + 1 dimensions

In this section, we show that a charged fluid in 1+1 dimensions has two hydrodynamic

modes and derive their dispersion relation. The stress tensor and the charge current

of a relativistic fluid in 1 + 1 dimensions are given by

T µν = (ε+ p)uµuν + Pηµν − ζ(uµuν + ηµν)∂λu
λ, (3.1)

jµ = ρuµ − σT (ηµν + uµuν)∂ν

(µ
T

)
,

where uµ is the 2-velocity with uµu
µ = −1 and ζ is the bulk viscosity and σ the

conductivity. The remaining variables ε, p, ρ, µ refer to the energy density, pressure,

charge density and the chemical potential of the system respectively. ηµν refers to

the flat Minkowski metric with signature (−1, 1). The equations of motion of the

fluid are given by the following conservation laws

∂µT
µν = 0, ∂µj

µ = 0. (3.2)

We now wish to obtain the linearized hydrodynamics modes, therefore let us consider

small fluctuations from the rest frame of the fluid. The 2-velocity is then given by

u0 = 1, uz = δuz. (3.3)

Note that u0 = 1 up to the linear order due to the constraint uµuµ = −1. In

considering the small fluctuations, one should keep in mind that spatial and temporal

variations of the thermodynamic quantities are all of linear order. We can write the

stress energy tensor to the linear order as given below

T 00 = ε+ δT 00, T 0z = δT 0z, δT zz = p− ζ

ε+ p
∂zδT

0z. (3.4)

– 10 –



In writing the above form of the stress tensor, we have eliminated δuz using

δuz =
δT 0z

ε+ p
, ∂zδu

z =
∂zδT

0z

ε+ p
. (3.5)

As we are working only to the linear order on taking the spatial derivative of δux, the

derivative acts only on δT 0z. This is because derivatives of thermodynamic quantities

are first order and therefore contribute only at second order in the above equation.

Similarly the current density can be written as

j0 = ρ+ δj0, jz = δjz = ρ
δT 0z

ε+ p
− σT∂zµ̄, (3.6)

where µ̄ = µ/T and we have again used (3.5). It is convenient to work with ther-

modynamic variables in which the energy density ε and the charge density ρ are the

independent variables and all other thermodynamic quantities are functions of ε and

ρ. Then we can write δjz as

δjz = ρ
δT 0z

ε+ p
− σT

(
∂εµ̄∂zδT

00 + ∂ρµ̄∂zδj
0
)
. (3.7)

Substituting the form of the stress tensor and the current density given in (3.4), (3.6)

and ( 3.7) into the conservation equations (3.2), we obtain

∂0δj
0 + ρ

∂zδT
0z

ε+ p
− σT

(
∂εµ̄∂

2
z δT

00 + ∂ρµ̄∂
2
zδj

0
)

= 0, (3.8)

∂0δT
00 + ∂zδT

0z = 0,

∂0δT
0z +

(
∂p

∂ε
∂zδT

00 +
∂p

∂ρ
∂zδj

0

)
− ζ

ε+ p
∂2
zδT

0z = 0.

The above three equations determine the linearised hydrodynamic modes. Perform-

ing the Fourier transform of the equations given in (3.8) both in position and time,

we obtain the following set of algebraic equations

(−iω + σT∂ρµ̄q
2)δj0 +

iρq

ε+ p
δT 0z + σT∂εµ̄q

2δT 00 = 0, (3.9)

−iωδT 00 + iqδT 0z = 0,

iq∂εpδT
00 + iq∂ρpδj

0 +

(
−iω +

ζq2

ε+ p

)
δT 0z = 0.

The above equations have non-trivial solutions for the fluctuations δj0, δT 0z, δT 00

only if the following constraint on ω is satisfied.

(−iω + σTq2∂ρµ̄)

(
ω2 − q2∂εp+

iζq2ω

ε+ p

)
+ q2∂ρp

(
iρω

ε+ p
+ σTq2∂εµ̄

)
= 0.

(3.10)

– 11 –



To solve for ω in terms of q, we can assume the following expansions for ω

ω = vsq − iDsq
2 + · · · , ω = −iDcq

2 + · · · . (3.11)

Substituting the first expansion of ω in terms of q given in the above equation in the

constraint (3.10) and matching terms of O(q3) and O(q4), we obtain the following

expressions for the sound speed and its damping coefficient

v2
s = (∂εp+

ρ

ε+ p
∂ρp), (3.12)

Ds =
ζ

2(ε+ p)
+
σT

2v2
s

(
ρ
∂ρµ̄

ε+ p
+ ∂εµ̄

)
∂ρp. (3.13)

Similarly substituting the second expansion for ω given in (3.11) in the constraint

(3.10) and demanding that the leading coefficient of O(q4) vanishes, we obtain the

following value for the charge diffusion constant Dc

Dc = σT
∂εp∂ρµ̄− ∂ρp∂εµ̄
∂εp+ ρ ∂ρp

ε+p

. (3.14)

It can be shown that these are the only two modes of the equations of motion of

linearized hydrodynamics. To summarize, the two modes are the sound mode and

the charge diffusion mode given by the dispersion relations in ( 3.11).

We can now use the thermodynamic properties of the charged black hole given

in (2.17), (2.20) and (2.21) to evaluate the dispersion relations explicitly. From

(2.20), note that the pressure just depends on the free energy of the system and

is independent of the charge density. Therefore for the R-charged D1-brane, the

dispersion relations simplify to

ω = ± 1√
2
q − i ζ

2(ε+ p)
q2, (3.15)

ω = −iσT ∂µ̄

∂ρ

∣∣∣∣
ε

q2.

We can further simplify the charge diffusion constant as follows

Dc = σ
(
∂ρµ−

µ

T
∂ρT

)
, (3.16)

= σ

(
∂lµ

∂lρ
− µ

T

∂lT

∂lρ

)
,

= σ(16πG3)
3L3

2r2
H

(3− 2k)

(3 + 2k)2
.

To obtain the second line, we have used chain rule and also the fact that the en-

ergy density ε is independent of l. The last line is obtained by evaluating all the
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the derivatives of the thermodynamic quantities using ( 2.17), ( 2.20) and ( 2.21).

Therefore we see that the charge diffusion mode is given by

ω = −iσ(16πG3)
3L3

2r2
H

(3− 2k)

(3 + 2k)2
q2. (3.17)

Note that if the conductivity σ remains finite at the boundary of thermodynamic

stability k = 3/2, the charge diffusion mode becomes unstable. Later in this paper

we will explicitly evaluate the conductivity of the charged D1-brane solution and

show that it is indeed finite at k = 3/2 and thus at the boundary of thermodynamic

stability, the charge diffusion mode becomes unstable.

One way of reading out the transport coefficients is to study the hydrodynamic

modes and identify the coefficient of the dissipative parts. From (3.15) and (3.17),

we see that we can read out both the bulk viscosity and the conductivity. Another

approach is to use Kubo’s formula which directly give the transport coefficients in

terms of the two point functions. Let us first define the various retarded Green’s

functions:

Gµναβ(ω, q) = −i
∫
d2xθ(t)e−i(ωt+qz)〈[Tµν(x), Tαβ(0)]〉, (3.18)

Gµνρ(ω, q) = −i
∫
d2xθ(t)e−i(ωt+qz)〈[Jµ(x), Tνρ(0)]〉,

Gµν(ω, q) = −i
∫
d2xθ(t)e−i(ωt+qz)〈[Jµ(x), Jν(0)]〉.

Conservation laws and symmetries constrain the form of Gµναβ(ω, q) to be [7]

Gµναβ(ω, q) = PµνPαβGB(ω, q), (3.19)

where Pµν is defined by

Pµν = ηµν −
kµkν
k2

, (3.20)

and kµ = (−ω, q). Thus the two point function of the stress tensor is determined just

by one function GB. For future reference, we write down the following component of

this correlator

Gzzzz =
ω4

(ω2 − q2)2
GB(ω, q). (3.21)

Similarly one can show that conservation laws kµGµν(ω, q) = 0 determine the form

of the retarded two point function of the currents to be [20]

Gµν(ω, q) = PµνGJ(ω, q). (3.22)

We write down the following component of this two point function

Gzz(ω, q) =
ω2

ω2 − q2
GJ(ω, q). (3.23)
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What is left now is the retarded two point function of the stress tensor and the charge

current. Though we will not be requiring the form of this two point function, for

completeness, we state that conservation laws and symmetries determine this two

point function to be

Gµνρ(ω, q) = εµσk
σPνρGS(ω, q), (3.24)

where εµν is the antisymmetric tensor with εtz = −εzt = 1.

The transport coefficients, bulk viscosity ζ and the conductivity σ are given by

the following Kubo’s formulae

ζ = lim
ω→0

i

ω
Gzzzz(ω, q = 0) = lim

ω→0

i

ω
GB(ω, 0), (3.25)

σ(ω) =
i

ω
Gzz(ω, q = 0) =

i

ω
GJ(ω, 0).

The DC conductivity can be obtained by further taking the limit

σDC = lim
ω→0

i

ω
Gzz(ω, q = 0) = lim

ω→0

i

ω
GJ(ω, 0). (3.26)

Note that all these formulae involve the q = 0 limit. This is a useful feature which

we will exploit in solving for the hydrodynamic modes from gravity. We will also be

interested in the thermal conductivity of the charged D1-brane fluid. The thermal

conductivity can be evaluated using its relation to the electrical conductivity [17],

which is given by

κT =

(
ε+ P

ρ

)2
σ

T
. (3.27)

4. Hydrodynamic modes in gravity

In this section, we study linearised fluctuations of the gravity solution in (2.6) and

isolate the gauge invariant combinations of fluctuations which correspond to the

sound mode and the diffusion mode. These we have obtained in the previous section

using general hydrodynamic considerations. We consider linearised wave like pertur-

bations of the single charged D1-brane solution of the form gµν → gµν + δgµν , Aµ →
Aµ + δAµ, φ → φ + δφ and Ψ → Ψ + δΨ. Due to translational invariance along

the D1-brane directions, we can assume that all the perturbations can be expanded

using its Fourier mode as

δgµν(t, z, r) = e−i(ωt−qz)hµν(r), δAµ(t, z, r) = e−i(ωt−qz)aµ(r), (4.1)

δφ(t, z, r) = e−i(ωt−qz)ϕ(r), δΦ(t, z, r) = e−i(ωt−qz)ξ(r).

We further parameterize the radial dependence of the metric and the gauge pertur-

bations as

htt = −c2
THtt, htz = c2

XHtz, hzz = c2
XHzz, aµ =

l2r3
0

L2
Bµ, (4.2)
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where cX and cT are defined in (2.6). We fix the gauge by imposing δgrµ = 0, δAr =

0. The linearized equations of motion for the perturbations are given by

3r2H2KH ′′zz + 3rH [(2H + 1)H + (3H + 1)K]H ′zz + 6Krξ′

−4HK (3H + 1) rϕ′ + 6r3H2(H − 1)(H −K)B′t + 12 (4H − 1) ξ

−6(H − 1)(H −K)Htt − 8
{

6H2 (H + 1) + (H − 1)(H −K)
}
ϕ = 0, (4.3)

rHH ′′tz + (5H + 2)H ′tz + 2r2(H − 1)(H −K)B′z = 0, (4.4)

3r2H2KH ′′tt + 3rH [3H (2H + 1)− (H + 1)K]H ′tt + 6Krξ′

−4HK (3H + 1) rϕ′ − 6r3H2(H − 1)(H −K)B′t + 12

(
2H + 1 +

2l2

r2

K

H

)
ξ

+6(H − 1)(H −K)Htt − 8
{

6H2 (H + 1)− (H − 1)(H −K)
}
ϕ = 0, (4.5)

H3B′′t +
H2

r
(4−H)B′t +

H

r3

(
4

H
ξ′ − 8

3
ϕ′ +H ′zz −H ′tt

)
+

8

H

(H − 1)

r4
ξ − L6

r6

H3

K
q(ωBz + qBt) = 0, (4.6)

HKB′′z +
1

r
{2H (2H + 1)− (5H − 2)K}B′z +

2

r3
H ′tz

+
L6

r6

H2

K
ω(qBt + ωBz) = 0, (4.7)

r2ϕ′′ +

[
1 +

2

K
(2H + 1)

]
rϕ′ − 3

2
r(Htt +Hzz)

′

− 6

KH
ξ +

1

K2

[
8K (2H + 1) +

L6

r4
(ω2H − q2K)

]
ϕ = 0, (4.8)

r2HKξ′′ + [2H (2H + 1) +K (5H − 4)] rξ′ − l2

r
HK(Hzz +Htt)

′

+4r3H2(H − 1)(H −K)B′t +
16

3

l2

r2

(
2H2 +K −H

)
ϕ− 4(H − 1)(H −K)Htt

+

[
(ω2H − q2K)

H

K

L6

r4
+ 4

{
H(2H + 3)− 3− (4−H) (H − 1)

K

H

}]
ξ = 0. (4.9)

Here H and K are defined in (2.7). Equations of motion obtained from the variations

δgµr and δAr lead to the following 4 constraints.

rH(qKH ′tt − ωHH ′tz) + q (2H + 1) (H −K)Htt −
4

3
qK(3H + 1)ϕ+ 2q

K

H
ξ

−2r2H(H − 1)(H −K)(qBt + ωBz) = 0, (4.10)

rH2(qHtz + ωHzz)
′ + 2ωξ − 4

3
ωH(3H + 1)ϕ

−H
K

(H −K) (2H + 1) (ωHzz + 2qHtz) = 0, (4.11)

3rH2K (3H + 1)H ′tt + 3rH3 (K + 2H + 1)H ′zz + 4rH2K (3H + 1)ϕ′ − 6rHKξ′

+6r3H3(H − 1)(H −K)B′t + 12 {(2H + 1)H + 2(H − 1)(H −K)} ξ
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−8H
{

6H2(H + 1) + (H − 1)(H −K)
}
ϕ− 6H(H − 1)(H −K)Htt

+3
H4

K

L6

r4

(
−q2K

H
Htt + 2ωqHtz + ω2Hzz

)
= 0, (4.12)

r3H2

(
ωB′t + q

K

H
B′z

)
+ 2qHtz − ω

(
Htt −Hzz +

8

3
ϕ− 4

H
ξ

)
= 0. (4.13)

It can be shown that the constraints (4.10), ( 4.11), ( 4.12) and ( 4.13) are consistent

with the dynamical equations of motion (4.3), ( 4.4), ( 4.5), (4.6), ( 4.7), ( 4.8) and

(4.9). That is, on evolving the constraints using the equations of motion, one does

not generate new constraints. We have verified that on differentiating the constraints

with respect to r, one just obtains a linear combination of the dynamical equations

of motion as well as the constraints.

Though we have fixed the gauge δgµr = 0, δAr = 0, there are still residual

gauge degrees of freedom arising from diffeomorphisms xµ → xµ + εµ with εµ =

εµ(r, ω, q)e−iωt+iqz and U(1) gauge transformations Aµ → Aµ + ∂µχ with χ = χ̃(ω, q)

e−iωt+iqz. Under diffeomorphism, the metric, the gauge field and the scalars transform

as

gµν → gµν −∇µεν −∇νεµ, (4.14)

Aµ → Aµ − ∂µερAρ − εσ∂σAµ,
φ → φ− ∂µφεµ, Ψ→ Ψ− ∂µΨεµ,

where εµ(r, ω, q) is determined by the gauge condition δgµr = 0. The residual U(1)

gauge transformations on a given Fourier mode of the gauge field act as follows

At → At − iωχ̃, Az → Az + iqχ̃. (4.15)

Instead of fixing the gauge completely, it is more convenient to work in variables

which are invariant under these residual gauge transformations. To do this, we first

work out the change of the fluctuations under diffeomorphisms explicitly. This is

given by

Htt → Htt −
2

c2
T

(iωεt + Γrttεr),

Htz → Htz +
1

c2
X

(iωεz − iqεt), Hzz → Hzz −
2

c2
X

(iqεz − Γrzzεr).

Bt → Bt −
2

r3H2
εr + iω

L2At
lr3

0

εt, Bz → Bz − iq
L2At
lr3

0

εt.

ϕ→ ϕ− φ′

c2
R

εr, ξ → ξ − H ′

c2
R

εr, (4.16)

where Γ’s refer to the Christoffel symbols of the single charged D1-brane solution.

Similarly under the U(1) transformations, the gauge field fluctuations change as

Bt → Bt − iωχ̃, Bz → Bz + iqχ̃. (4.17)
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From the gauge transformations in (4.16) and ( 4.17), we can show that the following

are gauge invariant variables both under diffeomorphisms as well as U(1) gauge

transformations.

ZP = −q2K

H
Htt + 2ωqHtz + ω2Hzz −

2V

3H
ϕ,

GP = qBt + ωBz +
2q

3r2H2
ϕ,

SP = 2(1−H)ϕ+ 3ξ. (4.18)

where

V = q2(K + 2H + 1)− ω2(3H + 1) (4.19)

and k is defined in (2.18). Note that the gauge invariant variables given in (4.18)

are not unique, in fact any linear combinations of the above variables are also gauge

invariant.

After tedious but straightforward manipulations, it can be shown that the dy-

namical equations and the constraint equations can be used to write down 3 second

order coupled linear differential equations for the gauge invariant variables ZP , GP

and SP . Before we present these equations, we redefine quantities so that we are

dealing only with dimensionless variables as follows:

r2
H

r2
= u, q̂ = rHq, ω̂ = rHω,

ẐP = r2
HZp, ĜP = r3

HGP , ŜP = SP

r6
0 = r6

H(1 + k) with k =
l2

r2
H

, L̂ =
L

rH
. (4.20)

We also define the expression

αt = q2K

H
− ω2. (4.21)

In the equations below, for brevity of notation, we continue to refer to the hatted

dimensionless quantities in terms of their original symbols. The equations for the

gauge invariant quantities are given below where the prime denotes derivative with

respect to the dimensionless quantity u.

Z ′′P +

[
(K − 2H − 1)

uK
+

2

uHV
{q2(H −K)(2H + 1) + (H − 1)(q2 − ω2)}

]
Z ′P

=

[
L6H

4K2
αt +

(H −K)

u2HVK
{q2(K(4H + 5)− (2H + 1)2)− ω2(H − 1)}

]
ZP

+
2q(H −K)(H − 1)

u3HVK
[q2{K(4H + 5)− (2H + 1)2}

−ω2(H − 1) + 6ω2(H + 1)(H −K)]GP
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+
1

3u2V H3K

[
−q4(H −K)2(3H + 10) + 6q2ω2(H −K)2(H + 2)

+(9H2 − 2H + 1)H(q2 − ω2)2 − 6H(H − 1)(H −K)(q2 − ω2)2

−2(H −K)q2(q2 − ω2)(2H2 −H + 1)
]
SP , (4.22)

G′′P −
G′P

uH2Kαt
[2q2K2(1−H) + ω2H{K(4H − 1)−H(2H + 1)}]

+
q

H2V αt
[q2(2H −K + 1)− ω2(H + 1)]Z ′P −

2q

3H3
S ′P

=
GP

V H3K2αt

[
L6

4
H4V α2

t +
K

u2
(H − 1)(H −K){q2(2H + 1)(2q2K

−ω2(H +K))− ω2αtH(3H + 1)}
]

+
q

uH2V K
(2H + 1)(H −K)ZP

+
q

3uH5KV αt
[(1 + 3H − 6H2)H2(q2 − ω2)2

+q4(H −K){2H + (3H + 2)HK + 2(H − 1)K2}+ 3q2HV (H − 1)(H −K)

+ω2H(H −K){q2(H2 − 6KH − 2) + 2Hαt + 2V (H + 1)}]SP , (4.23)

S ′′P −
6(H − 1)(q2 − ω2)

uV αt
Z ′P −

6q

u2αt
(H − 1)(H −K)G′P

− 1

uHK
[H(2H + 1) +K(H − 2)]S ′P =

− 3

u2V K
(H − 1)(H −K)ZP −

6q

u3V Hαt
(H − 1)2(H −K)(q2 − ω2)GP

+
1

u2H3KV αt

[
L6u2

4K
VH4α2

t + (4−H)(H − 1)H2Kα2
t

−(q2 − ω2)2H2(8H3 + 5H2 − 7H + 2)

+q2H(H −K){αt(H + 1)(4H2 − 9H + 6) + q2(8H3 + 5H2 − 7H + 2)}
+ω2(H −K){q2H(2 + 11H − 13H2 − 8H3)−H(H − 1)αt(2H

2 − 3H − 6)

+4ω2H(H − 1)(2H + 1)}
]
SP . (4.24)

At present, it seems that there are 3 gauge invariant modes in contrast with the

2 modes in 1 + 1 hydrodynamics as shown in the previous section. We will show

subsequently that one of these modes can be decoupled from the rest and consistently

set to zero and plays no role in determining the transport coefficients.

4.1 Properties of the fundamental equations

Though the equations given in (4.22), ( 4.23) and ( 4.24) seem a set of complicated

coupled differential equations, we will show that for the transport properties of in-

terest, namely the conductivity and the bulk viscosity can be obtained from them

using analytical methods. For this purpose, we need to discuss various properties

relevant to these equations.
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(i) l = 0 limit

In this limit, the charged D1-brane reduces to the uncharged D1-brane. An

important check for the system of equations in (4.22), ( 4.23) and ( 4.24) is that they

decouple and one of the mode reduces to the sound mode studied in [7]. Setting

l = 0, we see the parameters which enter these equations reduce to

r0 → rH , H → 1, K → f = 1− r6
0

r6
, (4.25)

αt → q2(f − λ),

V → q2(3 + f − 4λ), with λ =
ω2

q2
. (4.26)

Note that with these parameters, the mode ZP reduces to the sound mode studied

in [7], also the definition of Htt is negative of Htt in [7]. Substituting these values of

the parameters into the fundamental equations for the gauge invariant fluctuations,

we see that the variable SP can be consistently set to zero and the equation for ZP
decouples from GP . The equation for ZP reduces to

Z ′′P +

[
6 + f

rf
− 12(1− f)

r(3 + f − 4λ)

]
Z ′P −

[
q2L6

f 2r6
(f − λ)− 36(1− f)2

r2f(f + 3− 4λ)

]
ZP = 0.

(4.27)

It can be seen that this is the equation for the sound mode obtained in [7]. To write

the equation for the gauge fluctuation in the l = 0 limit, it is convenient to redefine

it as

HP =
lr3

0

L2
GP = q

(
lr3

0

L2
Bt

)
+ ω

(
lr3

0

L2
Bz

)
+

2qlr3
0

3r2H2L2
ϕ,

= qδAt + ωδAz +
2qlr3

0

3r2H2L2
ϕ. (4.28)

Thus in the l → 0 limit, the dilaton fluctuation decouples from the gauge invariant

combination HP . Substituting GP in terms of HP , it can be seen that the sound

mode ZP decouples from the gauge mode and reduces to

H ′′P −
3u2λ

(λ− f)f
H ′P +

L3

4f 2
(ω2 − q2f)HP = 0. (4.29)

It can be easily verified that this is the equation which is obtained by examining the

gauge field equation

∂µ(
√
−ge−4φ/3F µν) = 0, (4.30)

where the metric and the dilaton background values are that of the uncharged D1-

brane. The background gauge field in this case vanishes and the field strength F µν

is just that of the fluctuations δAz and δAt. Thus we have seen that in the l = 0

limit, we obtain two modes, the mode ZP corresponds to the sound mode and the
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mode HP corresponds to the charge diffusion mode. This is what is expected for the

uncharged D1-brane. The dispersion relation for the quasi-normal mode of ZP was

obtained in [7] and it is given by

ω = ± 1√
2
q − iL

3

12
q2 + .... (4.31)

Note that we are measuring all quantities in units of rH = r0 here. Then identifying

the sound speed and the bulk viscosity from the above dispersion relation, it was

seen that

v2
s =

1

2
,

ζ

s
=

1

4π
, (4.32)

where s represents entropy density for the uncharged D1-brane. In this paper, we

will show that the ratio ζ/s continues to be 1
4π

for the case of the charged D1-brane

also. The quasi-normal mode for the gauge field equation (4.29) is given by

HP = A(1− u3)−i
L3

6
ω

(
1 + iω

L3

2

[
1

2
ln

1 + u+ u2

3
(4.33)

+
1√
3

{
tan−1

(
2u+ 1√

3

)
− π

3

}]
+ i

q2L3

2ω
(1− u) +O(ω2, q4, ωq2)

)
where A is an arbitrary constant. Note that the above solution satisfies the ingoing

boundary condition at the horizon u = 1. Imposing the Dirichlet condition at the

boundary u = 0, we obtain the charge dispersion relation

ω = −iL
3

2
q2 + · · · . (4.34)

Here again, we are measuring all quantities in units of rH = r0. Using the expression

for the charge diffusion constant in terms of conductivity given in (3.16), we find the

conductivity for the D1-brane system in absence of charge density is given by

σ =
1

16πG3

. (4.35)

ii. q = 0 limit

Note that the formula for conductivity as well as the Kubo’s formula for bulk

viscosity involves the q → 0 limit. It is therefore useful to examine the fundamental

equations in this limit. The following simplifications occurs in this limit

αt → −ω2, V → −(3H + 1)ω2. (4.36)

Examining the equation for the gauge field ( 4.23), we see that it decouples from ZP
and SP and it reduces to

G′′P+[K(4H−1)−H(2H+1)]
G′P
uHK

− (H − 1)(H −K)

u2H2K
GP+

L6

4

H

K2
w2GP = 0. (4.37)
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The equation for ZP and SP are coupled, they reduce to

Z ′′P +

{
K − 2H − 1

uK
+

2(H − 1)

uH(3H + 1)

}
Z ′P +

L6ω2H

4K2
ZP (4.38)

=
(H − 1)(H −K)

u2HK(3H + 1)
ZP −

(9H2 − 2H + 1)− 6(H − 1)(H −K)

3u2H2K(3H + 1)
S̃P ,

S̃ ′′P −
{K(H − 2) +H(2H + 1)}

uHK
S̃ ′P +

6(H − 1)

u(3H + 1)
Z ′P

=
3(H − 1)(H −K)

u2K(3H + 1)
ZP −

{
L6ω2H

4K2
+

2H

u2K
+

(H2 − 1)(3H − 2)

u2H2(3H + 1)

}
S̃P ,

where

S̃P = ω2SP . (4.39)

It is now possible to decouple the equations for ZP and S̃P by redefining S̃P as

S̃P = ŜP +
3H(1−H)

3H + 1
ZP . (4.40)

In terms of ŜP , the equations in (4.38) reduce to

Ŝ ′′P −
{K(H − 2) +H(2H + 1)}

uHK
Ŝ ′P

= −
{
L6ω2H

4K2
+

2H

u2K
+

(H2 − 1)(3H − 2)

u2H2(3H + 1)

}
ŜP ,

Z ′′P +

{
K − 2H − 1

uK
+

2(H − 1)

uH(3H + 1)

}
Z ′P −

(H − 1)(H −K)

u2HK(3H + 1)
ZP +

L6ω2H

4K2
ZP

= −(9H2 − 2H + 1)− 6(H − 1)(H −K)

3u2H2K(3H + 1)

(
ŜP +

3H(1−H)

3H + 1
ZP

)
. (4.41)

Note that ZP decouples from the equation for ŜP . We can now set ŜP consistently

to zero and study only the decoupled equation for ZP . Simplifying the equation for

ZP , we obtain

Z ′′P +

{
K − 2H − 1

uK
+

2(H − 1)

uH(3H + 1)

}
Z ′P +

L6ω2H

4K2
ZP

=
(H − 1)(K(3H − 7) + (3H + 1)(2H + 1))

u2HK(3H + 1)2
ZP . (4.42)

Thus we have shown that setting q = 0, we can obtain two decoupled equations

(4.37) and (4.42) which correspond to the charge diffusion mode and the sound

mode. Thus to obtain conductivity and the bulk viscosity of the charged D1-brane

fluid, it is sufficient to study the equations (4.37) and (4.42).

iii. Behaviour at the horizon
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To obtain the behaviour of the functions GP and ZP at the horizon, we define

x = ln(1 − u). Then both the equations (4.37) and (4.42) reduce to the oscillator

equation

(∂2
x +

L6

4

1 + k

(2k + 3)2
ω2)Y = 0. (4.43)

The ratio, 1+k
(2k+3)2

is obtained due to the behaviour of the coefficient proportional to

ω2 in both the equations. Thus the behaviour near the horizon is given by

GP , ZP → (1− u)±i
L3√1+k
2(2k+3) , for u→ 1. (4.44)

Since classically horizons do not radiate, we need to choose the ingoing boundary

condition

(1− u)−i
L3√1+k
2(2k+3) , (4.45)

to solve these equations.

iv. Behaviour at the boundary

Examining the coefficients of the equation for GP given in (4.37) for u→ 0, the

boundary, the equation reduces to

G′′P + 2kG′P +
L6

4
ω2GP = 0. (4.46)

Thus the solution for GP at the boundary, u→ 0, admits a Taylor series expansion

of the form

GP ∼ A(1 +O(u2)) +Bu(1 +O(u2)) + u→ 0, (4.47)

where A and B are integration constants. Similarly examining the coefficients of the

equation for ZP given in (4.42), we see that, at the boundary, the equation reduces

to

Z ′′P −
2

u
Z ′p +

8k

9u
ZP = 0. (4.48)

The above equation admits an expansion of the form

ZP ∼ A(1 + · · ·) +Bu3(1 + · · ·). (4.49)

The behaviour at the boundary is necessary to obtain the transport coefficients. In

fact, the transport coefficients are proportional to the ratio B/A, that is the ratio of

the normalizable mode by the non-normalizable mode.

5. Transport coefficients from gravity

We first summarize the method put forward by [21, 22] to evaluate transport coeffi-

cients from gravity.
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1. Let Zk(r) be the gauge invariant variables constructed from the fluctuating

gravity fields. In general, they satisfy coupled second order linear differential

equations. We choose linear combination Z(r) such that they satisfy decoupled

second order linear differential equations. These decoupled gauge invariant

variables correspond to the hydrodynamic modes of the field theory.

2. A local solution of the second order differential equations near the horizon

r = r0 will in general be a superposition of incoming and outgoing waves.

Classically the horizon does not radiate, therefore, we choose the incoming

wave boundary condition at the horizon.

3. The solution which obeys incoming wave boundary condition at the horizon

can be written as a linear combination of two local solutions f1(r) and f2(r) at

the boundary r →∞ as

Z(r) = Af1(r) +Bf2(r), (5.1)

where A and B are the connection coefficients of the corresponding differential

equations. Coefficients A and B depend on the parameters ω, q which enter

the differential equation. Near the boundary, the solution (5.1) admits an

expansion

Z(r) = A(1 + · · ·) +Br−∆(1 + · · ·), (5.2)

where the ellipses denote higher powers of r which are suppressed as r → ∞
and ∆ > 0.

4. The action of the quadratic fluctuations can also be organized in terms of the

gauge invariant observables. Evaluating the action on shell, it reduces to a

boundary term which is of the form

S(2) = lim
r→∞

∫
dωdqF (r, ω, q)Z ′(r)Z(r) + contact terms, (5.3)

where the contact terms do not involve derivatives of Z(r) and

F (r, ω, q)→ r∆+1f(ω, q), as, r →∞. (5.4)

5. We can now use the fact that Z(r) is a linear combination of the fluctuation

gravity fields and apply the prescription in [21, 22] to compute the retarded

correlator for the corresponding operator O in the field theory. We obtain

〈OO〉R ∼
B

A
∼ r∆+1

Z

dZ(r)

dr

∣∣∣∣
r→∞,finite term

. (5.5)

We have not written an equality but used ∼ as we have not yet kept track of

the proportionality constant which depends on F (r, ω, q) in the limit r → ∞.
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We have used the expansion in (5.2) and the property (5.4) to write the last

relation in (5.5). Note that from the last expression in (5.5), we need to extract

the finite piece to obtain the ratio B/A.

6. To apply Kubo’s formula, we only need the retarded correlator with q = 0.

Thus it suffices to evaluate the following ratio to obtain the transport coeffi-

cients of interest,

lim
r→∞

1

Z

dZ(r)

dr

∣∣∣∣
q=0

. (5.6)

In fact, for the DC conductivity and the bulk viscosity, we need to take a ω → 0

limit which is given by

Re

(
lim

r→∞,ω→0

1

iωZ

dZ(r)

dr

∣∣∣∣
q=0

)
. (5.7)

Since it is only the ratio

R(r) =
1

Z

dZ(r)

dr
. (5.8)

at r → ∞ that determines the retarded correlators, one can determine the differ-

ential equation satisfied by R(r) from the second order ordinary linear differential

equation satisfied by Z(r). We will see that this is a first order, ordinary but non-

linear differential equation. The boundary conditions for this differential equation

are determined from the ingoing boundary conditions satisfied by Z(r) at the hori-

zon. This equation, in fact, governs the radial evolution of the transport coefficients.

We will show that for the DC conductivity and for the bulk viscosity, this equation is

exactly solvable enabling us to determine the analytic expressions for these transport

coefficients. The fact that the evaluation of transport coefficients can be reduced to

solving a first order but non-linear differential equation has been observed recently

for the case of N = 4 super-Yang Mills by [23] and has been argued to be true in

general in [24].

The rest of this section is organized as follows: We first show that the radial evo-

lution of the transport coefficients are determined by first order non-linear ordinary

differential equations. These equations are exactly solvable for the DC conductiv-

ity and the bulk viscosity. We then evaluate the effective action to determine the

proportionality constant relating the ratio R in (5.8) to the transport coefficients.

5.1 Radial evolution of the transport coefficients

Radial evolution of conductivity
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Let us obtain the equation that governs the radial evolution of conductivity.

Note that the equation for GP can be written as

1

HK
(HKG′P )′ − (H − 1)(H −K)

u2H2K
GP +

L6

4

H

K2
w2GP = 0. (5.9)

One can now think of this mode as a minimally coupled scalar with a mass term

proportional to (H − 1). Thus except for the term proportional to (H − 1), it falls

in the class of equations of motion studied in [25] for which the radial evolution of

the transport coefficients was easy to obtain in the ω → 0 limit 5. To remove this

term from (5.9), we perform the following redefinition

GP =
2H + 1

H
G. (5.10)

Then the equation for G reduces to

G′′ +

(
8H2 + 1

uH(2H + 1)
− 2H + 1

uK

)
G′ +

L6

4

H

K2
w2G = 0. (5.11)

Thus, the redefinition in (5.10) removes the mass term and reduces the equation

to that of a minimally coupled massless scalar. To obtain the R-charge retarded

correlator, we need to impose ingoing boundary conditions at the horizon, u = 1 on

GP . From the redefinition in (5.10), we see that this translates to ingoing boundary

condition on G. From the discussion in around (4.45), we see that we have to impose

the condition

G ∼ (1− u)−i
L3√1+k
2(2k+3) , u→ 1. (5.12)

As we have discussed earlier conductivity is proportional to the ratio

RGP =
1

iωGP

dGP

du
=

i

ω

k

H(2H + 1)
+

1

iωG

dG

du
, (5.13)

where we have used the redefinition given in (5.10) and also changed the variable

from r to u. Thus we need to evaluate the ratio 1
iωG

dG
du

at the boundary subject to

the condition (5.12) at the horizon. Let us define this ratio as

fG =
1

iωG

dG

du
. (5.14)

The boundary condition for this ratio at the horizon, u = 1 is then given by

fG|rH →
L3
√

1 + k

2(3 + 2k)(1− u)
+ . . . , (5.15)

5See equation (38) in [25].
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where the ellipses refer to sub-leading terms at u = 1. The differential equation

satisfied by the ratio fG can be obtained from the differential equation in (5.11).

This is given by

f ′G +

(
8H2 + 1

uH(2H + 1)
− 2H + 1

uK

)
fG − i

L6H

4K2
ω + iωf 2

G = 0. (5.16)

This is a first order non-linear differential equation which governs the radial evolution

of conductivity. From this equation, it is easy to obtain the DC conductivity and the

pole at ω → 0 present in the imaginary part of the conductivity. We first decompose

the above equation into its real and imaginary parts.

RefG +

(
8H2 + 1

uH(2H + 1)
− 2H + 1

uK

)
RefG − 2ωImfGRefG = 0,

Imf ′G +

(
8H2 + 1

uH(2H + 1)
− 2H + 1

uK

)
ImfG − ω

(
Imf 2

G − Ref 2
G +

L6H

4K2

)
= 0.

These equations simplify and decouple in the limit ω → 0. This decoupling would

not have been possible in the original equation for GP given in (5.9) due to the

presence of the mass term proportional to (H − 1). But removing this term through

the re-definition in (5.10) enables us to calculate DC conductivity exactly as follows.

The solution for fG satisfying the boundary condition (5.15) in the ω → 0 limit is

given by

RefG =
(2k + 3)2

√
1 + k

H

K(2H + 1)2
, ImfG = 0. (5.17)

We can now use (5.13) to evaluate the ratio which is proportional to the real part of

the DC conductivity. This is given by

Re (RGP )u→0,ω→0 =
L3

2

[
RefG + Re

(
i

ω

k

H(2H + 1)

)]
u→0,ω→0

,

=
L3

2

(2k + 3)2

9
√

1 + k
. (5.18)

Now from the solution for ImfG given in (5.17) in the ω → 0 limit, we see that

ImfG = O(ω). Thus imaginary part of the conductivity in the ω → 0 limit is given

by

Im (RGP )u→0,ω→0 = Im

(
i

ω

k

H(2H + 1)

)
u→0

=
k

3ω
. (5.19)

Therefore we see that the imaginary part of the conductivity has a pole at ω → 0

limit which is expected because of the translational invariance of the system. Trans-

lational invariance implies that there are no-impurities, which in turn implies infinite

conductivity at ω = 0 by Drude’s formula. In fact, using the Kramers-Kronig relation

Imσ(ω) = − 1

π
P
∫ ∞
−∞

Reσ(ω′)

ω′ − ω
dω′, (5.20)
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we see that the real part of the conductivity contains a delta function if and only

if the imaginary part has a pole. Since we have found a pole in the imaginary part

of the conductivity, it follows that the real part has a delta function singularity at

ω = 0. Therefore the value for the DC conductivity 6 is valid at ω → 0+.

As a further check on our analytical manipulations, we have solved the differential

equation for conductivity given in (5.9) numerically subject to the ingoing boundary

conditions at the horizon and evaluated the ratio RGP . For very small values of ω,

we find very good agreement with the formula given in (5.18) and (5.19). This is

shown in figure. 1 of section 5.2.

Radial evolution of bulk viscosity

The bulk viscosity is determined from the equation for ZP given in (4.42) which

can be written as

1

K

d

dy

(
K
dZP
dy

)
+

2(H − 1)

3yH(3H + 1)

dZP
dy

+
ω2L6H

36u4K2
ZP

=
(H − 1)(K(3H − 7) + (3H + 1)(2H + 1))

9u6HK(3H + 1)2
ZP . (5.21)

where y = u3. Again, we see that the equation resembles a minimally coupled scalar

equation except for the terms proportional to (H − 1). We can remove these terms

by the following redefinition for ZP .

ZP =
3H + 1

H
Z. (5.22)

Then the equation for Z reduces to the simple form

Z ′′ +
K − 2H − 1

uK
Z ′ +

ω2L3H

4K2
Z = 0. (5.23)

To obtain the retarded two point function of the stress tensor we need to impose

ingoing boundary condition on ZP at u = 1. Using the redefinition in (5.22), we see

that this translates to the ingoing boundary condition onG at the horizon. Therefore,

we need to impose

Z → (1− u)−i
L3√1+k
2(2k+3) , u→ 1 (5.24)

From the earlier discussion, we see that the bulk viscosity is proportional to the real

part of the following ratio evaluated at the boundary.

Re(RZP ) = Re

(
1

iω3u2ZP

dZP
du

)
, (5.25)

6Recently [26] has made a proposal for the value of the DC conductivity for conformal systems

with chemical potential in arbitrary dimensions. We thank Sean Hartnoll for bringing this reference

to our attention.
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= Re

(
1

iω

k

3u2(1 + ku)

)
+ Re

(
1

iω3u2Z

dZ

du

)
,

= Re

(
1

iω3u2

dZ

du

)
,

Here, we have used the redefinition of ZP given in (5.22). We are dividing by 3u2

so that we can extract out the ratio B/A in the expansion of ZP near the boundary

given in (4.49). Note that since the bulk viscosity is proportional to the real part of

the ratio 1
iω3u2

dZP
du

, it is determined by the behaviour of Z. Therefore let us define

the ratio

fZ =
1

iωZ

dZ

du
. (5.26)

Using the ingoing boundary condition for Z at the horizon, boundary condition for

fZ at the horizon is given by

fZ |u→1 →
L3
√

1 + k

2(3 + 2k)(1− u)
+ . . . , (5.27)

where ellipses refer to sub-leading terms at u = 1. The differential equation satisfied

by fZ can be obtained from the differential equation for Z in (5.23) and is given by

f ′Z +
K − 2H − 1

uK
fZ − i

L6H

4K2
ω + iωf 2

Z = 0. (5.28)

Again separating into the real and imaginary parts we obtain

Ref ′Z +
K − 2H − 1

uK
RefZ − 2ωImfZRefZ = 0,

Imf ′Z +
K − 2H − 1

uK
ImfZ + ω(Ref 2

Z − Imf 2
Z)− ωL6H

4K2
= 0. (5.29)

The solution of these equations in the ω → 0 limit which obeys the boundary condi-

tions in (5.27) is given by

RefZ =
L3
√

1 + ku2

2K
, ImfZ = 0. (5.30)

It is now easy to obtain the ratio which is proportional to the bulk viscosity. It is

given by

Re(RZP )|u→0 = Re

(
1

iω3u2

dZ

du

)∣∣∣∣
u→0

, (5.31)

= Re
fZ
3u2

,

=
L3

2

√
1 + k

3
. (5.32)
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Again as a further check on our manipulations, we evaluate the ratioRZP directly

by solving the differential equation (4.42) numerically subject to ingoing boundary

conditions at the horizon. We find the result for ω → 0 in very good agreement with

the expression given in (5.31). This is shown in figure 2 of section 5.2.

Note that the problem of obtaining the DC conductivity and the bulk viscosity

has been reduced to solving a first order but non-linear differential equation. This

equation governs the radial evolution of the ratio which is proportional to the re-

spective transport coefficient. In the ω → 0 limit, the solution of these transport

coefficients were easy to obtain exactly.

5.2 Comparison with numerical analysis

In this section, we solve the equations of motion for the charge diffusion and sound

mode numerically and find the transport coefficients. We will actually find the ratio

RGP and ReRZP which is proportional to the conductivity and the viscosity. Further

more, we work in a normalization in which L3 = 2 for convenience. Since we have

analytic expressions for DC value of conductivity as well as viscosity at very small

ω, we can check our numerics with these results. We also know the exact expression

for conductivity and viscosity in the limit l = 0 and this gives us another check on

our numerical results.
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Figure 1: Plots of real (on left) and log of imaginary part of conductivity vs k for the

single charged case. On left, the different colors red, black, blue, green, magenta and

purple correspond to ω = 10−10, 0.2, 0.4, 0.6, 0.8 and 1.0 respectively. On right, the

different colors red, blue, orange, gray and pink correspond to ω = 10−10, 10−9, 10−8, 10−7

and 10−6 respectively. The dots are the numerical values and the solid lines are curves Im

σ = k
3ω . σ is in units of (16πG3)−1 and ω is in units of 2r2

H/L
3.

In figure (1), we plot real and imaginary parts of conductivity vs k for the single

charged case. For k = 0, the real part of conductivity approaches 1. This is in

accord with our analytic calculation for l = 0 case. We compare the k dependence

obtained numerically for the real part of conductivity for very small ω (ω = 10−10)

with the DC conductivity. We find good agreement between them as the absolute

value of the difference between numerical and analytically obtained values is at most

10−5. We expect that the errors in our numerics remain in the same order for all

other numerical curves, which tell dependence of AC conductivity on k for different
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values of ω. We don’t have analytic expressions for non-trivial ω to compare them

with. We find that conductivity increases monotonically with k, thought the slope

decreases as we increase ω. Similarly we see that for small ω, our numerical results

for imaginary part of conductivity fit well with the analytic expression. The absolute

difference in this case is at most 10−6. For small ω, imaginary part of conductivity

grows linearly with k.
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Figure 2: Plots of viscosity vs k (on left) and ω for single charged case. On left, the

different colors red, black, blue, green, magenta and purple correspond to ω = 10−10, 0.2,

0.4, 0.6, 0.8 and 1.0 respectively. On right, the different colors red, black, blue, green,

magenta, purple and orange correspond to k = 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 2.9 respectively.

ζ is in units of r4
H/(16πG3L

4) and ω is in units of 2r2
H/L

3.

In figure (2), we plot viscosity against k and ω for the single charged case. We

note from the plot that the smallest value of ζ is at ω = k = 0. We also compare the

analytic expression for the viscosity as a function of k for ω → 0 with the numeric

plot of ζ vs k for ω = 10−10 (red curve in left plot in figure (2) ). We find the absolute

difference between analytical and numerical values to be less than 10−4. From the

curves, we see that the curve for ζ vs k for a given ω shifts as a whole as one changes

ω. From the right plot, we see that the amount of shift increases non-linearly with

ω.
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Figure 3: Plots of real (on left) and log of imaginary part of conductivity vs k for the

equal charged case. On left, the different colors red, black, blue, green, magenta and

purple correspond to ω = 10−10, 0.2, 0.4, 0.6, 0.8 and 1.0 respectively. On right, the

different colors red, blue, orange, gray and pink correspond to ω = 10−10, 10−9, 10−8, 10−7

and 10−6 respectively. The dots are the numerical values and the solid lines are curves Im

σ = 4k
3ω . σ is in units of (16πG3)−1 and ω is in units of 2r2

H/L
3.
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In figure (3), we plot the real and imaginary part of conductivity against k for the

equal charged case. Here too, we have analytic expressions for the DC conductivity

which we compare with the σ vs k plot for ω = 10−10, red curve in the left plot.

We find a good agreement with the absolute difference between the numeric and

analytic values being less than 10−6. This bound on error is also same for the plots

of imaginary conductivity vs k on the right. We observe here that there is little

change in the curves of σ vs k as one changes ω. The σ vs k behaviour here is very

different from the same in single charged case. Latter, the curves were monotonically

increasing, but here, conductivity decreases with increasing k.
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Figure 4: Plots of viscosity vs k (on left) and ω for equal charged case. On left, the

different colors red, black, blue, green, magenta and purple correspond to ω = 10−10, 0.2,

0.4, 0.6, 0.8 and 1.0 respectively. On right, the same correspond to k = 0, 0.5, 1.0, 1.5,

2.0 and 2.5 respectively. Orange curve on right correspond to k = 2.9. ζ is in units of

r4
H/(16πG3L

4) and ω is in units of 2r2
H/L

3.

Now we plot the behaviour of viscosity vs k and ω in figure (4). Again as in

the single charged case, the minimum value of viscosity is at k = ω = 0, which is

same as before and saturates the conjectured lower bound on bulk viscosity. The

red curve on the left, which stands for viscosity vs k at ω = 10−10 is compared to

analytic value of viscosity obtained in the ω → 0 limit. We get the absolute difference

between analytic and numerical values to be less than 10−9 here, suggesting excellent

agreement. We find little dependence of viscosity on ω, particularly at smaller values

of k.

5.3 Evaluation of the transport coefficients

In this section, we use the standard prescription of the gauge/gravity correspondence

to evaluate the retarded two point functions which determines the conductivity and

bulk viscosity. This will determine the proportionality constant between the ratios

RGP , RZP and the transport coefficients. For this, we first need to expand the

bulk action given in (2.8) along with the Gibbons-Hawking boundary term to second

order in the fluctuations Hµν , Bµ, ϕ and ξ. In this section, we will not be using the

dimensionless variables given in (4.20). All quantities in this section will have their

respective dimensions, whenever needed, we will restore the dimensions of the ratios

RGP and RZP . Using equations of motion and the constraints (Equations (4.3) to
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(4.13)), we can write the bulk action (2.8) expanded to second order in fluctuations

as a total derivative in r.

S
(2)

bulk
=

1

16πG3

∫
dωdqdr

dLB
dr

,

L7

r7
LB =

K

4
(2HttHtt

′ −HzzHtt
′ −HttHzz

′ + 2HzzHzz
′)− 3

2
HHtzH

′
tz

− r

2ω
(H − 1)(H −K) (qBt + wBz)

(
r3HKB′z + 2Htz

)
− 8

9
Kϕϕ′

− K

2H2
ξξ′ +

K

3H
(ξϕ′ + ϕξ′) +

K

rH3
(2−H)ξ2 +

2K

3rH2
(H − 1)ϕξ

− 1

2rH
HttHzz{H(2H + 1) + (4H + 1)K}

+
1

4rH
(Htt +Hzz) {K(3H + 1)Hzz +H(2H +K + 1)Htt}

+
1

rK
Htz

2{H(2H + 1)− (5H + 2)K} − 4K

3r
(Htt −Hzz)ϕ

+
K

3rH
{(7H + 1)Htt − (H − 1)Hzz}ϕ−

K

2rH2
(Htt +Hzz)ξ. (5.33)

Note that here the prime denotes derivative with respect to r. The Gibbons-Hawking

term expanded to second order in fluctuations is given by

S
(2)
GH =

1

8πG3

∫
d2x
√
−hKext,

8L7

r6

√
−hKext =

4

K
{K(8H + 3)−H(2H + 1)}H2

tz + 8rHHtzH
′
tz

− 1

H
(Htt −Hzz)

2{K(1 + 4H) +H(2H + 1)}

−2rK(Htt −Hzz)(H
′
tt −H ′zz). (5.34)

We now combine the S
(2)
bulk and S

(2)
GH. Using the constraints, we can rewrite it in terms

of the gauge invariant quantities ZP , GP and SP as follows

S = S
(2)

bulk
+ S

(2)
GH =

1

16πG3

∫
dωdqL,

L7

r7
L =

l2r6
0K

2r8αtH

( q
V
ZP + r2HGP

)( q
V
ZP + r2HGP

)′
− 3H2K

2V 2
ZPZ

′
P

−K
2

(
ZP
V

+
SP
3H

)(
ZP
V

+
SP
3H

)′
+ contact terms. (5.35)

where ‘contact terms’ represent those terms in the action which do not contain any

derivatives in r and the counter terms which render the complete boundary action

finite. Next we define a new variable

S = SP +
3H(1−H)

V
ZP . (5.36)
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Note that this is also a gauge invariant variable. It has the following useful property

S → Ŝ

ω2
, as q → 0. (5.37)

where Ŝ is defined in (4.40). Thus on taking q → 0 limit, we can consistently set S
to zero. We can now rewrite the boundary Lagrangian using S as

L7

r7
L =

l2r6
0HK

2r4αt

( q

r2V H
ZP +GP

)( q

r2V H
ZP +GP

)′
− 2H2K

V 2
ZPZ

′
P

− K

18H2
SS ′ − K

6V
(ZPS ′ + SZ ′P ) + contact terms. (5.38)

To evaluate the transport coefficients using the Kubo’s formula in (3.25) and (3.26),

it is sufficient to look at the boundary Lagrangian at q → 0 limit. In this limit, we

can set consistently S = 0. So the boundary Lagrangian can now be simplified as

L = − r
7

L7

{
l2r6

0

2r4ω2
GPG

′
P +

1

8ω4
ZPZ

′
P + contact terms

}
. (5.39)

At q = 0, the expression for GP reduces to

GP = ωBz = ω
L2

lr3
0

Az. (5.40)

Substituting this in (5.39), the boundary action involving the gauge field can be

written as

S(2)
gauge =

r2
H

16πG3L3

∫
dωdq(A(0)

z )2iωRGP |u=0. (5.41)

Here we have converted the derivative in r to derivative in u and used the definition

of RGP . A
(0)
z refers to the boundary value of the gauge field. This field couples to

the R-current of the D1-brane theory by the coupling

Scoupling = i

∫
d2x(J tA

(0)
t + JzA(0)

z ). (5.42)

Then using the gauge/gravity prescription, we can obtain the retarded Green’s func-

tion of the R-current by

Gzz = − δ2S(2)

δA0
zδA

0
z

. (5.43)

Using this prescription and the boundary action for the gauge field given in (5.41 ),

we obtain the following expression for the R-current correlator from gravity

Gzz = − 2r2
H

16πG3L3
iωRGP |u=0. (5.44)
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Finally we can compute the DC conductivity using the Kubo’s formula

σDC = Re

(
lim
ω→0

i

ω
Gzz(ω, q = 0)

)
,

=
2r2

H

16πG3L3
lim
ω→0

ReRGP |u=0,

=
2r2

H

16πG3L3

(
L3

2r2
H

(2k + 3)2

9
√

1 + k

)
,

=
1

16πG3

(2k + 3)2

9
√

1 + k
. (5.45)

Here, in the third step, we have used the result (5.18) and reinstated the proper

dimensions for the ratio RGP which has the dimensions of length. As a check of

the final answer note that at k = 0, it reduces to the value evaluated using the

quasi-normal mode analysis in (4.35).

Similarly we can determine viscosity using Kubo’s formula. At q = 0, the fluc-

tuation ZP reduces to

ZP = ω2Hzz + 2
(3H + 1)

3H
ϕ. (5.46)

Substituting this in (5.39), the boundary action involving quadratic terms in the

fluctuation Hzz is given by

S
(2)
Hzz

=
1

16πG3

3r6
H

4L7

∫
dωdq(H(0)

zz )2iωRZP |u=0. (5.47)

Again we have converted the derivative in r to a derivative in u and used the defi-

nition of RZP . H
(0)
zz refers to the boundary value of the fluctuation. The boundary

fluctuations of the metric couples with the stress tensor of the field theory by the

following action [27]

Scoupling =
i

2

∫
d2x(H

(0)
tt T

tt +H(0)
zz T

zz + 2H
(0)
tz T

tz). (5.48)

Then using the standard gauge/gravity prescription, the two point function of the

stress tensor is given by

Gzzzz = −4
δ2S(2)

δHzz(ω)δHzz(−ω)
. (5.49)

Using this prescription and the quadratic action for the metric fluctuation given in

(5.47), we see the above two point function is given by

Gzzzz = − 1

16πG3

3r6
H

L7
iωRZP |u=0. (5.50)
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We now can compute the bulk viscosity using the Kubo’s formula

ζ = Re

(
lim
ω→0

i

ω
Gzz,zz(ω, q = 0)

)
,

=
1

16πG3

6r6
H

L7
lim
ω→0

ReRZP |u=0,

=
r4
H

16πG3L4

√
1 + k,

=
1

4π
s. (5.51)

Here again, in the third line, we have used the expression for RZP given in (5.31).

In the last line, we have written the expression for ζ using the definition of entropy

density for the single charged D1-brane given in (2.17). Thus we see that the ratio

of bulk viscosity to entropy density remains 1/4π when the charge density is turned

on.

6. Properties of the transport coefficients

We first summarize the results of the transport coefficients of the single charged

D1-brane.

σ =
1

16πG3

(2k + 3)2

9
√

1 + k
, (6.1)

ζ =
r4
H

16πG3L4

√
1 + k.

In this section, we restrict ourselves to only the DC conductivity except in subsection

(6.2). Using these two results, we can find three more transport coefficients. The

charge diffusion constant is related to conductivity by (3.16) and is given by

Dc =
L3

r2
H

3− 2k

6
√

1 + k
. (6.2)

The thermal conductivity is also related to the conductivity by (3.27) and is given

by

κT =

(
ε+ p

ρ

)2
σ

T
=

r2
H

8LG3

(2k + 3)(1 + k)

k
. (6.3)

Finally the sound diffusion constant can be obtained by (3.12) and is given by

Ds =
ζ

2(ε+ p)
=

L3

12r2
H

√
1 + k

. (6.4)

As we have noted earlier, the ratio of bulk viscosity to entropy density is inde-

pendent of the chemical potential and is given by

ζ

s
=

1

4π
. (6.5)
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This property also holds for the equal charged D1-brane solution as shown in ap-

pendix B. Using the formula for the bulk viscosity (6.1), the thermal conductivity

in (6.3), the Hawking temperature in (2.17) and the chemical potential in (2.21), we

can show the following relationship between these quantities is true

κTµ
2

ζT
= (2πL)2 . (6.6)

This relationship is more striking when we write the chemical potential µ in terms

of its dimensions. Note that the normalization of the gauge field we have used in

(2.8) is such that it is dimensionless. This is convenient for the gravity analysis, but

it is conventional for the gauge field to have dimensions of inverse length. Since the

chemical potential is basically the value of the gauge field at the horizon (2.21), it

must have the dimensions of inverse length. Let us therefore restore its dimensions

by defining

µ̂ =
µ

L
. (6.7)

Then the relationship in (6.6) can be written as

κT µ̂
2

ζT
= 4π2. (6.8)

This relationship is similar to the Wiedemann-Franz law seen between thermal con-

ductivity and electrical conductivity. A similar relationship between thermal con-

ductivity and the shear viscosity for the single charged D3 brane was observed by

[17].

6.1 Transport coefficients at criticality

In this section, we discuss the reason for this property as well as behaviour of the

transport coefficients near the boundary of thermodynamic stability k = 3/2. We

first note that the charge diffusion constant Dc for the single charged D1-brane

given in (6.2) vanishes at the boundary of thermodynamic instability. This indicates

that this mode becomes unstable at k = 3/2 and for this case the thermodynamic

instability can be studied by examining this mode more carefully. As we will see in

appendix B, this feature does not hold for the equal charged D1-brane. It was also

not seen in the analysis of [17] for the single charged D3-brane. Thus this feature

seems to be specific for the single charged D1-brane and it is worth exploring this

further.

To determine the critical behaviour of the transport coefficients at the boundary

of thermodynamic instability, we follow the analysis done by [17]. We first define the

dimensionless chemical potential m as

m =
µ̂

2πTH
=

µ

2πLTH
=

√
k

(3 + 2k)
. (6.9)
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Note that µ/T is the natural variable that occurs in charge current (3.1). We can

invert the relation in (6.9) to write k as

k =
1− 12m2 −

√
(1− 24m2)

8m2
. (6.10)

Thus, we can re-express the transport coefficients as

σ =
1

16πG3

(
1− 12m2 −

√
1− 24m2

72
√

2m4

)(
1− 4m2 +

√
1− 24m2

1 + m2

)1/2

, (6.11)

ζ =
πL2T 2

4G3

(
1 + 6m2 +

√
1− 24m2

18

)(
1− 4m2 −

√
1− 24m2

8m2

)1/2

,

κT =
πL2T

4G3

(
1 + 6m2 +

√
1− 24m2

18m2

)(
1− 4m2 −

√
1− 24m2

8m2

)1/2

,

Dc =
1

24πT

√
1− 24m2

(
1 + 6m2 −

√
1− 24m2

m2(1 + m2)

)
,

Ds =
1

48πT

(
5 +
√

1− 24m2

1 + m2

)
.

The boundary of thermodynamic stability lies at k = 3
2

or mc = 1√
24

. Expanding

the transport coefficients near this point, we see that the Dc exhibits a square root

branch cut at the critical point. The other transport coefficients are finite at the

critical point mc, however their first derivatives including that of Dc diverges as

(mc−m)−1/2. Thus the critical index is 1/2 which indicates that the system exhibits

mean field behaviour. A similar behaviour was observed for the shear viscosity and

conductivity for the single charged D3 branes in [17].

From the above expressions for the transport coefficients in (6.11), note that

that ζ and κT are written as T 2f(m) and Tg(m) respectively. This demonstrates

that the system has a hidden 2 + 1 conformal invariance since the entropy density

is proportional to T 2 in 2 + 1 dimensions. Also note that the charge and sound

diffusivity can be written in the scaling form 1
T
f(m). The conductivity just depends

on the dimensionless ratio m and assumes the scaling form f(m). From examining

the scaling form, it is easy to see that as T → ∞, keeping the chemical potential µ

constant, all the expressions for the transport coefficients reduce to the uncharged

case as expected. Another point worth mentioning is that on expressing G3, L in

terms of the Yang-Mills coupling and the rank N , the transport coefficients ζ and

κT are proportional to N2/
√
λ. If at all this system holographically describes a 1 + 1

dimensional system seen in nature, the scaling behaviour of the transport coefficients

seen in (6.11) is a possible test.

6.2 Behaviour of conductivity

In figure (5), we plot the conductivity vs quantity 1/m, which is proportional to

temperature, if chemical potential is held constant. For the single charged case, we
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Figure 5: Plots of real part of conductivity vs 1/m for single charged (on left) and equal

charged case. The different colors in the left plot, red, black, blue, green, magenta and

purple correspond to ω = 10−10, 0.2, 0.4 , 0.6, 0.8 and 1 respectively. The colours in the

right plot, red, black, blue, green and magenta correspond to ω = 10−10, 0.4 , 0.6, 0.8 and

1 respectively. σ is in units of (16πG3)−1.

can’t go to lower values of 1/m < 1/mc. We note that for both the single charged case

and equal charged case, the conductivity saturates to 1, as temperature increases.

This is expected from our uncharged brane analysis. As m → 0, the behaviour of

DC conductivity is

16πG3σDC → 1 +
15

2
m2 + · · · for single charged case,

1− 24m2 + · · · for equal charged case. (6.12)

The low temperature behaviour in equal charged case is σDC ∼ m−2 ∼ T 2 for m−1 →
0.
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Figure 6: Plots of real part of conductivity vs ω for the single charged (on left) and

equal charged case. The different colours in the left plot, red, black, blue, green, magenta

and purple correspond to m = 10−3, 0.15, 0.18, 0.19, 0.2, 2
√

6 respectively. The different

colours in the right plot, red, black, blue, green, magenta, purple and orange correspond

to m =10−3, 0.1, 0.2, 0.3, 0.6, 1 and 100 respectively. σ is in units of (16πG3)−1 and ω is

in units of 2r2
H/L

3.

In figure (6), we show the dependence of conductivity on frequency for various

fixed values of m for the single and equal charged case. Here, the behaviour of the

curves are in contrast with each other in two cases. While for the single charged

case, we find the curves fit well with the expression ∼ a(m) + b(m)
c(m)+ω2 for some ω
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independent functions a(m), b(m) and c(m) of m. On the right, we see that the

conductivity increases for intermediate values of m as ω is increased.

6.3 The relation to the M2-brane theory

It has been observed that the thermodynamic properties of the near horizon geom-

etry of M2-branes is similar to that of the D1-branes [28, 29]. We now recall the

thermodynamic properties of uncharged M2-branes and compare them to uncharged

D1-branes. These properties were obtained from [18]. The near horizon geometry of

M2-branes is AdS4 times S7, let the radius of S7 be L′ and the Newton’s constant

in 4 dimensions be G4. The thermodynamic properties of non-extremal uncharged

D1-branes and non-extremal uncharged M2-branes with non-extremal parameter r0

is given by:

D1-branes M2-branes

s 1
4G3

r40
L4

1
4G4

r40
L′4

T 3
2π

r20
L3

3
2π

r20
L′3

ε 1
4πG3

r60
L7

1
4πG4

r60
L′7

p = −f 1
2
ε 1

2
ε

Table 2. Thermodynamics of uncharged D1-branes and M2-branes.

From the equation of state p = ε
2
, it seems that the non-conformal D1-brane theory

behaves as though it is a conformal theory in 2 + 1 dimensions.

This similarity of thermodynamic properties of uncharged D1-branes and M2-

branes was also seen to extend to the transport properties. In [7], it was noted that

the bulk viscosity to entropy density of non-extremal D1-branes is given by 1/4π.

This fact was explained by the observation in [30]. Consider conformal hydrodynam-

ics of a charged fluid in 2 + 1 dimensions 7. The stress tensor and the current are

7[30] considered the case of the uncharged fluid and obtained a general relation between conformal

hydrodynamics between 2σ dimensions and non-conformal hydrodynamics in d dimensions. The

case when σ = 3/2, d = 2 corresponds to the relation between D1-branes and M2-branes. In

general, the relation found in [30] relates conformal hydrodynamics in fractional dimensions to

non-conformal hydrodynamics in integer dimensions.
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given by

T̃ ab = ε̃uaub + p̃(ηab + uaub)− 2ησab, (6.13)

j̃a = ρ̃ua − σ̃T (ηab + uaub)∂b

(µ
T

)
,

where a, b ∈ {0, 1, 2}, ηab is the Minkowski metric in 2 + 1 dimensions and

σab = P c
aP

d
b ∂(cud) −

1

2
Pab∂ · u, Pab = ηab + uaub. (6.14)

Let us now dimensionally reduce these equations with the ansatz ua = (uµ, 0) where

µ ∈ {0, 1} along with the assumption that there is no dependence along the direction

2 for any thermodynamic variable. Then the non-trivial components of the stress

tensor and the current can be written as

T̃ µν = (ε̃+ p̃)uµuν + p̃gµν − 2ησ̃µν − ηP µν∂ · u, (6.15)

T̃ 2µ = T̃ 22 = 0,

j̃µ = ρ̃uµ − σ̃T (gµν + uµuν)∂ν

(µ
T

)
,

j2 = 0,

where

σ̃µν = P ρ
µP

σ
ν ∂(ρuσ) − Pµν∂ · u = 0. (6.16)

To show the above expression vanishes, one can explicitly evaluate the components

or else use the fact that it is a traceless symmetric tensor in 1 + 1 dimensions and is

orthogonal to the velocity vector uµ. Thus the stress tensor and the charge current

in 1 + 1 dimensions is given by

T µν = RT̃ µν = (Rε̃+Rp̃)uµuν +Rp̃ηµν −RηP µν∂ · u, (6.17)

jµ = Rj̃µ = Rρ̃uµ −Rσ̃T (ηµν + uµuν)∂ν

(µ
T

)
,

where R is the radius of compactification. On comparing this form of the stress

tensor to that given in (3.1) we see that we can identify

ε = Rε̃, p = Rε̃, σ = Rσ̃, ζ = Rη. (6.18)

The entropy density s̃ in 2 + 1 dimensions is related to the entropy density in 1 + 1

dimensions by

s = Rs̃. (6.19)

From this, we can conclude that for a fluid dynamics in 1 + 1 dimensions, which is

related by compactification on a circle of radius R to conformal hydrodynamics in

2 + 1 dimensions, the relation

p =
ε

2
(6.20)
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will continue to hold true due to (6.18). Furthermore, we have

ζ

s
=
η

s̃
. (6.21)

Thus the ratio of bulk viscosity to entropy density in 1 + 1 dimensions is identical to

the ratio of shear viscosity to entropy density of the conformal 2 + 1 hydrodynamics.

In [30], it was shown that the equations of gravity fluctuations for the uncharged

D1-brane which determine the hydrodynamical transport coefficients is a dimensional

reduction of the gravity fluctuations of the uncharged M2-brane background. This

fact and (6.21) explains the reason why the ratio of bulk viscosity to entropy density

for the D1-brane is given by 1/4π. It also explains the fact that speed of sound

for the D1-brane theory is same as that of the M2-brane theory. One expects this

argument to go through for the charged D1-branes and this is the reason we observe

that the speed of sound is 1/
√

2 and the bulk viscosity to entropy density is 1/4π.

As an evidence for this argument, we will now show that the 3 dimensional truncated

action given in (A.19) which supports the equal charged D1-brane solution can be

obtained by dimensional reduction of the following 4 dimensional action.

S =
1

16πG4

∫
d4x
√
−g4

(
R4 +

6

L′2
− L′2F µνFµν

)
, (6.22)

where g4 and R4 are the 4 dimensional metric and the Ricci curvature respectively.

G4 in the four dimensional Newton’s constant and L′ is the radius of AdS4. This is

the action which admits the solution of the equal charged M2-brane. Note that the

near horizon geometry of the equal charged M2-brane is just a Reissner-Nordström

black hole in AdS4. We address the equal charged case since the single charged M2-

brane has not been studied in the literature. We now compactify the action in (6.22)

using the following ansatz

ds2 = ds2
(2+1) + e−

4
3
φdy2, (6.23)

Ay = 0.

As usual, all fields do not have any dependence on the compact direction y. Substi-

tuting this ansatz in the action (6.22), we obtain

S =
2πRy

16πG4

∫
d3x
√
−g̃3e

− 2
3
φ

(
R̃3 +

6

L′2
− L′2F µνFµν

)
. (6.24)

To bring the action in the Einstein form, we perform the following re-definition

g̃µν = e
4
3
φgµν . (6.25)

We then obtain

S =
2πRy

16πG4

∫
d3x
√
−g3

(
R3 −

8

9
(∂φ)2 +

6

L′2
e

4
3
φ − L′2e

−4
3
φF µνFµν

)
. (6.26)
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Now comparing (A.19) and the above action, we see that they are the same on

identifying

Φ = exp

(
2

3
φ

)
, L′ =

L

2
, Aµ →

Aµ
L′
. (6.27)

This observation indicates that the supergravity fluctuations which determine the

transport coefficients of the equal charged D1-brane theory can be obtained by di-

mensional reduction of the fluctuations which determine the transport coefficient of

the equal charged M2-brane theory. As a result, the transport coefficients of the

M2-brane theory is related to that of the D1-brane theory.

Finally, we mention that from (6.18) the conductivity of the M2-brane theory

is related to that of the M2-brane theory. The conductivity of the equal charged

M2-brane theory has been evaluated in [15] 8 and is given by

σM2 =
1

16πG4

(3− k)2

9(1 + k)
. (6.28)

Note that apart from the dimensions set by G4, the dependence of the conductivity

is identical to that of the equal charged D1-brane theory given in (B.16). In table 1,

we have compared the transport properties of the equal charged M2-brane and the

equal charged D1-brane.

7. Conclusions

In this paper, we have studied the transport properties of the 1 + 1 dimensional

SU(N) gauge theory with 16 supercharges of the D1-branes at finite chemical poten-

tial in the framework of the gauge/gravity duality. We evaluated the bulk viscosity,

electrical conductivity , thermal conductivity, the charge and sound diffusivity for two

cases. One in which the chemical potential conjugate to one of the U(1) R-charges

is turned on and another in which equal charges conjugate to all the 4 Cartans of

the SO(8) R-symmetry are turned on. In both the situations, we find that the ra-

tio of bulk viscosity to the entropy density is independent of the chemical potential

and is equal to 1/4π. We showed that for the single charged D1-brane theory, the

charge dissipative mode becomes unstable and the transport properties exhibit criti-

cal behaviour at the boundary of thermodynamic instability. We also demonstrated

that the shear viscosity and thermal conductivity satisfy a relationship similar to

the Wiedemann-Franz law. We have observed that the transport coefficients of the

D1-branes theory is same as that of the M2-brane theory apart from an overall nor-

malization which determines the dimensions and suggests a plausible reason for this

behaviour. The summary of the transport coefficients obtained in this paper and

their comparison with the transport coefficients of the M2-brane theory is given in

8see equation (83) of [15] and identify q2 as k
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table 1. A technical result of our analysis is the following: we reduced the problem

of solving the second order differential equation which determines the transport co-

efficient to a first order non-linear differential equation. This equation governs the

radial evolution of the transport coefficient. We were able to solve these equations

analytically for the transport coefficients of interest in this paper.

A possible extension of this work is to compute the transport coefficients when all

the 4 chemical potentials corresponding to the 4 Cartans of the SO(8) R-symmetry

are turned on. This would provide a complete knowledge of the transport coefficients

of the D1-brane gauge theory. It will also be interesting to understand the thermal

stability of the full system with all the R-charges turned on. Another direction is to

understand the connection of the D1-brane theory with that of the M2-brane theory

better. This would involve an analysis similar to [8]. We need to show that the

hydrodynamic fluctuations in gravity which determine the transport for the charged

M2-brane and D1-brane are related by compactification. From the point of the view

of the theories of the M2-branes and D1-branes, it is interesting to note that unlike

the presently unknown theory of the M2-branes, the theory of the D1-brane is a

regular gauge theory in 1 + 1 dimensions. We have seen that the D1-brane gauge

theory provides physical information regarding the M2-brane theory. It is worthwhile

to explore and utilize this fact to understand the M2-brane theory further.

1+1 relativistic hydrodynamics occurs in the short time description of the plasma

formed after highly relativistic collisions [31]. The equation of state of this plasma

does not obey p = ε/2, however it will be interesting to see if the transport properties

of this plasma show the behaviour seen here. Another area where relativistic 1+1 hy-

drodynamics could be important is in carbon nano-tubes and graphene nano-ribbons.

These materials can be described as a graphene layer rolled up and a graphene layer

whose linear dimensions is much larger than that of its width respectively [32, 33].

These systems are relativistic since they are obtained by a dimensional reduction

of 2 + 1 dimensional graphene which is described by a massless Dirac equation. It

will be interesting to compare the transport properties of these materials with that

of the field theory studied here. The system we study here has a gap set by the

Yang-Mills coupling. Hydrodynamics of other 1+1 dimensional systems with a gap

have been studied in [34, 35] 9. Even though we have analysed only a bosonic sys-

tem, we can think of it describing a 1+1 dimensional condensed matter system or

a quasi 1+1 dimensional system made up of strongly interacting bosonic quasiparti-

cles which are themselves made up of elementary electrons, just like Cooper pairs. It

would be interesting to evaluate an effective Lagrangian for such quasiparticles from

the action of the gauge theory dual to our gravity system and then compare it to

effective action for one dimensional effective condensed matter systems like Luttinger

liquids. A curious observation is that our plots for conductivity vs temperature and

9We thank Subir Sachdev for bringing these references to our notice.
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frequency for equal charged case qualitatively looks similar to a system of carbon

nanotubes-polyepoxy composites [36].
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A. Consistent truncation to 3 dimensions

We first show that the solution (2.6) in 3 dimensions is a consistent truncation of

the spinning D1-brane solution in 10 dimensions given in (2.2). For this, we use

the results of [19] who gave the most general ansatz for the consistent Kaluza-Klein

reduction of a 10 dimensional solution on the seven sphere 10. The ansatz is as

follows:

ds2
10 = Y

1
8

[
∆

3
4
Cds

2
3 + g−2∆

− 1
4

C T−1
ij DµiDµj

]
,

e−2φ = ∆−1
C Y 1/2,

F̂(3) = F 1 + F 2 + F 3. (A.1)

where 11

F 1 = gUε3,

F 2 = g−1T−1
ij ∗ DTjk ∧ (µkDµi),

F 3 = − 1

2g2
T−1
ik T

−1
jl ∗ F

ij
(2) ∧ Dµ

k ∧ Dµl,

Dµi = dµi + gAijµj,

DTij = dTij + gAikTkj + gAjkTki,

F ij
(2) = dAij + gAik ∧ Akj, (A.2)

and

µiµi = 1 ∆C = Tijµ
iµj U = 2TikTjkµ

iµj −∆CTii Y = det(Tij). (A.3)

10See section 5. of [19].
11Note that the sign of F 1 here is negative of that in [19], this is a result of a different convention

for the volume form ε3.
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∗ is the Hodge dual in the three dimensions. The µ’s are defined as follows,

ν1 = sin θ, ν2 = cos θ sinψ1,

ν3 = cos θ cosψ1 sinψ2, ν4 = cos θ cosψ1 cosψ2,

µ2a−1 = νa sinφa, µ2a = νa cosφa. (A.4)

Here, a = 1, · · · 4 and i, j = 1, · · · 8. Then [19] shows that on substituting the above

ansatz in to the ten dimensional equations of motion, there is a consistent reduction

to the equations of motion for the three dimensional fields. The equations of motion

for the three dimensional fields can be derived from the following three-dimensional

Lagrangian:

L = R ∗ 1− 1

32
Y −2 ∗ dY ∧ dY − 1

4
T̃−1
ij ∗ DT̃jk ∧ T̃−1

kl ∧ DT̃li

−1

4
Y −1/4T̃−1

ik T̃
−1
jl ∗ F

ij
(2) ∧ F

kl
(2) −

g2

2
Y 1/4{2T̃ijT̃ij − (T̃ii)

2} ∗ 1, (A.5)

where T̃ij = Y −1/8Tij.

Single charged D1-brane

We now show that the spinning D1-brane solution in 10 dimensions given in (2.2)

can be written in the form given in (A.1). For this, we choose

g =
1

L
, A12 = − r3

0l

L2r2H
dt,

H = 1 +
l2

r2
, Tij = X(i)δij,

X(i) =
L2

r2H
(i = 1, 2), X(i) =

L2

r2
(i 6= 1, 2),

εtzr = 1. (A.6)

For convenience, we also write down the following

∆C =
L8

r8

1

HH1

, H1 =
L6

∆r6
,

∆ = 1 +
l2

r2
cos2 θ, Y =

L16

r16

1

H2

U = −2
L4

r4H

(
3 +

2l2

r2
cos2 θ

)
. (A.7)

This results in the metric

ds2 = H
−3/4
1 (−fdt2 + dz2) +H

1/4
1

(
1

h̃
dr2 + r2(∆dθ2 + ∆̃ sin2 θdφ2 + cos2 θdΩ2

5)

)
−2H

−3/4
1

L3r3
0

∆r6
l sin2 θdtdφ, (A.8)
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which is same as that given by equation (2.2). Note that the exponent of dilaton

is negative of that given in main text. This is just due to difference in conventions

between [18] and [19]. The dilaton and the three form are given by

eφ = H
−1/2
1 ,

F̂(3) = −2
r5

L6

(
3 +

2l2

r2
cos2 θ

)
dt ∧ dz ∧ dr + 2 sin θ cos θ

l2r4

L6
dt ∧ dz ∧ dθ

−2 sin θ cos θ
r3

0l

L3
dz ∧ dθ ∧ dφ. (A.9)

This also agrees with the expression for the dilaton modulo the sign and the two

form gauge potential given in (2.2). One can also check that by reading out the three

dimensional metric by comparing (A.1) to (A.8) , we obtain the three dimensional

truncated solution in (2.6). We can now proceed to obtain the three dimensional

Lagrangian for the Kaluza-Klein ansatz in (A.6). We first define the scalars Z1 =

Y −1/8X1 = Y −1/8X2 and Z2 = Y −1/8Xj for j 6= 1, 2. Then the Lagrangian in (A.5)

reduces to

L =
√
−g
[
R− 1

32Y 2
∂µY ∂

µY − 1

2

(
1

Z2
1

∂µZ1∂
µZ1 +

3

Z2
2

∂µZ2∂
µZ2

)
− 1

4Y 1/4

1

Z2
1

FµνF
µν +

12

L2
Y 1/4Z2(Z1 + Z2)

]
. (A.10)

On identifying

Z1 = Ψ−3/4, Z2 = Ψ1/4, Y 1/4 =
e

4
3
φ

Ψ1/2
, (A.11)

the above action reduces to the one given by equation (2.8).

Equal charged D1-brane

We now wish to obtain the truncated 3 dimensional solution as well as the action

when one turns on equal charges along the 4 Cartans of the SO(8) R-symmetry. We

start with the 10 dimensional D1-brane solution with equal spins along the 4 Cartan’s.

This is given by [18].

ds2 = H
−3/4
2 (−fdt2 + dz2) +H

1/4
2

(
dr2

hf̄
+ Λαβdη

αdηβ
)

−2
H
−3/4
2

h3

L3r3
0

r6
l

4∑
i=1

ν2
i dtdφi,

A2 = −

(
H−1

2 dt+
r3

0

L3
l

4∑
i=1

ν2
i dφi

)
∧ dz,

– 46 –



eφ = H
1/2
2 , H2 =

L6

r6h3
,

h = 1 +
l2

r2
, f = 1− r6

0

h3r6
, f̄ = 1− r6

0

h4r6

Λαβdη
αdηβ = r2h[dθ2 + cos2 θdψ2

1 + cos2 θ cos2 ψ1dψ
2
2 + sin2 θdφ2

1

+ cos2 θ sin2 ψ1dφ
2
2 + cos2 θ cos2 ψ1 sin2 ψ2dφ

2
3

+ cos2 θ cos2 ψ1 cos2 ψ2dφ
2
4]. (A.12)

We will now compare the 10 dimensional solution with the form of the Kaluza-Klein

ansatz given in (A.1). For this, we first assume that the three dimensional metric is

of the form

ds2
3 = Z

[
−f̂dt2 + dz2 +

H2

hf̄
dr2

]
, (A.13)

and

Tij = Φδij, Aij = a(r)σijdt, (A.14)

where σ2a−1,2a = −σ2a,2a−1 = 1 and zero otherwise. µi are given in (A.4). With this

ansatz, the gauge field is given as

F3 = gUZ

 L3

r3h2

√
Zf̂

f̄

 dt ∧ dz ∧ dr

+
a′

g2Φ2

(
r3h2

L3

√
f̄

Zf̂

)
dz ∧ dφa ∧ νadνa. (A.15)

Comparing with field strength of solution in (A.12), we get

L3

r3h2

√
Zf̂

f̄
=

1

gΦ2rhZH2

,
a′

g
Z = 2

r3
0l

L9
r5h2. (A.16)

By comparing the metric in (A.1) and the spinning D1-branes solution (A.12), we

get

Φ7/4Zf̂ − a2

Φ1/4
= H

−3/4
2 f, Φ7/4Z = H

−3/4
2 ,

g2Φ1/4r2h = H
−1/4
2 ,

a

gΦ1/4
= −H

−3/4
2

h3

lL3r3
0

r6
. (A.17)

A solution to the equations in (A.16) and (A.17) is given by

g = L−1, Φ−1 = g2r2h,

a = −g
2r3

0l

r2h
, Z = (g2r2h)4,

f̂ = f̄ . (A.18)
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Now using these equations, the effective 3-dimensional action as given by equation

(A.5) reduces to

L3 =
√
−g
[
R− 2

Φ2
∂µΦ∂µΦ− 1

Φ2
FµνF

µν + 24
Φ2

L2

]
, (A.19)

with the 3 dimensional solution

ds2
3 =

h4

L8u4

[
−fdt2 + dz2 +

L6

4h4f
du2

]
,

h = 1 + ku,

A = − r3
0l

L2h
udt,

f = 1− r6
0u

3

h4
,

Φ =
L2u

h
. (A.20)

We have changed the radial variable to u =
r2H
r2

, where rH is the radius of the horizon.

Here, k = l2

r2H
. We have divided by rH to turn some quantities like L, r0 above to

be dimensionless. The variable f above is same as f̄ in earlier part of the analysis.

The radius of the seven sphere is L. Parameter r0 is related to k and the radius of

the horizon as

r6
0 = (1 + k)4r6

H . (A.21)

Note that there is no extra scalar in this case. The general compactification given

in [19] contains 36 scalars, one singlet under SO(8) and the rest which transforms

as 35. In this equal charged case, we turn on only the singlet which is the dilaton.

In the single charged case, one more scalar Ψ is turned on and this explicitly breaks

the SO(8) symmetry.

B. Transport coefficients for the equal charged D1-brane

In this part of the appendix, we evaluate the conductivity and bulk viscosity for the

equal charged D1-brane. We will be brief here since we have provided the details for

the single charged D1-brane in the main text.

We first provide a table listing the thermodynamic properties of the equal charged

D1-brane
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Hawking Temperature(T )
r30

4πL3rH
(6−2k

1+k
)

Entropy Density(s) 1
4G3

r30rH
L4

Energy Density(ε) 1
4πG3

r60
L7

Pressure ≡(-free energy density(f)) 1
8πG3

r60
L7 = ε

2

Charge Density(ρ)
r30l

8πG3L5

Chemical Potential(µ) lrH(1+k)
L2

Table 3. Thermodynamic properties of the equal charged D1-brane

In evaluating the above thermodynamic quantities, we have used the relation in

(A.21). Note that the Hawking temperature of this black hole is given by

T =
r3

0

4πL3rH

(
6− 2k

1 + k

)
. (B.1)

From this expression, we see that the black hole is stable only for

k < 3. (B.2)

We can also examine the Hessian to see if the equal charged solution admits the

thermodynamic instability seen in the case of the single charged solution. Using the

expression of the Hessian given in (2.23), we obtain

Hs =
8G2

3L
4(k + 3)

r4
H(1 + k)2

. (B.3)

Since k ≥ 0, the Hessian for this case is always positive and therefore this solution

does not exhibit the usual thermodynamic instability. Thus the range of the allowed

values of k is 0 < k < 3. This is the same range found for the case of equal charged

M2-branes [37]. Using the expressions for the thermodynamic variables given in table

3, we can evaluate the relationship between the charge diffusion constant and the

conductivity from the formula in (3.14). It is given by

Dc = σ(16πG3)
3(k + 3)

2r2
H(3− k)2

. (B.4)

Hydrodynamic modes from gravity
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To obtain the two hydrodynamic modes of the charged fluid from gravity, we

analyze linearized wave like perturbations in the background of the equal charged

D1 brane solution given in (A.20). It is a solution of the action given in (A.19). The

perturbations are defined as follows:

gtt → g0
tt(1 +Htt), gtz → g0

zzHtz,

gzz → g0
zz(1 +Hzz), At → A0

t +
lr3

0

L2
Bt,

Az →
lr3

0

L2
Bz, Φ→ Φ0 + L2ϕ. (B.5)

where the superscript ‘0’ refers to the background values. Due to translational in-

variance along the t and the z directions, we can assume that the dependence of the

perturbations along these directions is of the form as ∼ exp[ 2i
L3 (−ωt + qz)]. Note

that here we will be using the dimensionless variables defined in (4.20).

To write the gauge invariant modes, we first introduce the following functions

V = q2(4h3 − r6
0u

3)− 4ω2h3,

α = q2f − ω2. (B.6)

The two gauge invariant variables which are invariant both under diffeomorphism as

well as U(1) gauge transformations are given by

ZP = −q2fHtt + 2ωqHtz + ω2Hzz +
V

h2u
ϕ,

GP = qBt + ωBz + qϕ. (B.7)

These gauge invariant variables satisfy the following equations of motion

V αfuZ ′′P − 2h2(q2 − ω2){q2(h2 + 5h− 12)− 2hω2}(1− f)Z ′P

+q2h2(1− f)2{q2(2h2 + 2h− 8)− w2(h2 + 6h− 8) + q2fh(3h− 8)}Z ′P

+8(h− 2)h2(q2 − ω2)2Z ′P − 2qkr6
0

u3V 2f

h7
G′P

= −8kqr12
0

u5(4− h)

h6
[3q4f + 4ω4 − q2ω2(4 + 3f − h+ fh)]GP

+
uα

fh
[4(q2 − ω2)2 − q2(1− f)(h+ 4)(q2 − ω2)

+q2h(1− f)2(3u−2h2f(h− 4) + q2)]ZP , (B.8)

G′′P +
qh

V α
{q2(2 + h− hf)− 2ω2}Z ′P +

[
2k

hα
(q2 − ω2) +

ω2(4− h)(1− f)

αhfu

]
G′P

=
3qr6

0u
2

h3fV
ZP +

4kh(1− f)

fuV α
{6q4f − q2ω2(4 + 6f − h+ fh) + 4ω4}GP

+
α

h4f 2
GP . (B.9)
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Note that these equations decouple in the q → 0 limit.

Conductivity for the equal charged case

In the limit q = 0, the equation for the gauge invariant current mode is

G′′P (u) +
(hf + h+ 2f − 4)

fhu
G′P (u) +

ω2

h4f 2
GP (u)− 4k(1− f)

h2fu
GP (u) = 0. (B.10)

We can remove the coefficient of GP proportional to (1− f) by the following redefi-

nition

GP =
4− h
h

G. (B.11)

As we have seen for the case of the single charged solution conductivity is essentially

determined by the ratio

RGP =
1

iωGP

dGP

du
, (B.12)

which in turn is determined by the ratio g =
G′P (u)

iωGP (u)
. Ingoing boundary conditions

at the horizon for GP corresponds to the following boundary condition on g

lim
u→1

g(u) =
1

(3− k)(1 + k)(1− u)
. (B.13)

The equation of motion satisfied by g is given by

g′ + iωg2 −
{

(4− h)(1− f)

fhu
+

2k

(4− h)

}
g − i ωL

6

4h4f 2
= 0. (B.14)

The solution for the real part of g in ω → 0 limit is

Re g =
(3− k)2

(1 + k)2

1

(4− h)2f
. (B.15)

Just as in the previous case for the single charged, the real part of DC conductivity

here is proportional to the value of ReRGP at the boundary (u = 0), which is given

by

ReRGP =
L3

2

(3− k)2

9(1 + k)2
. (B.16)

Note that here we have reinstated the factors of L3/2 which we have absorbed in

defining ω. The imaginary part of ReRGP is given by

ImRGP =
L3

2
Im

[
d

du
ln

4− h
iωh

]
u→0

=
L3

2

4k

3ω
. (B.17)

In Figure 3. we have compared these expressions with that determined by numerically

solving the equation for GP . We find that they agree to less than one part in 10−6.
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The DC conductivity is related to ReGP by a proportionality constant which can

be determined from the boundary effective action as was done in the single charged

case in section 5.3. This results in

σ =
1

16πG3

(3− k)2

9(1 + k)2
. (B.18)

Bulk viscosity for the equal charged case

In this section, we calculate the bulk viscosity for the equal charged case and

show that the ratio ζ
s

is constant. In the q = 0 limit, the equation for the sound

mode decouples from the current mode. It turns out to be

Z ′′P (u) +
2(h− 2)

fhu
Z ′P (u)− (1− f)

fu
Z ′P (u) +

ω2

h4f 2
ZP (u) = 0. (B.19)

Let us define the ratio

g =
Z ′P (u)

iωZP (u)
. (B.20)

Since the sound mode satisfies ingoing boundary condition at the horizon, the func-

tion g should satisfy

lim
u→1

g =
1

(3− k)(1 + k)(1− u)
. (B.21)

The appropriate solution for g in ω → 0 limit is

Re g = (1 + k)2 u
2

h4f
. (B.22)

The bulk viscosity is proportional to the real part of the following ratio evaluated at

the horizon:

RZP =
1

3iωu2ZP
Z ′P (u). (B.23)

We can evaluate this from the expression for Re g in the ω → 0 limit which results

in

ReRZP |u→0,ω→0 =
L3

2

(1 + k)2

3
. (B.24)

Here we have reinstated the factor of L3/2 which we have absorbed in the definition

of ω. We have verified that the above expression using the numerical solution for

the equation for ZP to one part in 10−9. This is shown in figure 4. Evaluating the

proportionality constant relating the bulk viscosity to the ratio ReRZP , we obtain

ζ =
r4
H

16πG3L4
(1 + k)2. (B.25)
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The entropy density of the equal charged solution (A.20) is given by

s =
r3

0rH
4G3L4

. (B.26)

Using (A.21) and the expression of the bulk viscosity (B.25), we get the ratio

ζ

s
=

1

4π
. (B.27)

We can now evaluate the thermal conductivity of this solution using (3.27), this

results in

κT =
r2
H

8LG3

(1 + k)(3− k)

k
. (B.28)

It can also be verified that this system also satisfies the Wiedemann-Franz like be-

haviour.
κT µ̂

2

ζT
= 4π2. (B.29)

The remaining transport coefficients Dc and Ds which are related to the conductivity

and the bulk viscosity can be evaluated and are listed in table 1. In the end, we

mention that we have verified that the transport coefficients of the equal charged

solution does not exhibit the critical behaviour seen in the case of the single charged

solution in the domain of 0 < k < 3. This is consistent with the fact that the Hessian

does not show any sign of thermodynamic instability. When written in terms of

m =
µ

2πLT
=

√
k

3− k
,

the various transport coefficients are

σ =
1

16πG3

[
1 + 2

√
1 + 12m2

3(1 + 16m2)

]2

,

ζ =
πL2T 2

4G3

[
1 +
√

1 + 12m2

6

]2

,

κT =
πL2T

4G3

(
1 + 6m2 +

√
1 + 12m2

18m2

)
,

Dc =

√
1 + 12m2

24πT

(1 + 24m2 −
√

1 + 12m2)

m2(1 + 16m2)
,

Ds =
1

24πT

(
1 + 2

√
1 + 12m2

1 + 16m2

)
. (B.30)
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