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n-nl 
v(2) = ~1'91x1 + zi2 - a fi'"jd69 (10) 

i = l  

where zilzI=o are linear independent combinations in  the components 
of 2 2 .  

Finally select {O > 0 sufficiently small such  t,hat,  for all 12 I 6 {o, 

This is possible since fl(l)(0) = 0. Combining (10) and (11) with t,he 
fact t.hat V (2) 6 0 for all t 0 shows that,  for some QP, 

i = l  

if I Z I  < 50. 

Define N ( x )  = {x; 1x1 6 p; C(z) 6 d), C(z) = zrl'&, where e = e' > 0 is the solution of CAll + Al1'8 = I. 
1) An initial state TO can be selected arbitrarily close to  the origin, 

such that t.he corresponding trajectory leaves N ( s )  after a finite-time 
interval.  Indeed, suppose that JqI < r0 for all t > 0. Then 

6(z) = Zl/Z1 - 2bl~Zlfl(C'2) 

where for C(s)  = €2 the first term  in  the right-hand side is infinitely 
small of second order  and positive, while the second term is infinitely 
small of third order, because of (12) and f1(1)(0) = 0. Hence there 
exist eo2 > 0 a i d  6 > 0, such that c(z) - 6C(z) > 0 for C(z) < €2, 

which proves t.he existence of a h i t . e  t o  such  that C[i( t~) ]  > € 2 .  

2) This trajectory  cannot  reenter X(Z) for t > to. Indeed, if i t  
does so as time t, there  are t,wo possibilities. Either C[z(t) ]  6 €02, 

Ir(t) I = {o, which is impossible by (12) for € 2  sufficiently small, or 
C[z(t)]  = eo2, Ix(t)l 6 {o. Now t.he trajectory  cannot  enter N ( s )  as 
C h )  > 0. It follows that 

C(Z) + 2'2 > min ( tO*,€OZ),  + t b to, 

which implies (3) .  
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Time-Varying System Stability-Interchangeability of the 
Bounds on the Logarithmic  Variation of Gain 

hI. K. SUNDARESHAN AND R.I. A. L. THATHACHAR 

Absl~uct-A frequency-domain  criterion for  the &stability of 
systems containing  a single time-varyiig gain in an otherwise time- 
invariant linear  feedback loop is given. This is an  improvement 
upon the  earlier criteria presented by the  authors in permitting an 
interchangeability of the allowable bounds on the logarithmic 
variation of the gain. 

I. INTRODUCTION 
The analysis of t,he Lz-st,abilit,y of a feedback system consisting of 

a cascade of a  linear  time-invariant causal operator G in L z  and a 
time-varying gain k ( t )  m a s  the  subject of a recent  publication [ l ] ,  
in which certain frequency-domain criteria  permit,ting t.he use of 
noncausal mukipliers were presented. The principal factor of these 
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results is the employment of an  upper  and a lower bound on the 
rate of variation of the gain (l/k(t) dk(t)/dt) ,  t,hese bounds being 
determined from  certain allowable "shifts" in  the causal and  the 
anticausal parts of the multiplier. However, an examination of the 
most general result of [ l ]  mill give one the impression that the  shift 
in the causal part, of the multiplier is associated with  the  upper 
bound, while t,he shift in the  anticausal  part is  associated wit,h the 
lower bound. The main purpose of the present correspondence is  to 
emphasize the  fact  that  this is not  mandatory  and,  in  fact,  for  linear 
systems, the bounds on (l/k(t))(dk(t)/&) are interchangeable.' 

11. PROBLEM FORMULATION 
Notations and Definiticms 

While the  notatitns used in  the earlier paper [I] will be followed, 
cert.ain additional notations d be introduced now. Let R, R+,  and 
J +  denote, respectively, the real  numbers, the nonnegat.ive real 
numbers, and  the nonnegat.ive integers. An operator H in Lz(&.) is it 
single-valued mapping of L,(L,) int,o itself. H is a time-invariant 
convolution  operator in L(L2,) if 

H&) = {hi, h(t))  @z(t), (0 denotes  convolution) 

v 2(. E L2(L2e), 

where { T , ] ,  i E J+, is  a sequence in B +  and ( h i ) ,  i E J+, is  a se- 
quence in R. H(jo), t.he Fourier-transform of the kernel (hi$(. ) I  of 
H is given by 

~ ( j ~ )  = hi exp ( - J L T ~ )  + J-': h(t) exp ( - jot)  dt. 
*J + 

Let @ denote  the  Banach algebra of linear  bounded  time-invariant 
convolution  operators H in Lz, with an identit,y E. An operator 
H E @ is said to  be regular  in (B if H-' E (B. Let aC and denote, 
respectively, the subalgebras of @ of causal and  anticausal  operators 
(for the definition of causality, see [I]  ). 

Let X be  the class of memoryless time-varying operators K i n  L ,  
defined byKx(t) = k ( t ) z ( t )  'd x(.) E Lz,, 0 < infk(t) 6 k ( t )  6 sup 
k ( t )  < m 'd t E R+.  Let X0 c X 3 K E X@ =) dk( t ) /d t  6 28 k ( t )  'd 
t E R+andsomeB E R+,  andlet,X, c X 3  K E X,-)dk( t ) /dt  > 
-2ak(t)  V t E R+  and  some a E R+.  Let X,@ = X, fl XB.  It is 
simple to  note  that K E X =) K-' E X and K E X,O =) K-' E 
Xf. 

System: The system (Fig. 1) is described by t.he input-utput 
relations e l ( - )  = u1(-) - wz(-), e(.) = u2 + wl(.), with W I ( . )  = 

Gel(. ), G E and WP(. ) = K e t ( .  ), K E X. 
Problem: Given that UI(. ), ug(. ) E Le, and el(. ), ez(. ) E b e ,  find 

conditions on G and K which ensure that e l ( - ) ,  e,( - ) E LP. 

111. MAIN RESULT 

Theorem 
If there exists an operator 1l.I E @ such  that 

is  regular in @ (1) 

LM = M I  + M z  3 M 1  E aC and N z  E (2 1 
Re M&) GGw) > 6 > 0 'd w E R (3 1 
Re M ~ ( j o  - 8 )  > 0 V w E R and some E R+ (4 ) 

and 

Re M2(jo + a) > 0 'd o E R and some a E R+, (5 ) 

then  the system under consideration is  &stable (i.e., ul(. ), UZ(. ) E 
LS =) e l ( .  ), e,( ) E Lz)  for all K E X,o U X$. 

an additional  nonlinear operat.or in  the  loop. 
1 It appears  that  this  property  does not hold in the  case of systems containing 
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Fig. 1.  The ieedback system under consideration. 

Proof: X proof of the theorem will be given only for the case 
K E XgQ, since it ha3 been proved for the ot.her case of K E R,B in 
111. (See [ l ,  theorem 31. It must. be noted t.hat t.his theorem is 
proved in [l] under  a more restrictive condition of Re Jl1cjw - 8) + 
Re :1lr(jw + 0) 2 E > 0 '+ w E R, than is implied by the present 
ronditions (4) and ( 5 ) .  However, the proof Kith the presently em- 
ployed relaxed conditions follows as ail1 be detailed below for the 
case K E K g a . )  

We  will  follow the same  method of proof ss ras employed in [l], 
viz., the applicabion of t.he positivity theorem after the introduction 
of multipliers into  the loop [ 2 ] , [ 3 ] .  Let us  transform the system, as 
shown in Fig. 2, by introducing t.he operators Jf* and AI*-' (ill* 
denotes the "adjoint" of X ) .  Kote  that t.hese are well-defined oper- 
ators in I,? since2 Jl E a =) dl* E a and 31 regular in a =j Jf-1 E@ 
=;I (J-')* E and, further, (J-')* = X * - i .  It. is now sufficient. t.o 
prove, in view of the p0sitivit.y theorem [2],[3], that: 1) U * - 1  ad- 
mits a factorization dl*-' = Xac-1Ic 3 M c  E @<, M a c  E @,,, and 
111, and .II., are regular in aC and act, respectively; 2)  ?\I*-'G is 
strongly positive wit.h finite  gain; and 3) Kdl* is positive (for the 
definitions of positivity,  strong  positivity, and finiteness of gain of 
operators, see [ l ]  ). 

1 )  Fac/orization of dl*-': From c?), 
Re J l g ' ~ )  = Re : F ~ I ~ ' w )  + Re X.$&) 

2 O V W E R ,  

because of (4) and ( 5 ) ,  which implies Jl is positive. 
Now; 

(x(.), 3f*-' x(.)) = ( J l*y ( . ) ,  g(.)), y(.)  = N*-'z(.) 

= (Y(.), - W - ) j ,  

and hence 31 positive (=) X - i  positive. 
Further, as mentioned earlier, N * ,  X-' E @. Thus, 31*-1 is 

positive and is regular in a and hence admits  a  factorization of the 
desired form, invoking the lemma  in [5]. 

2) Strong  Positivity of L31*-'G: 

(X(-), . l f * - ' G ~ ( . ) )  = (X(.), (M-')* a(.)) 
= ( N - % ( - ) ,  a(.)) 
= (y(.), G N y ( . ) ) ,  g(-) = X-k( . )  

> ~ l l Y ( ~ ) l l ~ ,  
hecause of (3) and Parsevd's theorem (t.he norm indicated being t.he 
&norm). 

Noa, z(.) = Xy(.) and hence, 

I l r( .) I l  6 7 ( : w l Y ( . ) l l  

where r(M) is the gain of (note that this follows from the defini- 
tion of the gain, 

Thus, 

W,C., e*(.) 

Fig. 2. System transformed nith  the introduction of multipliers. 

where 6 = S/[y(Sf)] > 0 (note t.hat. M E @ =) y ( N ) <  m ) and hence 
X * - I G  is strongly positive. 

Further, X * - l G  has finite gain since X * - i  E @ =) y(M*-1) 
< m, G E IB, =) y ( G )  < a, and y(Jf*- 'G)  6 y(Jf*-1) - , (G) .  

3 )  Positiaify of KX*:  

(x(.), K M * x ( . ) )  = (lfKx(.), x(.)), since K E X is self adjoint 

= (y(.), K-' 3 - 1  g(.)!, y!.) = MKX(.)  

2 0 d . 1  EL?, 

working as in the proof of [ l ,  t.heorem 31 (note  that. K E X,f =) 

Thus all the requirements of the positivity  theorem are fulfilled 
and hence the system  is h-stable. Q.E.D. 

A Feu  Remarks  

K-1 E x&. 

Remark 1: The present result. generalize  the  stability criteria of [I] 
in the following aspects: 

1) The bounck on the  rate of variation of t.he gain k ( t )  are more 
relaxed. 

2 )  Less stringent condit,ions are imposed on the shifted-imagi- 
nary-axis behavior of the causal and t.he anticausal parts of the 
mult.iplier. 

Remark 2: For  the example considered in [l], of the  system  with 

G(s)  = 
(s2 + 4.22s + 10.6)(s2 + 200.1s + 20) 

(s2 + 2s + 10)(s2 + s + 16) 
9 

the choice of a  multiplier 

N ( s )  = 
(S  + 3.22)(s2 - 4.22s + 10.6) 

(s2 - 2s + 1O)(s + 4)  
, 

and  an application of the  stability theorem (for details, see [l] ), 
proves t.he Lrstability of the system for all timevarying gains k ( t )  
satisfying eit.her of the following restrict,ions: 

It may  be noted that [l] proved  st.ability only in the case when the 
restrictions on k ( f )  are given by 1). 

Remark 3: A comparison of the present  result  with the  &stability 
criterion of Freedman and Zanles [6] is interesting. While [6] im- 
poses average variation  constraints on k ( f )  that  are le= st.ringent 
(note  that, k ( t )  need not. he differentiable everJThere), it. is also less 
general than t,he prwent. result. in  permit.ting causal multipliers only. 
The derivation of an average variation r s u l t  permitting noncausal 
multipliers is a  potentially useful problem for future investigation. 

REFEREICES 

,cn 
C .  \\'illeme. The Analyn's  of Feedback Systems.  him-.: hI.1.T. 



TECHNICAL NOTES AND CORRESPONDENCE 407 

I. ISTRODUCTION 
The  study of sufficient condit,ions for the existence of solutions to 

problems of mathematical  programming, calculus of variations, and 
optimal  control [1]-[B] is of great, interest. This work presents such 
a sufficient condition for a nonlinear programming  problem wit.h 
strictly convex inequality  and linear equality side  constraints, and a 
closed convex constraint set. The main advantage of this sufficient 
condition rests on its high practicability due  to  its  extreme sim- 
plicity. 

11. THE BASIC PROBLEM 

Let C be a closed convex subset of E”, let. f :  E” + E’ be a con- 
tinuous  strictly convex function  on C, and  let g :  E“ -+ E“ be a con- 
tinuous convex function on C. Let h:E“ + E’ be an f i n e  linear 
function  on C such  that Vzhi(z) ,  where V, denotes gradient in r, 
x E C, i = 1; . . ,k, are linearly independent, vectors. Also, let  it be 
assumed that  there exists a vector x* such t.hat x* E C, g(z*) 50,  
and h(z*)  = 0 (for v E E”, the  notations v 5 0 and v = 0 mean, 
respecbively, ui _< 0 and vi = 0, i = 1; . .,n). Find a  vector ? in E” 
such that 5 E C, g(f) 5 0, h ( 2 )  = 0, and f(i) 5 f(z), for all z in C 
wit,h g(r) 5 0 and h ( r )  = 0. 

111. EXISTENCE O F  AN OPTIblUAl  SOLUTIO3 

Consider the following lemma: 
Lonma: Assume that.  there exists a vector f that  minimizesf(z) on 

C. Then, if the set. Sa = {z:z E C, f(z) 5 a}, where a is a real 
number, is not empt.y, it is a compact. convex set.. 

Proof: Since f is strict.ly convex on the convex set. C, 3 is unique. 
Taking a 2 j(Z), Sa is a  nonempty  set. By the c0nvexit.y of f on C, 
Sa is  a convex set. Since f is continuous on C, SO is a closed set. 
Assume, without loss of generalit.y, that. f = O-andf(4) = 0. Hence, 
by the  strict convexity off on C, 

j(Dz) < pf(x), 0 < f l  < 1, for all z E C such t.hat z # 0. 

Assume that. Sa is not. a bounded set.  Then, there exists a sequence 
{xi}, rj E Sa, j = 1,2;.-, such  that, I!zjll + m m i t h j +  m, where 
( 1 1  I I ) denotes the usual  Euclidean norm. Pick up only those  values of j 
for which llzj 1 > 1. Thenf(zj/’llxjll) <f(zj)!IIXjll 5 a/llzillforallj 
such  that, 11xj I I > 1. But h = min f(s) exists, for the  set {z:z 

E C, IIzll = 1 )  is nonempty and compact,  and, moreover, h > 0, for 
2 @ { r : x  E C, 11x11 = I} and f is unique.  Therefore, 0 < h 5 f(zj/ 
11sj11) < a/llzjl I for every j such that 11zj11 > 1. But t.his is a contra- 
diction, for, if llzill -+ m wit.h j + m, a/llzj l l  + 0 with j + m.  

Therefore, such a sequence {xi) cannot. exist, i.e., Sa must be a 
bounded  set. 

l l z i I = l . z € C  

Now it is possible to formulate the basic theorem of this work: 
Theorem: If there exists a  vector 2 that minimizes f(z) on C, t.hen 

t,here exists a unique  solution 2 to the problem stated in Section 11. 
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On the Existence of Solutions to a  Class of 
Optimization Problems 

ANTONIO SALLES CAkIPOS 

Abstract-A sufficient condition for the  existence  and  uniqueness 
of solutions to a  class of optimization problems in  nonlinear pro- 
gramming form, with  strictly convex cost functions, convex inequal- 
ity  and  linear equality side constraints, and closed convex constraint 
sets  is  studied. 

Proof: Since there exists a  vector x* E C such t.hat g(z*) I 0, 
h(z*) = 0, and since g is a cont.inuous convex function and h is an 
affine linear function on the closed convex set C, 

x = {.:x E c, g(s) _< 0, h(z )  = 0) 

is a nonempty closed convex set. Consider the  nontrivial case 2 @ X 
and assume, without loss of generality, that. f = 0 and f(2) = 0. 
Take  the sets 

sj = {z:x E C,f (Z)  Ij}, j = 1 ,2 , . ** .  

As proved in the preceding lemma, these sets  are n0nempt.y  compact 
convex sets. Since there exists some j ’  such  that Si fl X is a non- 
empty  set for  every j 2 j’, let  it be assumed, for simplicity of nota- 
tion, that j ’  .= l .  Then S1 fl X is a nonempty compact convex set 
and, as f is continuous and  strictly convex on S,  fl X, there exists a 
unique point 21 that  minimizesf(z) on Sl fl X, with 0 < f ( 9 )  5 1. 
Moreover, by  the same reasons, for any j 2 1, there can be found a 
unique $9 that minimizes f(z) on Si fl X. Since SI is contained  in Si, 
j = 1,2,. . a ,  then SI fl X is cont.ained in Sj  fl X, j = 1,2,. . *,  and 
hence 0 < f ( 9 )  5 f(?l) 5 1, j = 1,2; e. So, ?j  E S1 fl X, j = 
1,2,. . . , i.e., $ j  = 21 for  every j .  Therefore, there exists f = which 
is the unique solut.ion to the problem stated in Sect.ion 11. 

IV. CoscLnsloKs 

The solutions to a class of nonlinear programming problems were 
shown to exist. and ‘ t o  be unique under  certain conditions. These 
conditions are  very simple for t.hey limit  themselves t.0 the existence 
of t.he minimum of the cost function on a particular closed convex 
set  that coincides, in many pract,ical cases, +th all t.he Euclidean 
space under consideration. 
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Partially  Singular  Linear-Quadratic  Control Problems 

BRIAN I). 0. ANDERSON 

Abstract-Necessary and sufficient conditions are given for  the 
nonnegativity of a partially singular quadratic  functional  associated 
with a linear system. The conditions  parallel  known  conditions for 
the totally singular problem, and a known sufficiency condition for 
the partially singular problem can  be derived from them. 

INTRODUCTIOK 

Consider the following linear  optimal  control problem. Uinimize 

J [ u ( . ) ]  = [ [+z’&z + fu.‘Ru + u’Cz1 + fz’(tr)Siz(ti) (1) 

subject  to 

Z = AX + BU  to) = 0 Dz(t / )  0. (2) 

Here, the st.ate  vector 5 is n-dimensional, and  the control  vector u 
is m-dimensiona.1. The matrices A,  B, C, Q, and R are t.ime varying 
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