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V) = 2@ + 3, 22 — a J32H(0) d6 (10)
=1

where 2|, _q are linear independent combinations in the components
of zs.
Finally select ¢ > 0 sufficiently small such that, for all |z]| < &,

¢’z n=ni
C!f f)de < 3 ( Z z% + 1’1'151>-
0

i=1

(11)

This is possible sinee £,(?(0) = 0. Combining (10) and (11) with the
fact that V (z) < Oforall ¢ > 0 shows that, for some Q.,

n—ni

> 22 € m/Qum

=1

(12)

if |z] < fo .
R Define N(z) = {z; [z] < &; C(x) € e, Clz) = x;'f’xl, where
¢ = ¢’ > 0is the solution of 04, + 4u'C = L

1) An initial state xp can be selected arbitrarily close to the origin,
such that the corresponding trajectory leaves N (z) after a finite-time
interval. Indeed, suppose that |z| < {oforall¢ > 0. Then

Clz) = 2’z — 2b1'$1f1(6'$)

whiere for C(x) = &2 the first term in the right-hand side is infinitely
small of second order and positive, while the second term is infinitely
small of third order, because of (12) and fi{¥(0) = 0. Hence there
exist & > 0 and 5 > 0, such that {(z) — 8C(z) 2 0for C(z) < &?
which proves the existence of a finite £ such that C[z(t)] > eo?

2) This trajectory cannot reenter N(z) for ¢ > #. Indeed, if it
does so as time ¢, there are two possibilities. Either Clz(#)] < «?
[z(t)| = to, which is impossible by (12) for &? sufficiently small, or
Clz(?)] = e |z@)] £ fo. Now the trajectory cannot enter N(x) as
C(z) > 0. It follows that

C(z) + 'z 2 min (fode?), ¥ ¢ 2 1,
which implies (3).
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Time-Varying System Stability—Interchangeability of the
Bounds on the Logarithmic Variation of Gain

M. K. SUNDARESHAN anp M. A. L. THATHACHAR

 Abstract—A frequéncy-domain criterion for the L.-stability of
systems containing a single time-varying gain in an otherwise time-
invariant linear feedback loop is given. This is an improvement
upon the earlier criteria presented by the authors in permitting an
interchangeability of the allowable bounds on the logarithmic
variation of the gain.

I. InTRODUCTION

The analysis of the Le-stability of a feedback system consisting of
a cascade of a linear time-invariant causal operator & in I and a
time-varying gain k(f) was the subject of a recent publication [1],
in which certain frequency-domain criteria permitting the use of
noncausal multipliers were presented. The principal factor of these
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results is the employment of an upper and a lower bound on the
rate of variation of the gain (1/k({) dk(t)/dt), these bounds being
determined from certain allowable ‘“‘shifts’” in the causal and the
anticausal parts of the multiplier. However, an examination of the
most general result of [1] will give one the impression that the shift
in the causal part of the multiplier is associated with the upper
bound, while the shift in the anticausal part is associated with the
lower bound. The main purpose of the present correspondence is to
emphasize the faet that this is not mandatory and, in fact, for linear
systems, the bounds on (1/k(¢))(dk(t)/d¢) are interchangeable.?

I1. ProBLEM FORMULATION
Notations and Definitions

While the notations used in the earlier paper [1] will be followed,
certain additional notations will be introduced now. Let R, B ¥, and
J* denote, respectively, the real numbers, the nonnegative real
numbers, and the nonnegative integers. An operator & in Ly(Lz.) is a
single-valued mapping of Ls(L».) into itself. H is a time-invariant
convolution operator in L(Ls.) if

Hz(t) {h,-, h(t)} ®z (), (® denotes convolution)

4w
> ha(t — T,~)+f R(r)z(t — 7)dr
T -

¥x(-) E La(la,),

where {7}, ¢ € J+, is a sequence in B+ and {h, i EJT, is a se-
quence in R. H(jw), the Fourier-transform of the kernel {&;,A(-)} of
H is given by

+
H{juw) = Z h; exp (—jor:) + f h(t) exp (—jwt) dt.
S -

Let & denote the Banach algebra of linear bounded time-~invariant
convolution operators H in L, with an identity £. An operator
H & & is said to be regular in ® if ! € ®. Let ®, and ®.. denote,
respectively, the subalgebras of ® of causal and anticausal operators
(for the definition of causality, see [1]).

Let X be the class of memoryless time-varying operators K in La,,
defined by Kxz(t) = k(t) z(t) ¥ z(-) € Ly, 0 < inf k(t) € k() < sup
)< o ¥tER . LetXfCc X DK € X8 =) dk@t)/dt < 28 k@) ¥
t ERtandsomeB € B, andlet KXo C & D K & Ko==)dk(t)/dt 2
—2ak(t) ¥ i ER* and some o ER™. Let Xof = Ko N KA It is
simple to note that K EX =) K1 C X and K C KPP =) K1 €
Kg®.

System: The system (Fig. 1) is described by the input—output
relations e1(-) = w(-) — wa(-), &a(+) = us + wyi(+), with w(-) =
Ga(r), G E®.and ws(-) = Keo(+), K E XK.

Problem: Given that ui(-), us(-) € Ly, and &1(-), e2{-) € Ly, find
conditions on G and K which ensure that e,(-), es(+) € La.

@

III. Main ResoLr
Theorem
If there exists an operator M & ® such that

M is regular in ® 1)

M=»M+ MDD M EC® and Mz E B (2)

Re M(jw) G(jw) 2 6> 0V w ER 3)

Re Mi(jw — 8) 2 0 ¥w & Randsome 8 ERT 4)
and

Re My(jo + @) 2 0 ¥ w & R and some « E R, 5)

then the system under consideration is Ly-stable (i.e., wi(-), wa(:) €
Li=a(-), e() € L)forall K € ®F U x5~

11t appears that this property does not hold in the case of systems containing
an additional nonlinear operator in the loop.
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Fig. 1. The feedback system under consideration.

Proof: A proof of the theorem will be given only for the case
K € Xg? since it has been proved for the other case of K € X.f in
[1]. (See [1, theorem 3]. It must be noted that this theorem is
proved in [1] under a more restrictive condition of Re 1f1(jo — 8) +
Re Ms(jw + @) 2 ¢ > 0 ¥ @ € R, than is implied by the present
conditions (4) and (5). However, the proof with the presently em-
ployed relaxed conditions follows as will be detailed below for the
case K € Xg®.)

We will follow the same method of proof as was employed in [1],
viz., the application of the positivity theorem after the introduction
of multipliers into the loop [2],[3]. Let us transform the system, as
shown in Fig. 2, by introducing the operators Af* and M *—1 (A*
denotes the “adjoint™ of Af). Note that these are well-defined oper-
atorsin Lysince? M € ® =) M * & ® and M regularin® =) M ! @
== (M ~1)* € ® and, further, (M ~1)* = M* 1 It is now sufficient to
prove, in view of the positivity theorem [2],[3], that: 1) H/*~1 ad-
mits a factorization A*~1 = A, D M. € B, M. € Be, and
M. and Mg, are regular in ®, and ®,,, respectively; 2) A*71G is
strongly positive with finite gain; and 3) K/* is positive (for the
definitions of positivity, strong positivity, and finiteness of gain of
operators, see [1]).

1) Factorization of A *~1: From (2),

Re M (jw) = Re M1(jo) + Re Ms(jw)
2 0¥wER,

because of (4) and (5), which implies A is positive.
Now,
() M* 1 z(-)) = M), y(- ), y(-) =
= (y(' )y ‘M?/(')),
and hence M positive (=) M *~1 positive.
Further, as mentioned earlier, I*, M*-1 € ®. Thus, M*1 is
positive and is regular in & and hence admits a factorization of the

desired form, invoking the lemmas in [5].
2) Strong Positivity of M*~'G:

@(), M*Gz(-)) = (@(+), (M~1)* Ga(-))
(M2(-), Ga(-))

M*=iz(.)

i

= {y(-), GMy(- ), y(-) = M(-)
> oyl
because of (3) and Parseval’s theorem (the norm indicated being the
Lsnorm).
Now, 2(-) = My(-) and hence,
el € v@DIlyC)|!

where y(]) is the gain of M (note that this follows from the defini-

tion of the gain,
Al
»O) = sup | azy(- |)|
v(yeL ()l
y(-}=0

AF1Gr(-)) 2

Thus,

(), 2 EIORE

{v (‘-I Nk
= &z(-), z(:- ) ¥ 2(-) € Ly,
2 Bince M & ® =) M is a hounded linear operator. the Riesz representation

theorem guarantees the existence of J/*; in fact. M* is also linear and bounded
(see Hxlle and Philips {4, p. 43];.
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- »-1
ux(-)=M uwl)

Fig. 2. System transformed with the introduction of multipliers.
where & = 3/[v(3)]2>0 (note that M & B =) v(M )< «)and hence
M*-1@ is strongly positive.

Further, M*~1G@ has finite gain since M*~1 € ® =) (M*-1)
< @, GE B =)v(G) < =, and y(M*71GF) < v(M*1)v(G).

3) Positivity of KM*:

(x(+), KM*z(.)) = (MKz(-), z(-)), since K € X is self adjoint
=), KMy, y(-) = MKz(-)
2 0¥ y() €L,
working as in the proof of [1, theorem 3] (note that K € Xg* =
K1 € RP).
Thus all the requirements of the positivity theorem are fulfilled
and hence the system is Le-stable. Q.E.D.

A Few Remarks
Remark 1: The present result generalizes the stability criteria of [1]
in the following aspects:

1) The bounds on the rate of variation of the gain k() are more
relaxed.

2) Less stringent conditions are imposed on the shifted-imagi-
nary-axis behavior of the causal and the anticausal parts of the
multiplier.

Remark 2: For the example considered in [1], of the system with

(s? + 4.22s + 10.6)(s? + 200.1s + 20)
(s* + 25 + 10)(s* + s + 16)
the choice of a multiplier
(s + 3.22)(s2 — 4.225 + 10.6)
(s? — 25 4 10)(s + 4)

and an application of the stability theorem (for details, see [1]),
proves the Li-stability of the system for all time-varying gains k(¢)
satisfying either of the following restrictions:

dk(t)

G(s) =

M(s) =

1) —k@) € < 6&()

or

2) —6k(t) < dk(t)

< k().
It may be noted that [1] proved stability only in the case when the
restrictions on k(t) are given by 1).

Remark 3: A comparison of the present result with the Ly-stability
criterion of Freedman and Zames [6] is interesting. While [6] im-
poses average variation constraints on k(f) that are less stringent
(note that k() need not be differentiable everywhere), it is also less
general than the present result in permitting causal multipliers only.
The derivation of an average variation result permitting noncausal
multipliers is a potentially useful problem for future investigation.
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On the Existence of Solutions to a Class of
Optimization Problems

ANTONIO SALLES CAMPOS

Abstract—-A sufficient condition for the existence and uniqueness
of solutions to a class of optimization problems in nonlinear pro-
gramming form, with strictly convex cost functions, convex inequal-
ity and linear equality side constraints, and closed convex constraint
sets is studied.

I. INTRODUCTION

The study of sufficient conditions for the existence of solutions to
problems of mathematical programming, caleculus of variations, and
optimal control [1]-[6] is of great interest. This work presents such
a sufficient condition for a nonlinear programming problem with
strictly convex inequality and linear equality side constraints, and a
closed convex constraint set. The main advantage of this sufficient
condition rests on its high practicability due to its extreme sim-
plicity.

I1. Tae Basic PROBLEM

Let € be a closed convex subset of E® let f:E" — E? be a con-
tinuous strictly convex funetion on C, and let g: E» — E™ be a con-
tinuous convex function on C. Let h:E* — E* be an affine linear
function on C such that V:h:(z), where V., denotes gradient in z,
z &€ C, 7 = 1, -k, are linearly independent vectors. Also, let it be
assumed that there exists a vector z* such that z* € C, g(z*) <0,
and A(z*) = 0 (for v € E* the notations v < 0 and » = 0 mean,
respeclively, v; < Oand v; = 0,7 = 1,---,n). Find a vector £ in E"
such that £ € C, g(£) < 0, i(#) = 0, and f(£#) < f(z), forallz in C
with ¢(z) < 0 and A(z) = 0.

III. ExisTENCE OF AN OPTIMUM SOLUTION

Consider the following lemma:

Lemma: Assume that there exists a vector £ that minimizes f(z) on
C. Then, if the set S = {:v:x el flz) < a}, where « is 2 real
number, is not empty, it is a compact convex set.

Proof: Since f is strictly convex on the convex set C, % is unique.
Taking « > f(£), S« is a nonempty set. By the convexity of fon C,
Sa is a convex set. Since f is continuous on C, S« is a closed set.
Assume, without loss of generality, that £ = 0 andf(%) = 0. Hence,
by the strict convexity of f on C,

J(8z) < Bf(x),

Assume that S, is not a bounded set. Then, there exists a sequence
{zi}, 21 € 8a,j = 1,2, -, such that |lz7]| - o with j — =, where
(|l ]) denotes the usual Euclidean norm. Pick up only those values of j
for which |[z7]| > 1. Then f(zi/||ef]|) < f(&/)/||2]| < a/||2|| for all j

0<B<], for all x & C such that x # 0.

such that ||zl > 1. But A = min  f(z) exists, for the set {z:z
llzil=1zEC
€ C, ||z|| = 1} is nonempty and compact, and, moreover, A > 0, for

i & {zx €C, |z|| = 1} and % is unique. Therefore, 0 < A < f(zi/
llzi]]) < a/||2|| for every j such that Hz’” > 1. But this is a contra-
diction, for, if |jz7]| - o with j — o, a/||z/]] - 0 with j - o.
Therefore, such a sequence {z/} cannot exist, i.e., S, must be a
bounded set.

Now it is possible to formulate the basic theorem of this work:

Theorem: If there exists a vector £ that minimizes f(z) on C, then
there exists a unique solution £ to the problem stated in Section II.
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Proof: Since there e}iists a vector z* & C such that g(z*) < 0,
h(z*) = 0, and since g is a continuous convex function and % is an
affine linear function on the closed convex set C,

X = {z:2 €C, g(x) < 0,k(z) = 0}

is a nonempty closed convex set. Consider the nontrivial case £ & X
and assume, without loss of generality, that £ = 0 and f(&) = 0.
Take the sets

8; = {z:2 €, f(z) <3},

As proved in the preceding lemma, these sets are nonempty compact
convex sets. Since there exists some 3’ such that 8/ N X is a non-
empty set for every j > §', let it be assumed, for simplicity of nota-
tion, that 77 = 1. Then 8; N X is a nonempty compact convex set
and, as f is continuous and strietly convex on 8; N X, there exists a
unique point #! that minimizes f(z) on 8; N X, with 0 < f(£1) < 1.
Moreover, by the same reasons, for any j > 1, there can be found a
unique £’ that minimizes f(z) on 8; N X. Since S; is contained in §;,
j=1,2--, then 8§ N X is contained in S; N X, 7 = 1,2,--+, and
hence 0 < f(#7) < f(#1) < 1,7 =1,2,+-. 80, # €8 N X, j =
1,2, --,1i.e., 7 = £! for every j. Therefore, there exists £ = #! which
is the unique solution to the problem stated in Section II.

j = 1,2,

IV. CoxcLusions

The solutions to a class of nonlinear programming problems were
shown to exist and ‘to be unique under certain conditions. These
conditions are very simple for they limit themselves to the existence
of the minimum of the cost function on a particular closed convex
set that coinecides, in many practical cases, with all the Euclidean
space under consideration.
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Partially Singular Linear-Quadratic Control Problems
BRIAN D. O. ANDERSON

Abstract—Necessary and sufficient conditions are given for the
nonnegativity of a partially singular quadratic functional associated
with a linear system. The conditions parallel known conditions for
the totally singular problem, and a known sufficiency condition for
the partially singular problem can be derived from them.

INTRODUCTION

Consider the following linear optimal control problem. Minimize

tr
T[u(-)] = f
to

subject to

[32'@z + 3u'Bu + w'Cz] + 32'(;)8;2(t;) (1)

&= Az + Bu z{b) =0 Dz@;) = 0. (2)

Here, the state vector z is n-dimensional, and the control vector u
is m~dimensional. The mairices 4, B, C, Q, and R are time varying
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