Therefore, the permutation transformation for both odd and even matrix dimensions is

\[P_n, P_{2n}, P_{3n}, P_{4n}, P_{5n}, P_{6n}, \ldots \]

One can also obtain a general relationship for generating the permutation matrix \(P \) for \(n \)-even or \(n \)-odd.

Similarly, one can obtain the innem form of both the minor matrices as follows:

\[I = P^t M P. \] \hspace{1cm} (4)

The above is evident, from noting (1) and \(P^t = P^{-1} \), where \(P^{-1} = \text{inverse} P \).

One can easily verify that there exists another type of permutation transformation for (1) which can be expressed for both even and odd \("m", \) as follows:

\[P_n, P_{2n}, P_{3n}, P_{4n}, P_{5n}, P_{6n}, \ldots \]

To obtain the corresponding innerwise matrix, for the Hurwitz matrix, we premultiply the latter by the following permutation matrix:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0
\end{bmatrix}
\]

The pattern is

\[p_{n2} = 1, \ p_{n1} = 1, \ p_{n5} = 1 \]

\[p_{n2-1,n-1} = 1, \ p_{n2+n-1} = 1 \]

\[p_{n2+2,n-3} = 1, \ p_{n2+n+1} = 1, \ldots \]

For odd \(n \)-odd [the permutation matrix dimension is \((n - 1) \times (n - 1)\)]:

\[
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & \cdots & 1 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{bmatrix}
\]

The pattern is

\[p_{n1} = 1, \ p_{n3} = 1 \]

\[p_{n1-2,n-2} = 1, \ p_{n1+n-2} = 1 \]

\[p_{n1+n+2} = 1, \ldots \]

The innerwise matrix has the unified form of left, of triangles of zeros, as shown in earlier publications [1], [3], [4].

Finally, to show that for the general problem of root clustering the innerwise matrix offers a unifying form which has a pattern that can be utilized advantageously for computational purposes, the following example is discussed.

Example

Let

\[F(z) = a_4z^4 + a_3z^3 + a_2z^2 + a_1z + a_0, \quad a_0 > 0. \]

The stability condition in the open left-half plane is [2]

1) \(\sigma < 0, k = 0,1,2,3,4; \)
2) in the following Hurwitz matrix,

\[|\Delta_2| = [\begin{array}{cc} a_0 & a_1 \\ a_1 & 0 \end{array} |\Delta_3| = [\begin{array}{ccc} a_0 & a_1 & a_2 \\ a_1 & a_2 & a_3 \\ a_2 & a_3 & 0 \end{array} \]

\[\Delta_2 > 0, \Delta_2 > 0. \]

The inner form of the above matrix can be obtained as discussed above by using the premultiplying matrix as follows:

\[[\Delta_3] = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 \\ 0 & 0 & a_1 & a_2 & a_3 \\ 0 & 0 & a_2 & a_3 & a_4 \\ 0 & 0 & a_3 & a_4 & a_5 \end{bmatrix} \]

The stability condition is that \(\Delta_3 > 0, \) be positive innerwise (p.i.) plus condition 1 stated above.

For the same polynomial, the stability condition within the unit circle [2] is that

\[F(1) > 0, \quad F(-1) > 0 \]

and that \(\Delta_3 > 0, \) be positive innerwise.

To obtain, for instance, \(\Delta_3, \) we have

\[\Delta_3 = X_3 + Y_3 = \begin{bmatrix} a_0 & a_1 & a_2 \\ 0 & a_1 & a_2 \\ 0 & 0 & a_1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & a_0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

\[= [\Delta_3] = \begin{bmatrix} a_0 & a_1 & a_2 + a_0 \\ a_0 & a_1 & a_2 + a_0 \\ a_0 & a_1 & a_2 + a_0 \end{bmatrix} \]

Similarly, \(\Delta_2 \) can be obtained.

The innerwise matrix \(\Delta_3 \) can be transformed directly into a minor form, whereby the inner \(\Delta_3 \) becomes the principal minor and the determinant values of the matrices are as follows:

\[\Delta_3 = \begin{bmatrix} a_0 & a_1 & a_2 + a_0 \\ a_0 & a_1 & a_2 + a_0 \\ a_0 & a_1 & a_2 + a_0 \end{bmatrix} \]

Conclusions

In comparing the inner form for the left-half plane and for the unit circle, the first element of the second row in both cases is zero. This is the unifying feature. The minor form has no such unifying pattern. Furthermore, there exists no inner-minor transformation that makes the first entry of the third row of \(\Delta_3 \) zero.

References

In a recent work by Anderson and Jury [5], it is shown that \(\Delta_3 \), p.i. can be replaced by the simpler conditions on the linear combinations of the coefficients of \(F(z) \).

Comments on "On the Simplification of Linear Systems"

M. R. CHIDAMBARA

The author of the above note is to be complimented on presenting a method of approximating a higher order system using the frequency response approach. It is interesting to note that there is good agree-
ment between the transient response of the higher order system and that of the corresponding lower order model, which is derived by matching the magnitudes of the frequency responses. However, a few points discussed in the above note need some clarification.

Strictly speaking, the simplified models developed by Davison [1], [5], viz., D_1 and D_2, and by Chidambara [2]–[4], namely, C_1 and C_2, should not be used for comparison with the model presented by Hsia, because the basis on which these different models are developed is entirely different from that on which the model is derived by Hsia.

If a comparison of the integral of the squared error is valid at all, reference should be made to the models derived using the two techniques described in [6] in view of which the models C_1 and C_2 become obsolete.

Denote the lower order model derived from Technique I [6], which retains the predominant eigenvalues, by C_1, and that derived from the other method [6] by C_2. It is worth recalling [6] that Technique II allows one to assign any desired eigenvalues to the lower order model. Let N refer to the model derived by method proposed by Hsia. C_1 and C_2 gives a comparison of the quality of the different simplified models for the same fourth-order example [4]. Table II shows a comparison of the transfer functions of the various lower order models.

Table II demonstrates that the simplified models based on Hsia's frequency response approach and Chidambara's transient response method [6] have approximately the same transfer function. This implies that there is a one-to-one (at least in an approximate sense) correspondence between the approximations based on frequency response approach and the transient response approach.

Table I1

<table>
<thead>
<tr>
<th>Model</th>
<th>Unit Step Response</th>
<th>$\int_0^\infty e(t)^2 , dt$</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1</td>
<td>$\frac{1 - (\frac{7}{6})e^{-t}}{1 - (\frac{1}{6})e^{-t}}$</td>
<td>3.3×10^{-4}</td>
<td>Predominant poles $-1, -2$ retained in the model</td>
</tr>
<tr>
<td>$(C-I)_h$</td>
<td>$\frac{1 - (\frac{6}{5})e^{-t}}{1 - (\frac{1}{5})e^{-t}}$</td>
<td>2.38×10^{-4}</td>
<td></td>
</tr>
<tr>
<td>N_2</td>
<td>$1 - 2.3306e^{-t} + 0.2506e^{-2t}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(C-I)_h$</td>
<td>$1 - 2.34e^{-t} + 0.24e^{-2t}$</td>
<td>0.6188×10^{-4}</td>
<td>Second-order model with two poles unspecified</td>
</tr>
<tr>
<td>$(C-II)_h$</td>
<td>$1 - 2.1695e^{-t} + 0.21695e^{-2t}$</td>
<td>0.415×10^{-4}</td>
<td>Both poles unspecified</td>
</tr>
<tr>
<td>N_4</td>
<td>$1 - e^{-0.212t}$</td>
<td>1.05×10^{-2}</td>
<td>First-order model</td>
</tr>
<tr>
<td>$(C-II)_h$</td>
<td>$1 - e^{-0.314t}$</td>
<td>0.967×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Original system (fourth order)</td>
<td>$1 + 2e^{-t} - e^{-2t}$</td>
<td>0</td>
<td>Exact system</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Model</th>
<th>Transfer Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_2</td>
<td>$0.3833s + 2$</td>
</tr>
<tr>
<td>$(C-I)_h$</td>
<td>$0.8s + 2$</td>
</tr>
<tr>
<td>N_3</td>
<td>$0.2917s + 1$</td>
</tr>
<tr>
<td>$(C-I)_h$</td>
<td>$0.39955s + 1$</td>
</tr>
<tr>
<td>$(C-II)_h$</td>
<td>$0.2938s + 1$</td>
</tr>
<tr>
<td>N_4</td>
<td>$1.0838s + 1$</td>
</tr>
<tr>
<td>$(C-II)_h$</td>
<td>$1.09049s + 1$</td>
</tr>
</tbody>
</table>

Author's Reply

I wish to thank Prof. Chidambara for his interest in my note. I am very grateful for his establishing more comparisons of my method to the best of his methods. These results together with those in my note should provide the reader with a good view of the performances of the wide-range of techniques for system simplification. I would like, however, to make the following remarks in response to Prof. Chidambara's comments.

1) The intent of my comparison study was to demonstrate that the new method is valid and useful. The models C_1, C_2, D_1, and D_2 were chosen in the study simply because they are readily available and are well known to the readers. The use of the integral-square-error criterion seems to me to be the most common, as well as unbiased, in that none of these models was in any way related to this criterion.

2) On the other hand, the models C_1 and C_2 of Chidambara are indeed derived on the basis of minimization of the step response integral-square-error. So to compare them with my frequency domain method is rather inappropriate. Even then, the N models compare rather well. This result has further demonstrated the good quality of my method.

3) It is noted that the approximation accuracy of the N models can be further improved if more than $(p + q)$ equations in (9) of my note are matched.

References

Manuscript received September 22, 1972.

The author is with the Department of Electrical Engineering, University of California, Davis, Calif. 95616.