same form as RL0 if
\[a(q - p) = \pm k \ 360^\circ \]
then RL will be equivalent to RL0.

Note that the rotations referred to in Properties 2 and 3 must be compatible with the fundamental property of RL being symmetrical with respect to the real axis.

Demonstration: By introducing a rotation \(\alpha \) to a BC, each critical frequency will rotate the same angle \(\alpha \) with respect to the real axis. Therefore, the added contribution to the angular condition of the new RL will be \(a(q - p) \). Thus if \(a(q - p) = \pm k \ 180^\circ \), each point of the primitive RL will belong to the new one after being rotated \(k \) degrees.

Note that the \(\pm k \ 180^\circ \) in the angular condition for \(a \in \mathbb{R} \) is due to the fact that \(K \) now describes the interval \(-\infty < K < \infty \).

If \(k \) is an odd number, the form is invariant but the branches of the positive parameter become negative and vice versa. The property 3 is an odd number, the form is invariant with respect to the primitive without fulfilling the angular condition of (6) or (7). For example, for a BC which has the zeros and poles in the vertices of a regular polygon with single or multiple critical frequencies in the geometrical center, it is easy to find compatible rotations which do not fulfill the conditions (6) or (7) and give identical BCs.

Property 4

If a BC is generated by a parallel to the real axis translation of a BC, the RL generated for BC will be equivalent to the RL as generated for BC.

Note that this important property (the demonstration of which is omitted because it is well known) has been used by many writers to prove intrinsic properties of RLs regardless of the position of the imaginary axis.

Property 5

Let BC1 and BC2 be two basic configurations such that where there is a zero in one, there is a pole in the other and vice versa (interchange of poles and zeros). Then RL1 and RL2, the corresponding RLs, are coincident and in each point the relation \(K_1 = 1/K_2 \) holds.

Demonstration: By interchange of poles and zeros, the RL equation \(P(s) + KQ(s) = 0 \) becomes \(K_2P(s) + Q(s) = 0 \), which equations are equal if a substitution of \(K_1 = 1/K_2 \) is made.

This known property gives another way of producing RLs of the same form, but in general, BC will not be associate with BC2, which requires that \(p = q \).

By using the particular case of \(p = q \), it is easy to prove Property 1 for zeros shifting.

Comments on "On the Inverses of Certain Matrices"

Abstract—It is shown here that the method suggested by Chidambara (Barlett's equation) is a particular version of the general matrix modification formula

\[
[A + UV^T]^{-1} = A^{-1} - A^{-1}U[S + V^TA^{-1}U]^{-1}V^TA^{-1}
\]

and that the modification suggested by Chidambara is obtained from this general form.

The matrix modification formula

\[
[A + USV^T]^{-1} = A^{-1} - A^{-1}U[S + V^TA^{-1}U]^{-1}V^TA^{-1}
\]

where \(A \) is an \(n \times n \) nonsingular matrix, \(U \) and \(V \) are \(n \times m \) matrices, \(S \) is an \(m \times m \) nonsingular matrix (another formula is given when \(S \) is singular), and \(m \) is less than \(n \) can be used to invert a modified matrix using the inverse of the original matrix. This procedure requires \(3mn^2 \) (or \(2mn^2 \)) mathematical operations as against \(n^3 \) operations when the matrix is inverted directly (or \(n^3/3 \) operations when inversion is achieved through triangulation).

To invert a matrix \(B \), the inverse of a matrix \(A \), whose elements are the same as \(B \) except for one column or one row, is used and the following equation obtained from (1) gives the inverse of \(B \).

\[
B^{-1} = (A + UVV^T)^{-1} = A^{-1} - A^{-1}U[S + V^TA^{-1}U]^{-1}V^TA^{-1}
\]

where \(U \) and \(V \) are column vectors. If \(B \) has one column [ith column as given in Chidambara] different from \(A \), then

\[
U^T = [d_1d_2 \ldots d_n]
\]

\[
V^T = [0, 0, \ldots, 1]
\]

\[
d_i = B_{ij} - A_{ij}
\]

Similarly, for a difference in one row, \(V \) will be full.

Our purpose here is to use (2) to get the following equation (Barlett's equation)

\[
[A + D]^{-1} = [I + A^{-1}D]^{-1}A
\]

where

\[
D = \begin{bmatrix}
0 & \cdots & 0 & -d_1 \\
0 & \cdots & 0 & -d_2 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & -d_n
\end{bmatrix}
\]

Rewriting (6),

\[
[A + D]^{-1} = \begin{bmatrix}
1 & 0 & \cdots & -g_1/1 + g_n \\
0 & 1 & \cdots & -g_2/1 + g_n \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1/1 + g_n
\end{bmatrix} A^{-1}
\]

and \(\alpha_{ij} \) is an element of matrix \(A^{-1} \), i.e.,

\[
[A + D]^{-1} = \begin{bmatrix}
1 & 0 & \cdots & -g_1/1 + g_n \\
0 & 1 & \cdots & -g_2/1 + g_n \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1/1 + g_n
\end{bmatrix} A^{-1}
\]

where

\[
G = \begin{bmatrix}
0 & 0 & \cdots & g_1 \\
0 & 0 & \cdots & g_2 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & g_n
\end{bmatrix}
\]

\[
[A + D]^{-1} = A^{-1} - \frac{1}{1 + g_n} GA^{-1}
\]

So it is necessary to show that (2) and (12) are identical.

\[
V^TA^{-1}U = \begin{bmatrix}
0, 0, \ldots, 1
\end{bmatrix} \begin{bmatrix}
a_1 & \cdots & a_n \\
\vdots & \ddots & \vdots \\
a_1 & \cdots & a_n
\end{bmatrix} \begin{bmatrix}
d_1 \\
\vdots \\
d_n
\end{bmatrix}
\]

\[
= \alpha_1d_1 + \alpha_2d_2 + \cdots + \alpha_n d_n
\]

\[
= g_n
\]
Comments on “A Graphical Method for Finding the Real Roots of nth-Order Polynomials”

Abstract—These comments on a previous correspondence show that the method exposed is a trivial consequence of Lill’s method. Furthermore, the Hurwitz restriction is removed from the polynomial.

In a recent correspondence, Eisenberg introduces a graphical method, based on Lill’s method, to obtain the coefficients of the reduced polynomial when a real root has alread been determined.

However, the procedure is a trivial consequence of Lill’s method. Lill’s method contains the tools to derive it directly as follows.

1) It is well known that if \(x_i \) is a real root of

\[
\sum_{j=0}^{n} a_j x_{i-j} = 0
\]

the coefficients of the reduced equation are

\[
a_{j}^{*} = a_j
\]

2) From Lill’s method, the length \(A_{j-1}P_{j-1} \) has the following value (see Fig. 1):

\[
A_{j-1}P_{j-1} = a_{j-1}x_i.
\]

From (2) it follows that

\[
P_{j-1}P_j \cos \theta = P_{j-1}A_j = a_j + a_{j-1}x_i.
\]

Use of (1) yields

\[
P_{j-1}P_j \cos \theta = a_j^{*}.
\]

3) If \(a_n = 1 \), then

\[
\frac{OP_0 \cos \theta}{OP_0} = a_0 = 1.
\]

Normalization with respect to \(a_{i}^{*} = \overline{OP}_i \) yields

\[
\frac{P_{j-1}P_j}{OP_0} = \frac{a_j^{*}}{OP_0 \cos \theta} = a_j.
\]

On the other hand, to restrict the application of the method to Hurwitz polynomials does not appear justified, provided that Lill’s method may be applied to any polynomial of real coefficients. The rule to obtain the sign of the coefficients of the reduced polynomial is the same as for the original one.

Author’s Reply

Subramanian and Ramachandra Rao prove an interesting equivalence between my proposed method and Barlett’s equation. I agree, although whether or not the method suggested is a particular version of Barlett’s formula is a question of opinion.

Dr. G. Krishna of Clarkson College of Technology, Potsdam, N. Y., has recently brought to my attention another method which treats the same problem.

All three of these methods are being exact solutions to the same problem must be equivalent.

M. R. Chidambaram
Washington University
St. Louis, Mo.

1 Manuscript received September 3, 1963.

Controllability of Stationary Linear Multivariable Systems Using a Frequency-Domain Criterion

Abstract—The notion of truncated function is used as a new approach to establish controllability criteria for stationary linear multivariable systems. The method presented provides a simple technique to test the controllability of a system represented by its inputs and initial conditions transfer matrices. In addition, the formulation of the