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We consider a model system of two interacting Fermi-
liquids, one of which is light and the other much heavier.
In the normal state the lighter component provides a
~ quantum mechanical bath coupled ‘ohmically’ to the
heavier component in the sense of Caldeira and Leggett,
suppressing thereby the band (tunnelling) matrix ele-
ments of the heavier component. Thus we lose the energy
of delocalization. On the other hand, a superconducting
ordering stiffens the bath spectral function at low
energies and so restores the tunnelling. The resulting
regain of the delocalization energy bootstraps so as to
stabilize the superconducting order that caused it. It is
conceivable that the motions parallel to the easy ab-plane
and along the hard c-axis may also effectively correspond
to the light and the heavy Fermi-liquids, respectively.

WE propose a purely electronic mechanism of super-
conductivity for a system of two interacting Fermi-
liquids, of which one is light and the other much
heavier, corresponding, respectively, to two overlapping
partially filled bands, one wide and the other narrow.
This is based on a dynamical feature of such a two-
component system that follows generally from the
Born—Oppenheimer adiabatic approximation modified
by quantum dissipation, as discussed in detail by
Caldeira and Leggett!, namely that the higher (faster)
subsystem acts as a dissipative ‘bath’ coupled to the
heavier (slower) subsystem, blocking its coherent
motion (tunnelling). This results in the loss of delocaliza-
tion energy of the heavier component (ie. band
narrowing). This blocking is very effective if the
coupling is ‘ohmic’, that is, if the bath spectral function
J(w) vanishes linearly with w as w fends to zero. A
superconducting ordering of the lighter component
would, however, stiffen the spectral function for
#i w<2A due to the opening up of the excitation gap
2A. This in turn should restore the tunnelling matrix
element of the heavier component to its original
magnitude, regaining thereby the energy of delocaliza-
tion. The latter now bootstraps so as to stabilize the
superconducting order energetically. Recently, in the
context of the normal state transport, we had
successfully invoked this mechanism for the suppression
of tunnelling along the (hard) c-axis due to its ‘ohmic’
coupling to the motion parallel to the ab (easy)-plane?.
Here, we now invoke this mechanism to explain
superconductivity itself. We will do this within the
framework of a highly truncated but still non-trivial
model Hamiltonian that brings out the essential points
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of this mechanism clearly. We believe that the
mechanism is robust and will survive realistic modifica-
tions of the Hamiltonian.

Consider first a light Fermi-liquid described by a
partially filled (s-like) band, but with a pair of tight-
binding (d-like) Wannier orbitals introduced at the
Fermi-level at neighbouring sites. The minimum
Hamiltonian for our purpose is then

H=~t,(d{d,+d5d) + Y 6, Cih Ca
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qa

=H,+Hy+H,p, (1)

where H, describes the two tight-binding orbitals at
sites R, and R,, with bare tunnelling matrix element ¢,
between them. Hy is the light Fermi-liquid ‘bath’, and
H,p is the dissipative coupling to bath fluctuations

Paig With pz(q,E;CijCk'a. Here V is the local

interaction with the bath, and ¢,= # ve(k—kg). N is
the number of lattice sites. Other symbols have their
usual meaning. Our system is assumed to be two
dimensional, anticipating layered materials (i.e. the
CuO, sheets).

As stated before, this is a highly truncated
Hamiltonian. We have taken the d-like (heavy)
Fermions to be spinless and hence no s—d mixing and
no on-site Hubbard U. (In fact the latter is infinite
here.) However, the interaction } is all important and
represents ‘interband coulomb’ repulsion (i.e. repulsion
between the nominally Cu?*:3d and the 0%~ : 2p
bands).

We can readily re-write H,p as

HOB::I.(V/N)U:ZSin(q'R)pqav (2)
qat

where o. is the usual Pauli matrix, now for the two
states (the two Wannier orbitals), and 2R is the vector
separating the two sites 1 and 2. We can now reduce
our problem to the usual spin-Boson problem! by
treating the density fluctuations p,, as bosonic
operators with energies # Vg in the spirit of the
Tomonaga approximation®. All we are saying really is
that the light Fermionic system can be approximated as
a Bosonic electron-hole bath which is well known'.
Then, the bath spectral function' can be written as (for
two dimensions).

JW)=n/23) (V*/N # ) (sin ¢- R)? d(w—w,)
q
=nw for

w<wC

with n=(p/4 1 ) (Va/V )2 (3)
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Here w, is an upper cut-off for the bath excitations that
couple effectively to the heavier subsystem. We have
replaced the form factor (sin ¢-R)* by its average over
the two-dimensional Brillouin zone and called it f.

The linear w dependence of J(w) for small w makes
the dissipative coupling ohmic. The dimensionless
coupling constant is now

a=nl2n i = B/8x (Va/ # V}) (4)

We expect x> 1 for large enough V. Now, for a>1
we know that the tunnelling matrix element ¢,
renormalizes to zero'. Hence we lose the delocalization
energy completely in the normal state. Now, consider
the possibility of a superconducting order at 0 K. Let
us anticipate the superconducting order with the gap
parameter 2A. The opening of such a gap (i.e. absence
of low-lying excitations) in the excitation spectrum will
now stiffen J(w) making it vanish for # w<2A. For
#i w>2A, however, it is essentially unaffected. Thus,
the tunnelling matrix element is now re-normalized as’:

fiwe 1 J(w)
tq—=> 1= 14 exp[-—LA M W dw

=1402A/ #i w )« (5)

We, therefore, regain the delocalization energy due to
the finite’ tunnelling 7, We¢ now assume that the
energetic effect of having N such d-like Wannier
orbitals {i.e. a heavy band) is additive so as to get an
extensive contribution. We thus get the energy stabi-
lization AE per site in the superconducting state (for a
two-dimensional system):

2A
AE=2td<*ﬁ>a (6)

This must be equated now with the condensation
energy 1/2 N.A? normally associated with the
superconducting state, in the spirit of bootstrap. This
gives two solutions

Y

Ne(fiw)? ] <11'3>

2A=0, or 2A=+# Wc{"—“ _____ -

The second solution is a stable fixed point for o> 2,
implying strong coupling. Thus, to stabilize the
superconducting state there is a critical threshold o=2
that must be exceeded.

It is to be noted here that the above treatment, based
on an appeal to the total energy stabilization does not
manifestly give the details of the nature of the ordered
state, except that the latter has a gap in its excitation
spectrum, i.e. absence of low-lying excitations. Such an
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energy stabilization provides the thermodynamic force,
but as to how the latter entrains the Fermions to
produce the ordered state would require a detailed
microscopic treatment. It seems natural to extend the
Hamiltonian to the ‘resonance level model’ along the
lines initiated by C. M. Varma and his collaborators®.

Finally, we would like to point out that the kinetic
stabilization of the superconducting state by the energy
gain due to delocalization is somewhat reminiscent of
the interlayer pairing discussed by Wheatley, Hsu and
Anderson®, where the pairing is energetically favoured
by the pair delocalization along the c-axis and
consequent energy gain.

Note added in proof. The excitation energy gap in question
must be a co-moving gap, that is an ‘uncompensated’ gap,
that does not forbid band motion. Superconductivity gap is
the only one of this kind known. The author thanks Pramod
Gupta for raising this question.
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Large size fractals in ion conducting
polymers: A novel experimental
observation
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A novel experiment is described in which large size
fractals have been seen in ion conducting polymers
obtained by doping polyethylene oxide (PEO) with NH_I.
The addition of Al,O, in the polymer complex helped in
the initiation of cluster nucleation. The measured fractal
dimension (~1.7) is typical of ‘diffusion limited
aggregates’.

Ever since the discovery of Mandelbrot about the
widespread presence of fractals in nature, physicists
have diverted their attention towards it to discuss a
range of phenomena occurring in disordered systems
for which fractal concepts provide a natural framework.
Fractals are generally observed in far-from-equilibrium
phenomena- whether it is in nature (mountains, snow
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