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It is a well known fact that complex numbers enter the mathematical formalism of quantum mechanics
in a very fundamental way. Thus their use in this context is far from being a matter of mere
convenience, as it is in, for instance, classical electromagnetic theory. For any quantum system, pure
states can be superposed with one another using complex numbers as coefficients, and the results are
pure states again. As an illustration, by considering all possible complex superpositions of two independent
pure states, we obtain a whole §? — worth of pure states, rather than a set describable by, say, a
“smaller” one-dimensional manifold. This appearance of complex numbers leads to many delicate
phase-dependent quantum phenomena, including those of constructive and destructive interference of
complex probability amplitudes.

In 1984 Michael Berry* made a very fundamental discovery relating to phases in quantum mechanics:
at the end of a cyclic adiabatic Hamiltonian evolution governed by the time-dependent Schrodinger
equation, while the physical state may return to its initial “value”, the state vector need not, there
being room for a difference in phase. Moreover part of this phase is basically geometrical rather than
dynamical in character. In pure mathematics, certain results are frequently characterised as being
“deep”. To be deep is not necessarily the same as to be intricate or complicated, but to refer somehow
to the very foundations of the subject. There is of course an unavoidable element of subjectivity in
saying that a theorem is deep; it reminds one of Dirac’s statement that “Mathematical beauty cannot
be defined any more than beauty in art can be defined, but which people who study mathematics
usually have no difficulty in appreciating”. Berry’s discovery is both deep and beautiful; today it is
named in his honour as “The Berry Phase”.

Soon after, many generalisations and applications of the Berry phase appeared: relaxing the adiabaticity
condition, relating it to corresponding classical phenomena, tracing anomalies in quantum field theory
to such origins and so on. What motivated a considerable amount of work in this country was the
recognition and display by S. Ramaseshan and R. Nityananda® of the fact that something very closely
analogous to the Berry phase had in fact been discovered by S. Pancharatnam® in the mid-fifties in
the context of polarization optics. Later Berry himself re-evaluated and placed in perspective this early
pioneering work done in India*.

It should come as no surprise that many of the practical experimental demonstrations of these delicate
phase effects on a macroscopic scale should have to do with propagation of light beams and cyclic
changes of its state of polarization. Equally it should be understandable that many examples of the
Berry phase and its generalizations can be best theoretically handled using the language of unitary
group representations. The three papers put together in this part of this volume are, from all points
of view, most appropriate: we have S. Ramaseshan tracing the historical connection between Pancharatnam’s
and Berry’s discoveries; R. Simon reporting on the uses of the symplectic groups in the theory of the
geometric phase in optics; and R. Bhandari describing a unified framework to handle optical experiments
concerned with these questions. It is unfortunate that we have been unable to include here the text
of Berry’s own talk given at this session of the Symposium, due to factors beyond our control.
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