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Abstract. This is in continuation of our paper ‘On the propagation of a multi-dimensional
shock of arbitrary strength’ published earlier in this journal (Srinivasan and Prasad [9]). We
had shown in our paper that Whitham’s shock dynamics, based on intuitive arguments,
cannot be relied on for flows other than those involving weak shocks and that too with
uniform flow behind the shock. Whitham [12] refers to this as misinterpretation of his
approximation and claims that his theory is not only correct but also provides a natural
closure of the open system of the equations of Maslov [3]. The main aim of this note is to
refute Whitham's claim with the help of an example and a numerical integration of a problem

in gasdynamics.
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1. Compatibility conditions on a shock manifold

Significance of a characteristic manifold of a hyperbolic system of first order partial
differential equations in m + 1 independent variables is well known and lies in the fact
that one can derive from the equations a compatibility condition which contains only
m independent interior derivatives in the manifold. One of the interior derivatives can
be chosen in the direction of the bicharacteristic curve (or along a ray). It is also true
that no surface other than the characteristic surface has the property that one can
derive from the equations a compatibility condition on that surface containing only
the interior derivatives. Therefore, if we take a shock manifold in m + 1 dimensional
space of all independent variables, the differential equations can be used to derive on it
a relation which contains m interior derivatives in the shock manifold (one of which
may be chosen to be the direction given by the shock ray) and one exterior derivative.
In our paper [9] we derived one such compatibility condition for gasdynamics
equations with special aim that all the derivatives appearing in it should be that of the
excess of the density behind the shock (extension of p,) over that ahead of the shock
(po) divided by p, i.e. (p; — po)/Po = U, say, a measure of the shock strength. For two
space dimensions, we have shown that
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where (cos @, sin @) is the unit normal to shock surface at time ¢, J/0s, is the spatial
rate of change in (x,, x,, t)-space along a shock ray, d/dn and 0/0N are the tangential
and normal derivatives for the shock surface at a fixed time, and B, and B, are
functions of y and the ratio y of the specific heats (Srinivasan and Prasad [10]). The
derivatives d/ds, and d/dn are interior derivatives in the shock manifold in (x,, x,,t)-
space and J/0N is an exterior derivative.

Equation (1) is just one of the infinite sequence of compatibility conditions, which
can be derived on the shock manifold by Grinfeld and Maslov’s methods ({2], [3]). It
throws a deep insight into a new structure of the gasdynamic equations: the rate of
change of the shock amplitude depends not only on the distribution of the shock
strength on the shock surface but also on the gradient of the flow in the direction of
the normal to the shock. This is an exact result. At any time, this gradient can be made
to have an arbitrary value by suitably prescribing the initial data influencing the flow
behind the shock and hence the last term in (1) represents the effect of the waves
which catch up with the shock from behind.

Whitham’s theory [11] ‘shock dynamics’ is based on a number of assumptions
(such as rays are particle paths, see page 277[11]), the two main assumptions are

Assumption 1. Evolution of the shock strength on the shock front depends only on the
initial position of the shock front and the distribution of the physical variables (and
not on their derivatives) on the shock front.

Assumption 2. The rate of change of the shock strength along a ray is given by the
characteristic rule.

Assumption 1, which has never been stated explicitly by Whitham, was not realised
and pointed out earlier to our work [4],[8]. This assumption is mathematically
equivalent to having a compatibility condition on the shock manifold with only first
order interior derivatives appearing in it. This assumption leads to Whitham’s basic
equations (equations (8.59) and (8.60) of [11]) and amounts to having only terms
containing the derivatives d/0s, and d/dn in (1). Assumption 2, giving a quantitative
relation between shock strength and the ray tube area, is independent of
assumption 1. The exact compatibility condition (1) shows that assumption 1 is
not correct. To deduce his equation (8.59) in [11] from (1), Whitham assumes without
any justification
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8/0N = cos ®9/0x, + sin ©d/0x, and u has three independent arguments ¢, s and N
(or t,x,, x,) (independent because at any time ¢ the function y i.e. the state behind the
shock can be arbitrarily prescribed), there is no justification for the assumption (3).
Assumption 2 is also not correct and it is well known that it gives reasonable
results only for a few problems (Hayes [1]). In fact, Prasad et al [5] have recently
worked out an example where the assumption can give a result with error as much as
800%; or more. It is surprising that Whitham criticises our work, since he himself failed
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to give a mathematical justification for the assumption 2 as evident from his remark
(page 272, [11]): “When the quick derivation of the characteristic rule occurred to me,
1 hoped also that a full analysis of the approximation could be based directly on the
original fluid dynamic equations. So far this has not been completed!’ Of course, this
cannot be completed because the characteristic method is not a correct
approximation for a majority of problems as shown by the example in the next
section.

2. An example

Example. Consider an one-dimensional single conservation law
u, +($u?), =0 4

for which the shock velocity S is given in terms of the state u, on the left and u, on the
right by

S = 3w + u). (%)
We assume that the restriction of the solution to a region immediately on the left of the
shock is smooth, then u satisfies u, + uu, =0 or u, +#(u +u,)u, +4(u — u,)u, =0.

Taking the limit as we approach the shock from the region on the left, we deduce the
compatibility condition along the shock path in (x, t}-plane as

u
4~ w)y =0 along T = b +u,) ©
Unlike the compatibility condition du/dt =0 on the characteristic curve along
dx/dt = u, the condition (6) contains an exterior derivative with respect to the shock
curve in addition to an interior derivative d/dt=0/dt+ S(6/0x). The exterior
derivative term is 1(1;, — 1,)(u,), which corresponds to the term B, (u)(d/0N) in (1).

While criticising our work, Whitham makes another (wrong) assumption, namely
by the relation (3), which for this example, becomes
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Using it in (5), we get
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a.compatibility condition containing only the interior derivatives. This implies (unless
1 +La(u,)(u, — u,) = 0) that u, is constant along the shock path irrespective of the state
behind the shock. Thus, this assumption (3) of Whitham leads to an absurd result.
This is also shown by considering the following initial value problem
(Ramanathan [7]) for the conservation law (4):

0, x<—n
u(x,0)= ;—— —-n<x<l1 )

0, x=1
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with > — 1. Note that the initial data contains a single shock at x = 1. The shock
position X (¢) at any time ¢ is given by

X(t)=—n+ 1+ +n+0)'2, 8)

As n— o0, u{x,0) gives a uniform state behind the shock and in this case the shock
moves with a constant velocity 4. For all other values of 5, —1 <5< o0, the shock
velocity and shock strength are respectively
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which can differ by any amount (in per cent error) from the respective values 1 + 4t
and L given by Whitham’s Characteristic rule.

3. An example from gasdynamics

We have also used (1) and (2) to develop an algorithm to compute successive positions
of a curved shock, when the shock is weak (Ramanathan (7], Ravindran and
Prasad [8]). We present here the results of a computation using this algorithm and
Whitham’s theory from the Ph.D. thesis of Ramanathan for waves produced by a
cuncave piston. The figure gives successive positions of a shock front according to
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Figure 1. Initial parabola y> =x (w=01exp(—0.25]8})). At s=0.1 -NL, SD, S lie close to
each other. At s = 0.2 — SD is just behind NL and at s = 0.3 — SD has forged ahead of NL at
corresponding time.
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Whitham’s shock dynamics (referred to SD in the figure), the shock fronts (S) as
predicted by our theory, the linear wavefront (L) and the nonlinear wavefront (LS) (we
have also developed a theory ‘Kinematics of a nonlinear wavefront’ to compute
weakly nonlinear wavefronts). In this particular case, the shock predicted by
Whitham’s theory moves quite ahead of ours. At ¢’ =0.3 and ¢’ = 0.4 it has moved even
ahead of the nonlinear wavefront (NL), a result which is certainly not correct, since it
contradicts a well known result ‘the shock velocity of a weak shock is the mean of the
characteristic velocities .ahead and behind the shock’.

4. Conclusion

Equation 1 is just one of the infinite sequence of compatibility conditions, which can
be derived on the shock manifold. It throws a deep insight into a new structure of the
gasdynamic equations, the rate of change of the shock amplitude depends not only on
the distribution of the shock strength on the shock surface but also on the gradient of
the flow in the direction of the normal to the shock. This is an exact result. The term
du/oN is zero when the flow behind the shock is taken uniform in the normal direction
at each instant. Except for this very special case, du/ON # 0 and, in general, would
contribute to the solution. As shown in the example, the value of du/oN will
significantly depend on the initial data and hence this term must be treated as
independent of the other two terms in (1). This being so, if we wish to compare our
theory with Whitham’s shock dynamics we must compare the coefficients B, and B,
as done in our previous paper. Even in the case when the flow behind the shock is
uniform ie. du/oN =0, the shock dynamics of Whitham is not fully justified.
Equations (1) and (2) reduce to equations similar to the shock dynamics equations but
the coefficient B, differs significantly from B, in the shock dynamics for all values of
other than those of weak shocks (see [10]). The column for |((B; — B,)/B,)| in the
table shows that the error is more than 509, for M = 2.5, about 1009, for M ~ 3.5 and
increases to 2559 for strong shocks. While criticising our work, Whitham completely
ignores the significant difference present in the table for intermediate values of M.
We finally note that there is neither a mathematical proof for the derivation of
Whitham’s shock dynamics equations nor has any one shown that it can be derived as
an approximate theory. There are only two justifications for its use: (i) it has given
accurate results for certain problems (specially, some of the results of characteristic
rule are amazingly good) and (ii) it is a simple and elegant method to solve a large
variety of complex problems (Whitham [11]). However, there are situations
(Hayes, [1]) of exact similarity solutions where the error by the characteristic rule
{which forms the basis of shock dynamics) is as much as 15%,. Our example in §2
shows that when ¢ > (1 + ») the characteristic rule gives an error for the shock position
which is even more than 100%,. Our computation of a flow problem in § 3 shows that
Whitham’s theory gives a result which is absurd since the shock front moves ahead of
the nonlinear wavefront. In mathematics, there is a very important difference between
verification and proof. Verifying any number of times does not constitute a proof of a
theory. A single large disagreement with the results of a theory, verified even hundred
times for particular problems, immediately sliows that the theory is not based on a
sound foundation. In Whitham’s shock dynamics and the characteristic rule, there is
no well defined set of problems where they can give results in close agreement with the
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exact solution. Unless the set of problems, where shock dynamics can be safely used, is
identified and unless an estimation of error is found, it is not correct to use Whitham’s
method. Not only that, it leads to a great misunderstanding about the correct form of
equations on the shock manifold. Actually, Whitham shock dynamics for a weak
shock is nothing but the kinematics of a nonlinear wavefront developed by us
(Ravindran and Prasad, [8]) with some changes in the coefficients of the equations.
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