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Alautraet. This is in continuation of our paper "On the propagation of a multi-dimensional 
shock of arbitrary strength' published earlier in this journal (Srinivasan and Prasad [9]). We 
had shown in our paper that Whitham's shock dynamics, based on intuitive arguments, 
cannot be relied on for flows other than those involving weak shocks and that too with 
uniform flow behind the shock. Whitham [12] refers to this as misinterpretation of his 
approximation and claims that his theory is not only correct but also provides a natural 
closure of the open system of the equations of Masiov [3]. The main aim of this note is to 
refute Whitham's claim with the help of an example and a numerical integration of a problem 
in gasdynamics. 
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1. Compatibility conditions on a shock manifold 

Significance of  a characteristic manifold of  a hyperbolic  system of first order  partial 
differential equations in m + I independent variables is well known and lies in the fact 
that  one can derive from the equat ions a compatibi l i ty condit ion which contains only 
m independent interior derivatives in the manifold. One  of  the interior derivatives can 
be chosen in the direction of  the bicharacteristic curve (or along a ray). It  is also true 
that  no  surface other  than the characteristic surface has the proper ty  tha t  one can 
derive from the equat ions a compatibil i ty condi t ion on that surface containing only 
the interior derivatives. Therefore, if we take a shock manifold in m + 1 dimensional  
space of  all independent variables, the differential equat ions can be used to derive on it 
a relation which contains m interior derivatives in the shock manifold (one of  which 
may  be chosen to be the direction given by the shock ray) and one exterior derivative. 
In our  paper [9]  we derived one such compatibi l i ty condit ion for gasdynamics  
equat ions with special aim that  all the derivatives appearing in it should be that of  the 
excess of  the density behind the shock (extension of  Pl )  over that  ahead of  the shock 
(P0) divided by Po i.e. (Pl - Po)/Po =/~, say, a measure of  the shock strength. For  two 
space dimensions, we have shown that  

and 
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where (cos | sin O) is the unit normal to shock surface at time t, d/ds~ is the spatial 
rate of change in (xl, x2, t)-space along a shock ray, d/0r/and d/aN are the tangential 
and normal derivatives for the shock surface at a fixed time, and B~ and B2 are 
functions of/~ and the ratio y of the specific heats (Srinivasan and Prasad [101). The 
derivatives d/ds~ and d/d~/are interior derivatives in the shock manifold in (x~, x2, t)- 
space and d/dN is an exterior derivative. 

Equation (1) is just one of the infinite sequence of compatibility conditions, which 
can be derived on the shock manifold by Grinfeld and Maslov's methods ([21, [3]). It 
throws a deep insight into a new structure of the gasdynamic equations: the rate of 
change of the shock amplitude depends not only on the distribution of the shock 
strength on the shock surface but also on the gradient of the flow in the direction of 
the normal to the shock. This is an exact result. At any time, this gradient can be made 
to have an arbitrary value by suitably prescribing the initial data influencing the flow 
behind the shock and hence the last term in (1) represents the effect of the waves 
which catch up with the shock from behind. 

Whitham's theory [111 'shock dynamics' is based on a number of assumptions 
(such as rays are particle paths, see page 277 [111), the two main assumptions are 

Assumption I. Evolution of the shock strength on the shock front depends only on the 
initial position of the shock front and the distribution of the physical variables (and 
not on their derivatives) on the shock front. 

Assumption 2. The rate of change of the shock strength along a ray is given by the 
characteristic rule. 

Assumption I, which has never been stated explicitly by Whitham, was not realised 
and pointed out earlier to our work [41, [81. This assumption is mathematically 
equivalent to having a compatibility condition on the shock manifold with only first 
order interior derivatives appearing in it. This assumption leads to Whitham's basic 
equations (equations (8.59) and (8:60) of[111) and amounts to having only terms 
containing the derivatives a/ds~ and d/&l in (1). Assumption 2, giving a quantitative 
relation between shock strength and the ray tube area, is independent of 
assumption 1. The exact compatibility condition (1) shows that assumption 1 is 
not correct. To deduce his equation (8.59) in [111 from (1), Whitham assumes without 
any justification 

0~ = a(~) ~. (3) 
dN 

Since 

d s l = ~  ~ +  CcosO + CsinO , 

d/ON = cos Od/dx~ + sin Od/dx2 and/z has three independent arguments t, s and N 
(or t, x~, x2) (independent because at any time t the function # i.e. the state behind the 
shock can be arbitrarily prescribed), there is no justification for the assumption (3). 
Assumption 2 is also not correct and it is well known that it gives reasonable 
results only for a few problems (Hayes [11). In fact, Prasad et al [51 have recently 
worked out an example where the assumption can give a result with error as much as 
800% or more. It is surprising that Whitham criticises our work, since he himself failed 
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to give a mathematical justification for the assumption 2 as evident from his remark 
(page 272, [11]): 'When the quick derivation of the characteristic rule occurred to me, 
I hoped also that a full analysis of the approximation could be based directly on the 
original fluid dynamic equations. So far this has not been completed!' Of course, this 
cannot be completed because the characteristic method is not a correct 
approximation for a majority of problems as shown by the example in the next 
section. 

2. An example 

Example. Consider an one-dimensional single conservation law 

u, + (�89 = 0 (4) 

for which the shock velocity S is given in terms of the state u~ on the left and ur on the 
right by 

s = �89 + u,). (5) 

We assume that the restriction of the solution to a region immediately on the left of the 
shock is smooth, then u satisfies u, + uux = 0 or u t + �89 + ur)u ~ + �89 - ur)u~ = O. 
Taking the limit as we approach the shock from the region on the left, we deduce the 
compatibility condition along the shock path in (x, 0-plane as 

dul dx 
d---i- + �89 - u~)(u~)m = 0 along ~ -  = �89 + Ur). (6) 

Unlike the compatibility condition du/dt = 0 on the characteristic curve along 
dx/dt  = u, the condition (6) contains an exterior derivative with respect to the shock 
curve in addition to an interior derivative d/dt=d/dt+S(O/Ox) .  The exterior 
derivative term is �89 - U r ) ( U x )  I which corresponds to the term B2Q.O(O/ON ) in (1). 

While criticising our work, Whitham makes ~inother (wrong) assumption, namely 
by the relation (3), which for this example, becomes 

(u~)l = a(uO \ Ot + Ox f 

Using it in (5), we get 

dx 
{ l + � 8 9  along ~-~=�89 

acompatibility condition containing only the interior derivatives. This implies (unless 
1 + �89 - Ur) = 0) that u~ is constant along the shock path irrespective of the state 
behind the shock. Thus, this assumption (3) of Whitham leads to an absurd result. 
This is also shown by considering the following initial value problem 
(Ramanathan [7]) for the conservation law (4): 

0, x <  - r /  
x + q  

u(x,0)= q - + l '  - - q < ~ x < l  (7) 

0, x>~l 
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with ~ > - 1. Note that the initial data contains a single shock at x = 1. The shock 
position X(t) at any time t is given by 

X(t) = - ~7 + ( |  + t l ) l /2 (  1 + 7 + t) t/2- (8)  

As 7 - '  oo, u(x,0) gives a uniform state behind the shock and in this case the shock 
moves with a constant velocity �89 For all other values of 7, - 1 < 7 < oo, the shock 
velocity and shock strength are respectively 

( ) dX I I+7 1/2 I I + t  
1 t < and ut - 7 + (9) 

which can differ by any amount (in per cent error) from the respective values 1 + �89 
and • given by Whitham's Characteristic rule. 

3.  A n  e x a m p l e  f r o m  g a s d y n a m i c s  

We have also used (1) and (2) to develop an algorithm to compute successive positions 
of a curved shock, when the shock is weak (Ramanathan [7], Ravindran and 
Prasad [8]). We present here the results of a computation using this algorithm and 
Whitham's theory from the Ph.D. thesis of Ramanathan for waves produced by a 
cuncave piston. The figure gives successive positions of a shock front according to 
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Whitham's shock dynamics (referred to SD in the figure), the shock fronts (S) as 
predicted by our theory, the linear wavefront (L) and the nonlinear wavefront (LS) (we 
have also developed a theory 'Kinematics of a nonlinear wavefront' to compute 
weakly nonlinear wavefronts). In this particular case, the shock predicted by 
Whitham's theory moves quite ahead of ours. At t' = 0.3 and t' = 0.4 it has moved even 
ahead of the nonlinear wavefront (NL), a result which is certainly not correct, since it 
contradicts a well known result 'the shock velocity of a weak shock is the mean of the 
characteristic velocities .ahead and behind the shock'. 

4. Conclusion 

Equation 1 is just one of the infinite sequence of compatibility conditions, which can 
be derived on the shock manifold. It throws a deep insight into a new structure of the 
gasdynamic equations, the rate of change of the shock amplitude depends not only on 
the distribution of the shock strength on the shock surface but also on the gradient of 
the flow in the direction of the normal to the shock. This is an exact result. The term 
~p/ON is zero when the flow behind the shock is taken uniform in the normal direction 
at each instant. Except for this very special case, Op/~N # 0 and, in general, would 
contribute to the solution. As shown in the example, the value of Olz/ON will 
significantly depend on the initial data and hence this term must be treated as 
independent of the other two terms in (1). This being so, if we wish to compare our 
theory with Whitham's shock dynamics we must compare the coefficients B 1 and B 3 
as done in our previous paper. Even in the case when the flow behind the shock is 
uniform i.e. Op/ON = O, the shock dynamics of Whitham is not fully justified. 
Equations (1) and (2) reduce to equations similar to the shock dynamics equations but 
the coefficient BI differs significantly from B3 in the shock dynamics for all values of/z 
other than those of weak shocks (see [10]). The column for I((B a -BI)/BI)[  in the 
table shows that the error is more than 50% for M = 2.5, about 100~ for M - 3.5 and 
increases to 255% for strong shocks. While criticising our work, Whitham completely 
ignores the significant difference present in the table for intermediate values of M. 

We finally note that there is neither a mathematical proof for the derivation of 
Whitham's shock dynamics equations nor has any one shown that it can be derived as 
an approximate theory. There are only two justifications for its use: (i) it has given 
accurate results for certain problems (specially, some of the results of characteristic 
rule are amazingly good) and (ii) it is a simple and elegant method to solve a large 
variety of complex problems (Whitham [l l] ). However, there are situations 
(Hayes, [1]) of exact similarity solutions where the error by the characteristic rule 
(which forms the basis of shock dynamics) is as much as 15%. Our example in w 
shows that when t >> (I + r/) the characteristic rule gives an error for the shock position 
which is even more than 100%. Our computation of a flow problem in w 3 shows that 
Whitham's theory gives a result which is absurd since the shock front moves ahead of 
the nonlinear wavefront. In mathematics, there is a very important difference between 
verification and proof. Verifying any number of times does not constitute a proof of a 
theory. A single large disagreement with the results of a theory, verified even hundred 
times for particular problems, immediately shows that the theory is not based on a 
sound foundation. In Whitham's shock dynamics and the characteristic rule, there is 
no well defined set of problems where they can give results in close agreement with the 
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exact solution. Unless the set of problems, where shock dynamics can be safely used, is 
identified and unless an estimation of error is found, it is not correct to use Whitham's 
method. Not only that, it leads to a great misunderstanding about the correct form of 
equations on the shock manifold. Actually, Whitham shock dynamics for a weak 
shock is nothing but the kinematics of a nonlinear wavefront developed by us 
(Ravindran and Prasad, [8]) with some changes in the coefficients of the equations. 
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