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A new algorithm for learning representations in a
multilayer Boolean neural networks is presented. The
algorithm depends on a theorem which states that any
nonlinearly separable Boolean function can be expressed
as a convergent series of linearly separable functions
connected by the lo,ical OR (+) and logical INHIBIT
(—) operators. The formation of the series is accom-
plished by the implied minterm structure of linearly
separable functions. The algorithm produces the repres-
entation much faster than the back propagation, and
unlike the latter does not encounter the problem of local
minima.

THE back propagation (BP) algorithm developed by
Rumelhart et al.' suggests a new way to explore good
representations. It is also the most extensively used
learning algorithm for complex, multilayer systems.
Among many networks where back propagation has
been successfully applied, there is a class of networks
where the input and output vectors are strings of binary
bits, 0 and 1. In such networks, called Boolean neural
networks by us, the representation obtained by the BP
algorithm becomes a logic circuit implemented by the
familiar threshold gates®*® working as hidden and
output units. In the terminology of logical design and
switching theory of computer science and engineering,
the output vector becomes the output Boolean function,
and the input state vectors which are binary combina-
tions of input variables are known as fundamental
products or minterms. The output Boolean function
can, therefore, be depicted in a truth table or may be
expressed as a sum of minterms>“. Boolean functions
which can be realized by a single threshold gate are
linearly separable (LS) functions®3. However, quite
often the desired output function is not LS. In such a

case the output function can be expressed as a

convergent series of LS functions, given by a new
theorem stated and proved in this paper. Based on this
theorem and the implied minterm. structure (IMS)° of
LS functions, a new algorithm for learning good
representations of Boolean neural networks is being
presented in this paper. As we have discussed later, the
algorithm does not have many shortcomings of the BP,
and promises to provide a powerful alternative to BP
for the Boolean neural networks.

While expounding the BP algorithm, Rumelhart
et al.' have discussed in their paper seven problems,
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namely, XOR, parity, encoding, symmetry, addition,
negation, and the T-C problem. In all these except the
T-C problem, the learning network can be straightaway
classified as Boolean. There are many other applications
of learning, where the information from the outside
world are encoded into binary bits by the input units of
the learning network. Hence, Boolean networks,
although a subclass of all types of neural networks,
form undoutedly the most predominant and significant
subclass. Therefore, an algorithm without many short-
comings of the BP although applicable only to Boolean
learning networks, has the promise of being a most
extensively used algorithm.

Implied minterm structure

In order to introduce the implied minterm structure
to the reader, we first define a few basic terms.

Definition 1

Given a Boolean function, the ON set is the set of
minterms whose output is desired to be 1. Minterms
belonging to the ON set will be called on minterms.

Definition 2

Given a Boolean function, the OFF set is the set of
minterms whose output is desired to be 0. Minterms
belonging to the OFF set will be called off minterms.

Definition 3

The tabular form of a given function is the ON set
minterms written in their binary form. It may also be
considered as a matrix where each row represents a
minterm whose output is desired to be 1, and each
column is headed by a variable. For example, the
tabular form of the S-variable function

F(x,, Xy, X3 X4 X5)=2 (0, 4, 10, 14, 17, 21, 27, 31)

can be seen in Tablp la of the next section.

Definition 4

The number of 1s in the binary representation of a
minterm is called its weight.
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Definition 5

A Boolean function is called positive and ordered, if in
every column of the tabular form of ‘the given function,
the number of 1s is not less than the number of Os, and
the ratios of the number of 1s to that of Os are such that
if r; and r; are these ratios of the ith and the jth
columns respectiyely, then r;>r; when i <j.

Any arbitrary Boolean function can be made positive
and ordered by suitable permutations and/or comple-
mentations of its columns.

In a LS function, it has been shown that if a minterm
m; is realized by a set of weights and threshold, then
there are minterms which will also be realized by the
same set. If m; is one such minterm, then m; is said to
imply m;.

Definition 6
Let m, and m, be two minterms such that

my=bb,...0...b,
my=bb,...1...b,

then m, is said to have been obtained from m; by
positive complementation.

Such a positive complementation when applied to the
least significant bit (b, in our notation) of the minterm
is called elementary positive complementation. Note that
the minterm m,, obtained from m,; by elementary
positive complimentation has a weight w+ 1, where w is
the weight of m,.

Definition 7
Let m, and m, be'two minterms such that

my=bb,...0...1...bh,and
my=bb,...1...0...b,

Then m, is said to have been obtained from m, by
positive permutation. Note that in positive permutation,
a 1 is shifted to the left and a O to the right, and the
weight of m, is the same as that of m,.

Positive permutation when applied to adjacent bits of
a minterm is called a unit positive permutation.

It will now be obvious that in a positive and ordered
function, if the minterm m; has been obtained by unit
positive permutations on m;, and m, has been obtained
by elementary positive complementations on m;, then m;
implies m; and m,. Also note that the implication
relation is transitive, that is, if m; implies mj, and m;
implies m,, then m; implies m,.

The IMS of 4-variable minterms is shown in Figure
1. The IMS is a graphical structure showing implications
between the minterms. In this structure if m; implies m;
by virtue of m; being obtained from m; by either
elementary positive complementation or unit positive
permutation, then m; appears below or on the right of
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Figure 1. 4-Variable implied minterm structure, with on and star
minterms of 4-variable odd parity function plotted on it. Also shown
are nested compact zones of F,, F,, F;, and F,.

m; (or sometimes in an angle in between these two
directions).

Solid lines (in Figure 1) are used to depict the
implications due to unit positive permutations between
two minterms of the same weight; and the dotted lines
are used to show the implications due to elementary
positive complementations, where implying minterm m;
has a weight w and the implied mingerm m; has a
weight w+ 1.

To test the linear separability of a Boolean function,
first make the function positive and ordered, and then
plot the ON set minterms in the IMS structure. If the
IMS now reveals at least one minterm that does not
belong to the ON set of the function but is implied by
one of the on-minterms, then the IMS of that function
is said to have a hole in it and is therefore not compact.
In this case the function is not LS. Hence, for a function
to be linearly separable, its on-minterms must form a
compact zone in the IMS, which may be defined as
follows.

Definition 8

If a set of minterms in the IMS, whose every member
has all (may be one or more) minterms implied by it
also within the set, then the set of minterms is said to
produce a compact zone.

The algorithm

The algorithm consists essentially of four procedures
namely, TRANSFORM, ON-STAR, REALIZE and
RESTORE.
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We now solve two problems to explain the above
procedures. Using the 4-variable odd-parity problem,
we shall describe the procedures ON-STAR and
REALIZE. Using the S-variable mirror symmetry
problem, we shall describe the procedures TRANS-
FORM and RESTORE.

4-Variable odd-parity problem

In this problem, the network learns to detect odd parity
in bit strings of length 4. It can be seen that such strings
of 4-variable minterms are 0001, 0010, 0100, 0111, 1000,
1011, 1101 and 1110. These have the decimal
designations, 1, 2, 4, 7, 8, 11, 13 and 14. Hence the 4-
variable odd parity Boolean function Fqp is given by
the following sum-of-minterm form.

Fop=2(1,2,4,7, 8, 11, 13, 14).

It can be verified that the tabular form of this
function is already positive and ordered. Now, plot the
on-minterms of the function on the 4-variable IMS by
circling the minterms (Figure 1). It is seen that the
plotted on-minterms alone fail to produce a compact
zone in the IMS. Hence, the function is not LS°.
Therefore, to obtain an LS function we identify a
compact zone which includes not only all on-minterms,
but also some off-minterms. This produces the first
compact zone, and represents an LS function F,. The
off-minterms in the first compact zone will be called
star-minterms (shown by stars in Figure 1). Next we
identify the second compact zone which is nested in the
first compact zone. It must compulsorily include all star-
minterms, and if need be, some on-minterms to make
the zone compact. The second compact zone corres-
ponds to the second LS function, F,. The third
compact zone (if any) will be nested in the second
compact zone, and will compulsorily include all on-
minterms within the second compact zone, and if need be,
some star-minterms to avoid any hole. This produces
another LS function, F,. This process continues until
the nth compact zone, which is a homogeneous zone
(containing either only on or only star but not both
types of minterms) is detected. In this function, the
procedure terminates with the identification of the
fourth LS function, F,. It can now be easily verified
that Fop=F,—F,+F;—F,, where — and + are the
logical INHIBIT and logical OR operators. The identi-
fication of the on and star minterms, and the compact
zones is done by the ON-STAR procedure of the
algorithm. The procedure REALIZE now finds the set
of weights and thresholds of the identified LS functions.
The procedure achieves this by several iterations, based
on the principle of Dertouzos® vector®.

For the 4-variable odd parity function, the weights of
the four functions (see Figure 1), F, to F,, turn out to
be identical (namely 1,1,1,1) and their thresholds are
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0.5, 1.5, 2.5 and 3.5 respectively. Since, the functions F,
and F; are excitory, they are connected to the output
unit by weight 1. F, and F, are inhibitory and,
therefore, are connected to the output unit by weight —1.
The threshold of the output unit is always 0.5. The
representation learnt by the network is shown in Figure
2. This representation happens to be identical to that of
Rumelhart et al.!

We can now state and prove a new and significant
theorem which is at the heart of this algorithm. We
shall call this the linearization theorem, since it converts
a non-linearly separable function into a series of
linearly separable functions.

THEOREM 1

(The Linearization Theorem) A non-linearly separable
function F can always be expressed as a convergent series
of LS functions F,, F,, ..., F, connected by the logical
OR (+) and the logical INHIBIT (—) operators, such
that,

F,>F,> ... F, and
F=F,—F,+ ... +F, when njs odd, and
F=F,—F,+ ... —F, when n is even.

Proof:  Without any loss of generality, we shall prove
the theorem from the working of the algorithm while
solving the 4-variable odd parity problem. It can be
seen that the minterms of the first compact zone
constitute the first LS function F. It consists of the on-

X, X, Xq X,

Figure 2. Representation for the 4-variable odd parity problem as
obtained by the IMS algorithm. Solid lines show connections with
positive weight, 1, and dotted lines connections with negative weight,
—1. Gates are normally off, with output 0, and gets turned on
producing an output 1, when the weighted sum exceeds the threshold
shown in the circle.
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minterms and the star-minterms. It is now definite that
whatever may be the distribution of the on and star
minterms in the first compact zone, the on and star
minterms constituting the second compact zone must
be at least one on-minterm less than those of the first
compact zone. Thus the set of minterms constituting
the second compact zone will always be a proper subset
of the set of minterms constituting the first compact
zone. Hence F, > F,. This will also be true for F, and
F,, and so on. Hence, generalizing F;>F;,,. It also
follows from the algorithm, that the minterms of F,
must be subtracted and those of F; must be added. In
general, for all i>1, F; must be subtracted if i is even
and F; must be added if i is odd. The relation F;>F;,
also proves that the series is convergent. QED

While solving the 4-variable parity problem, we
explained the procedures ON-STAR and REALIZE.
Let us now solve the second problem.

5-Variable mirror symmetry problem

In this problem the network learns to detect symmetry
in a bit string of length 5. It can be seen that minterms,
00000(0), 00100(4), 01010(10), 01110(14), 10001(17),
10101(21), 11011(27) and 11111(31) bave symmetrical
bit patterns. In the sum-of-minterm form the 5-variable
mirror-symmetry function can, therefore be written as

Fys (X1, X3, X3, Xg X5)= 2 (0,4,10, 14, 17,21,27,31).

If this function is now plotted on the S-variable IMS,
and the compact zones identified, then we get 11 LS
functions of theorem 1 as shown by the nested
expression given below.

(0(1-3(4(5-9, 16(10, 17(11-13,18-20, 24(14, 21
(15,22,23,25,26,28(27(29, 3031)))))NN)

where the notation 1-3 means |, 2, 3.

This will result in a representation having 11 hidden
units. Although such a representation is correct, it is
not economical. A significant reduction in hidden units
can be achieved with the help of the procedure
TRANSFORM. This procedure finds a permutation
and/or complementation of the columns of the tabular
form of the function, such that the function not only
becomes positive and ordered, but also in its tabular
form, the least minterm of the tabular form has the
highest decimal designation. For example, the tabular
form of the 5-variable Fyg function is shown in Table
la. Table 1b shows the transform (x,, x5, x{, X5, X3),
wherein the columns x, and x5 have been complemented
and the columns x,, x5, x;, x5 and x5 become the 1st,
2nd. 3rd, 4th and 5th columns of Table 1b. The

orm also changes the decimal designations of the
Jote that the least minterm of Table la is 0,
f Table 1b is 10. This is the highest
of the least minterm that may be obtained.

Table 1
(a) )
m; X; Xy X3 X4 X m; Xy X3 X, Xg X3,
0 0 0 0 0 O 10 0o 1 0 1 0o
4 0 0 1 0 0 11 0 1 0 1 1
10 0 1 0 1 0 18 1 g 0 1 0
14 0 1 1 1 0 19 1 0 0 1 1
17 1 0 0 0 1 2 0 1t 1 0 0
21 1 0 1 0 1 13 0 1 1 0 1
27 1 1 0 1 1 20 1 0 1 6 o
31 1 11 1t 21 1 0 1 o0 |1
N(1) 4 4 4 4 4 N{I) 4 4 4 4 4
N{0) 4 4 4 4 4 NO 4 4 4 4 4

The minterms of Table 1h are now plotted on the 5-
variable IMS, and the on and star minterms identified
(Figure 3). It is interesting to note that now only two
compact zones are found, corresponding to only two
functions I; and I, of theorem 1. The REALIZE
procedure now determines the weights of these two
functions which turn out to be (2,2,1,1,0) for both I,
and I,. The RESTORE procedure now assigns these
weights with proper signs to the input variables. Since
in the transformed columns, the first column is headed
by x,, the first weight 2 is assigned to x,. The second
column is headed by x;. Therefore, the second weight
with a negative sign is assigned to x,. This way the
weight vector (2,2,1,1,0) of the transformed variable
(x4, X5, X4, X5, X3) becomes the weight vector (1, —2, 0,
2, —1) for the original variables (x,, X, X3, X4 Xs)
Both the functions [, and I, have these weights.
Thresholds are now computed with these weights.

Figure 3. S-Variable implied minterm structure, with on and star
minterms of the 5-variable mirror-symmetry function plotted on it.
Also shown are the nested compact zones of I, and I,.
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