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Some Aspects of the Lur'e Problem 
iY1. A. L. THATHACH-AR . ~ N D  h1. D. SRIN.ATH, NEMBER, IEEE 

Abstract-The problem of absolute  stability of feedback  systems 
containing  a  single  nonlinearity is considered  for the  case of the 
linear  transfer function  having an equal number of finite poles and 
zeros.  Explicit  Liapunov  functions are  presented  and frequency- 
domain  criteria  are  derived  for  systems  for which the  nonlinear 
function j(.) belongs  to the  class A, (f lies in the  first  and  third 
quadrants)  or  its  subclasses  such as monotonically  increasing  func- 
tions (jEME), odd-monotonic  functions (IEO,), and  functions with 
a  power-law  restriction (jEPm). A new  class of functions  with  re- 
stricted  asymmetry  having the property If(O)/f(-O), IC for all 0 
(0 #O) is introduced,  and  the  results  obtained  can  be  used  to  establish 
stability in some  cases  even  when  the Nyquist  plot of the  linear  part 
transfer  function  lies  in all the four quadrants  and  the  nonlinearity 
is not  necessarily  odd.  Restrictions  on  the  derivative of the non- 
linearity  have  been  taken  into  account by means of a  transforma- 
tion, and  the  resulting  stability criterion is  seen  to  be  an improve- 
ment  over  those  obtained in some  earlier papers. 

I. ISTRODUCTIOS 

The  Lur'e problem and  its modifications  have attracted consider- 
able attention in  recent  years.  The  results of Popov [ l ]  have  been 
extended and frequency-domain  criteria  presented  for  determining 
asymptotic  stability in the large (ASIL) of systems  consisting of a 
linear  transfer  function  with  nonlinear  feedback [ 2 ] - [ 6 ] .  Xiany of 
these  publications [ 4 ] - [ 6 ]  treat  the case \\-here the degree of the 
denominator  polynomial of the linear part  transfer  function is a t  
least  one  higher than  that of the  numerator.  For fE-4, even the 
results of Brockett  and iYillems [3]  are applicable  only to  this case. 
Recent  papers  by Ku and Chieh [ 7 ]  and  Johnson [ S I  have  con- 
sidered the case  of fE A , and linear  transfer  function  being  the  ratio 
of equal-order  pol>-nomials; the derivation is rather involved in 
the former, and  neither paper  presents an explicit  Liapunov  function. 

This  paper  derives  stabilitl-  criteria  for  equal-order  systems  with 
nonlinear  feedback and gives  explicit  Liapunov  functions to prove 
ASIL. Nonlinearities  belonging to several  classes are considered, 
and  stability  criteria  are  presented  that  require  the existence of a 
positive  real  function,  which  yields a positive  real  product  when 
multiplied by  the linear  transfer  function. The multiplier is per- 
mitted,  in  certain cases, to have  complex  conjugate poles and zeros 
and is thus more  general than  the  type of multipliers  in  earlier  results 
[3]. new class of functions  with  restricted  asymmetry is introduced, 
and  the  results for  this  case  are used to prove  stability  in  cases  where 
earlier  results fail. 

These  results,  in  conjunction  with  a  transformation of the non- 
linear  function,  are used to provide  results  for  cases  n-here the de- 
rivative of the  nonlinearity is bounded, thus extending the  results  in 
earlier  papers [ 4 ] ,  [5] where  no  such  bound  was  placed on the de- 
rivative. 

11. THE  SYSTEM 

The dynamical  system  considered  in  this  paper is described by  the 
vector-matrix  equations 

.z' = Br - bf(u) 

u hTX - J(u)  (1) 

where x is an t z  vector  representing  the state of the  system; b and h 
are  constant fz vectors. -4 is a constant n X n  matrix all of whose 
eigenvalues  have  negative  real parts, u is a real-valued  scalar time 
function,  and 7 is a non-negative  scalar. 

I t  is assumed that f(.) belongs to  the class A, or its  subclasses 
such as  monotonically  increasing  functions CfE Jf,), monotonic 
functions  with  restricted  asymmetry CfEA'"m j ,  odd-monotonic  func- 
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tions CfEO,), or odd-monotonic  functions nrith a power-law restric- 
tion cfEPEm) [SI, [SI.  

The nonlinear  function is assumed to be  differentiable  in  order to 
ensure  the  continuity of the  Liapunov  function  (introduced  in  the 
nest section) and  its first partials. I t  is further assumed that 1 +qf'(u) 
>0, xvheref'(u)Adj(uj/du, so that  the mapping x - m  may be unique. 
I t  should  be  noted that  this condition is automatically  satisfied  when 
f( .) is monotonically  increasing. 

I t  can easily  be  derived that  the transfer  function G(s)  relating 
the  output u to  the  input -f(u) is given by 

G(J) = h T ( d  - + 7 = Gl(s) + 7 ( 2 )  

where is the  value of G(sj evaluated at  s = E .  

derivation is indicated  for the  other cases. 
The results forfE-4,  (the Popov  case) are  derived first and  the 

111. THE  STABILITY  CRITERIOS: POPOV CASE 

Consider as  a  candidate for a Liapunov  function 

with P = P T > O  and 3020. Using 

h T i  = [l + vf'(u)]U (4) 

which is obtained  from (1): and  adding  and  subtracting af(u)u where 
0120, the time derivative i- along the  trajectories of the  system  can 
be written  as 

P = +G(A'P + P A ) x  - f (u )xT[Pb  - L3oATla - ah]  

- [3,hTb + W ] J " 3 ( U )  - muj(u1. ( 3  

A straightforward  application of the Meyer-Kalman-Yakubovich 
lemma [9], [4] then leads to  the  result  that BSO and is not 
identically  zero  along a trajectory, provided 

(&hTb + cq) + Re (a + florl)hTGuI - d j-lb 2 0 (6 )  

for all real O. The proof  follows that in XIeyer [9].  With some  sim- 
plification of ( 6 ) :  the  stability  criterion can be stated as follows. 

Theorem 1 

The  system (1) is ASIL for fE-4,, satisfying l+.lf'(nj >0, if 
there exist constants a>O and $020, such that 

Re Z(jo)G(jw) 2 0 (7) 

for all real O, where 
Zb) =afflos. (8) 

11,'. FURTHER  RESTRICTIOSS  ox THE KOKLISEARITY 

By  placing  more  restrictions on the  nonlinearity,  stability  can  be 
predicted  for a larger  class of systems [ 2 ] - [ 6 ] .  The  results for  equal- 
order  transfer  functions  can be obtained by using the  appropriate 
Liapunov  function  in [4]. [ S I  with the additional  term +&qfz(u). 
Cases  where the  transfer function has  a simple  pole at  the origin can 
be treated in  a  similar  manner  by  considering the  equations of in- 
direct  control [SI. 

A4s an example I e t fE  M,. Then f(. j satisfies 

for all e, el, and 8 2 .  

Choo* a Liapunov  function of the form 
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where 
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P = P T > O  

BO, yi ,  Si 2 0 ,  i = 1, . , v ,  where v is an integer less than or equal 
to the  number of real  zeros of G(s ) ,  and 

--X; is  a  real  zero of G(s), X i f O .  
Adding and  subtracting  terms of the  form 

auf(u) + yilJ(BTB;2) - f ( u ) ] [ h T B ; ~  - U ]  (11) 

from and following the  approach  in  Narendra  and  Keuman  [4], 
the  stability  criterion can  be stated  as follou-s. 

Theorem 2 

The  system (1) is ASIL for fEM,  if there exist  constants a >O 
and BO, y;>O, such that 

1) Re ZGw)G(jw) 2 0 (12) 
where 

2) --Xi is a nonzero  real  zero of G(s) .  

I t  should  be  noted that  the multiplier Z(s) derived  above is any 
RL driving-point  impedance  with its poles at the real  zeros of G(s). 

The  above  result makes use of only the real  zeros of G(s), as  the 
poles of Z(s). By  limiting the  as>-mmetry of the nonlinear  function, 
it is possible to  use complex  zeros of G(s) in the  multiplier. 

For example, let fESC,. Then, in addition  to (9), f (  .) satisfies 
(f(ej/f(-O)I Sc, (e#O), where c 2 l .  

If - X i ? j k  and - X k k j p k  are pairs of complex  zeros of G(s), 
define the following matrices: 

where q; is a  complex  scalar and 0; is a  non-negative  real  number. 
Matrices  are  defined  similarly  for  k-subscript  terms. 

Using a Liapunov  function of the form 

and following the  approach in Thathachar et a[. [SI, the  results for 
fE LVsc can  be stated  as follows. 

Theorem 3 

The system (1) is ASIL forfE:VnC if there  exist a>O and non- 
negative constants BO, B ; ,  B;', fit, j%:, a;, al', at, ab'! and s;, i,', y k ,  sk'  

for . i= l ,  . . . , vl and k =  (o,+l) ,  . . . , e', where I' is a n  integer  less 
than or  equal  to  the  number of zeros of G ( s ) ,  such that 

1) Re Z(jw)G( jw)  2 0 (16) 
for all  real w ,  where 

V. REDCCTIOK TO A SECTOR 

As indicated [lo], use of a transformation along  with the result 
for  equal-order  transfer  functions  permits extension to  the finite- 
range  case of the  results of Popov,  etc. 
Let 

f1E -4K i.e., 0 < u ~ ~ ~ ( u ~ )  < &*. 
Let 

u = (TI - f ( u ) / K  and f(u) = fl(ul). (21) 

Then 

Hence ~ ~ E A K  impliesfEA,,  and  the  system in  Fig. 2 is zero-input 
equivalent  to  that in  Fig. 1. Thus,  the  stability of the  system  in 
Fig.  1 w i th fcA,  implies that of the  system in  Fig. 2 ,  wi thf ,cAe.  
Hence, the condition  for XSIL of the system  in  Fig. 2 is given by 

Now, from  (21), 

Thus, if f~(u~) is monotonically  increasing and [df~(u~)/dul] <K, i.e., 
jlE ~ f l ; , f ( u )  is also  monotonically  increasing, i.e.,fE -+Im. Conversely, 
if fE :Us, f E  M K  . 

Thus,  the  stability of the  system in Fig. 2 w i t h f l ~ L l ~ K  is identical 
to  that of the  system in  Fig. 1 wi th fEXn.  Application of Theorem 2 
then gives the condition for  stability of Gl(s )  with  nonlinear  feedback 
f ,E X K .  
Theorem 4 

The dynamical  system 

is ASIL  for  nonlinear  feedback flEJf~, under  the  conditions of 
Theorem 2, with G l ( j w ) + l / K  replacing G ( j w ) ,  where Gl(s) 
= hT(sI-A)-Ib. Similarly, forj1EA'&, i.e.,fEA% where f is obtained 
fromf, using (21) ,  the  criterion  can be stated  as follows. 

Tlworem 5 

The  system (25) is *\SIL for f,EL\'& under  the  conditions of 
Theorem  3  with Gl(jw)+l/K replacing G(jw) .  

Thus, by  using the  result  for  equal-order  transfer  functions  along 
with  a  transformation,  stability  criteria  can  be  stated  for  cases  in which 
a  maximum  bound is placed  on the  derivative of the nonlinear  func- 
tion.  The  stability  criteria  presented elsewhere [4], [5] where no such 
restriction  was  placed on the slope of the  nonlinearity,  are of the  form 

Re Z(jw![Gl(iw) + l /K] - a'/K 2 0 (26) 

where a' is positive. Thus,  it  can  be seen that  the  constant negative 
term -a'/K has been  eliminated  in  Theorems 4 and 5; hence, the 
conditions  on  the linear part  have been  relaxed. 
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Fig. 1. Equal-order  system  with  nonlinearity  in  the  infinite  sector. 

Fig. 2. Equivalent  system  with  nonlinearity in a  finite -=tor. 

1.1. FURTHER EXTEXSIOKS 

The  stability  propertiss of a system with G(s) in the forward path 
and  f(u)in  the feedback path  are  the  same as those of a system  with 
l/G(s) in the forward path  andf-'(uj in the feedback path. JVhen 
fiu) is in X=,f-1(,uj is also in X , ,  Hence,  when ~ # 0  andf belongs to  
:Ifz or its subclasses,  one  can  replace G(s) by  l/G(s) in all the  criteria 
derib-ed in this paper. This applies to  the finite sector  case as well 
when f~cJf~. Even when f is not  invertible, using transformation 
(21 ) and  the  results in -4izerman and  Gantmacher [l 1 1. G(s) can  be 
replaced by 1 /G(s).  

From  the  above discussion, Theorem  6 follows. 

Tlworem 6 

1) If q f O ,  Theorems 1, 2,  and 3 are valid  even  when G(s) is  re- 

2 )  Theorems 4 and 5 remain  valid  even  when Gl(sj+l/K is re- 

It  may be  noted that Theorem  6 implies that  [Z(s)]-'  can be 
used  in the place of Z(sj in all the previous  theorems  and is similar 
to  the results  obtained  elsewhere [ 3 ] ,  [ 6 ] .  

The  criteria for the case of an odd  monotonic  nonlinearity  can 
be  obtained by  setting c = 1 in  Theorems 3 and 5. Ji'hen the non- 
linearity satisfies a power-law restriction cfcp,m or p K m ) ,  results 
can  be  obtained  by proceeding along the  same lines as in Theorems 

placed by  l/G(sj. 

placed  by  [G,(sj+l/K]-l. 

3 and 5 using appropriate inequalities given in Thathachar et al. [j]. 
The form of multiplier turns  out  to be the  same  as  that  found pre- 
viously [j]. 

Consider the  transfer function 

G(s) = 
(x2 + 1.8s f 1) (x2 + 4) 

s ( 9  + 2.1s + 1.2j(s + 20) 

with  nonlinear  feedback in LV=c. 
The Nyquist  plot of the  transfer function lies  in all the four 

quadrants; hence. the  Popov criterion is not satisfied. Results of 
Sarendra  and  Keuman [4] are  not applicable here. Criteria in 
Brockett  and Willems [3]  cannot establish stability because .f is 
not odd.  Eyen the results of O'Shea [6] applied after  converting  the 
problem to a finite sector  problem, are  not useful because no further 
assumptions such as boundedness are made on .f; hence, stability 
cannot be  established unless the  phaseangle of G(&I is i n  a 2i0° band 
or f is odd. 

However:  with the  results i n  the present paper. one can chonse 

Z(sj = 
(sz + 2.1s + 1.2;1(~ f 20j 

sz f 1 . 8 ~  + 1 

under  the conditions of Theorem 3 with c=2,  so that zl,sjG(s) 
= (s?+4:1/s is positive  real. Thus  the  system is .4SIL for allfc;\7ir? 

\'I I I .  COXCLUSIONS 
Explicit  Liapunov functions  are gix-en for establishing asymptotic 

stability in the large of a feedback  system  with a single nonlinearity 
and a linear part with transfer  function of the form of the  ratio of 
equal-order polynomials. Stability  criteria  are presented for systems 
with various classes of nonlinearities, viz., A,, :Vir, and X=".  

These  results  along  with a transformation  have  been used to  de- 
rive  conditions for ASIL  in  the finite sector case. This  permits  exten- 
sion of earlier  results [4], [j] to  the case of the nonlinearity  with a 
restricted maximum value of the  derivative.  Thus,  criteria  are ob- 
tained for fcM~, ,VK~.  etc.  .in example indicates  that  the present 
method  can  take  care of situations where the  other existing criteria 
fail. Though  not  explicitly  stated.  results  can  be  obtained  for  the 
case of an equal-order  transfer  function,  stable in a finite sector, by 
proceeding along the lines indicated  in this  paper. 

REFEKESCES 
V. lli. Popov. "Absolute  stability of nonlinear  systems  oi  automatic  control.* 
Atclazalion ami Renwfe  Conkol, 001. 22. pt. 8, pp. 857-875, March 1962. 
G. Zames. "On the  stability  oi  nonlinear,  time-varying  feedback  systems." 
Proc. Sal ' l  Eleclronics Conf.. pp. 525-730. 1964. 
R. W. Brockett  and J. L. LVillems 'Frequency  domain  stability  criteria,'  pt. I. 
IEEE Trans. Aulomalic  Control. vol.  AC-10,  pg. 255-261. July  1965;  pt. 11. 
;bid.. pp. 407413 ,  October 1965. 
K. S. Narendra  and C .  P. Neuman,  "Stability of a  class of differential  equa- 
tions  with  a single monotone  nonlinearity," J .  S I A M  Conlrol, vol. 4, no. 2. 1966. 
3%. A. L.  Thathachar, h,f. D. Srinath.  and H. K. Ramapriyan. "On a modified 
Lur'e  problem. I E E E  Tram. Aulnmalic Co;atrol. vol. AC-12. December 1967. 
R. P. O'Shea, 'A combined  fr$quency-time  domain  stability  criterion for 
autonomous  continuous  systems, I E E E  Tram.  Auloma!ic Coslrol.  vol. AC-1 I ,  
pp. 475-484. July 1966. 

linear  control  systems." J .  Franklix Insf . .  vol. 279. pp. 40-416.  June 1965. 
Y. H. Kn  and H. T.  Chieh. "Extension  oi  Popor's  theoremsior  stability of non- 

C. D. Johnson. '.A note on  control  systems  with  one  nonlinear  element." 
I E E E  Trass. Aubmatic  C o n ! m ~  (Shorf Pa3ers) .  rol. AC-II ,  pp. 122-121. 
January 1966. 
I(. R.?bIeyer:  "On  the existence of Liapunov  functions for the problem  of 
Lur'e. 1. SI.4.V Coxtrol, vol. 3. no. 3. pp. 373-383. 1965. 

linearity in a sector, I E E E  Tram. Aatomalic Coxlrol (Correspondence). vol. 
hl. A.  L. Thathachat. 111. D.  Srinath.  and G. Krishna.  'Stability  with  non- 

AC-11. nn. 311-312. April 1966. 
and F. R. Gantrnacher. Absolute .Yabilityo~Reglrlafor Sysfems.  

lay.  1964. 
M. A. Xizerman 
San  Francisco. Calif.: Holden-I 

~. ~ ~~. r _  ~~. 


