Nonlinear Dynamic Analysis of a Piezoelectrically Actuated Flapping Wing

Sujoy Mukherjee* and Ranjan Ganguli†
Department of Aerospace Engineering, Indian Institute of Science,
Bangalore - 560012, India

Abstract An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Key Words: piezofan, non-linear vibrations, aerodynamics, flapping, MAV.

1. Introduction

Recently, there has been a serious effort to design a class of very small flight vehicles called Micro Air Vehicles (MAVs) as their applications range from the military, surveillance in restricted spaces, planetary exploration, search-and-rescue to many more (Pines and Bohorquez, 2006; Rosenfeld and Wereley, 2009). Essential requirements of such vehicles are power efficiency, high maneuverability and low-speed flight. Nature provides flapping flyers such as birds and insects which represent a very successful design for intelligent MAVs with much better performance than conventional wings and rotors (Ansari, Zbikowski and Knowles, 2006; Tsuyuki, Sudo and Tani, 2006). Hence, birds and insects serve as a natural source of inspiration for the development of MAV. For a flapping-wing MAV, the wings are not only responsible for lift, but also for

* PhD Student, sujoy@aero.iisc.ernet.in
† Professor, corresponding author, ganguli@aero.iisc.ernet.in
propulsion and maneuvers. Therefore, MAV flapping wing design represents one of the major challenges to efficient flight in the low Reynolds-number regime.

Biomimetic flapping wing mechanisms are used to achieve a deeper insight as well as qualitative and quantitative comprehension of flapping flight. VandenBerg and Ellington (1997) made a scaled up robotic insect (the ‘flapper’) to mimic the complex movements of the wings of a hovering hawkmoth. It consists of two wings: a body which houses four d. c. servo motors and an elaborate gearbox to drive the wing movements. Dickinson, Lehmann and Sane (1999) built a dynamically scaled model of the fruit fly, *Drosophila melanogaster*. The motion of the two wings is driven by an assembly of six computer-controlled stepper motors attached to the wing gearbox via timing belts and coaxial drive shafts. Raney and Slominski (2004) used a 3-degree of freedom ball-and-socket connection between a fixed rigid test stand and a rigid beam element to approximate the avian flapping system. Two electrodynamic linear shaker actuators were used to provide control of vibratory wingbeat patterns that approximately match those exhibited by humming birds. Tarascio et al. (2005) developed a mechanism which is an insect-based flapping wing, passive pitch, bistable device that is capable of replicating the complex kinematics of insect wings in hover. The desired flapping and pitching motion was generated by a brushless motor, the speed of which was controlled by a sensorless speed controller in combination with a precision pulse generator. Yamamoto and Isogai (2005) developed a mechanical flapping wing apparatus that dynamically simulates the tandem wing configuration of a dragonfly in hovering flight. The flapping and feathering motion are induced by electric sliders and stepping motors, respectively. McIntosh, Agrawal and Khan (2006) designed a flapping wing mechanism, inspired from the wing motion of the hummingbird and hovering insects, is driven by a small DC motor. Here, flapping motion of the wing was generated by a simple four-bar mechanism and feathering motion was generated by a cam-follower system. In a recent study, Singh and Chopra (2008) investigated the aeroelastic effects associated with the lightweight and highly flexible wing using a biomimetic flapping mechanism. They showed that wing flexibility plays a key role in the thrust generating capability of MAV scale flapping wings. It can be noted from the above studies that biomimetic flapping wing mechanisms
have very important contributions in the fundamental understanding of the flapping flight. However, these dynamically scaled flapping wing mechanisms may not be suitable for use in small or micro-scale flying vehicles as they are bulky and flaps at very low frequency. Moreover, current flapping wing mechanisms rely on pneumatic and motor-driven flapping actuators which lead to high weight and system-complexity (Chung et al., 2008). Natural flapping flyers generate lift and thrust using complex wingbeat kinematics which can not be easily mimicked with these conventional actuators. Another plausible alternative may be to use actuators made of smart materials.

Smart materials, especially piezoelectric materials, are widely used in smart structures as sensors and actuators because they have several attractive features such as high bandwidth, high output force, compact size and high power density (Chopra, 2002). Cox et al. (2002) used PZT unimorph actuators for developing three four-bar and five-bar linkage flapping mechanisms to mechanically emulate flapping flight on the meso-scale. Sitti (2003) used piezoelectric unimorph actuators to develop four-bar mechanisms for micromechanical flying insect thorax. In a recent work, Nguyen et al. (2008) used in their experiment a unimorph piezoceramic actuator called a lightweight piezocomposite actuator (LIPCA) in the simply supported configuration to actuate insect-mimicking flapping system which is a four-bar linkage system. Kim et al. (2008) also used in their experiment micro-fiber composite (MFC) actuator to generate an adaptive camber motion which produces sufficient aerodynamic benefit. It can be noted from these works that some kind of motion amplification mechanisms are necessary in order to obtain large deflection because the piezoelectric effect is intrinsically small and leads to a small deflection when expected directly from the bending piezoelectric unimorph/bimorph (Chung et al., 2009; Lobontiu, Goldfarb and Garcia, 1999).

Piezoelectric fan (piezofan), which was first proposed by Toda and Osaka (1979), is one of the simple motion amplifying mechanisms. Piezofan couples a piezoelectric unimorph to an attached flexible wing and is competent to produce large deflection, as high as 47°, especially at resonance (Yao and Uchino, 2001). Piezoelectric fans are popular as a very compact, low power, noiseless air cooling technology for portable
electronic devices such as cellular phones, DVD players, laptop computers etc (Yoo, Hong and Cao, 2000; Basak, Raman and Garimella, 2005; Wait et al., 2007). Chung et al. (2008) used two coupled piezofans in parallel driven by sinusoidal voltages with different phase delay between them to control the flapping and twisting motions of the wing. Their experimental investigation showed that the bending amplitude of the wing reduced with the increasing phase delay and the twisting movement increased with an increasing phase delay. In another study, Chung et al. (2009) proposed a form of design optimization using the Strouhal number and a limited numbers of materials parameters to select the best piezofans for flapping wing MAV applications. They used linear analytical model to analyze the performance of piezofan structure at dynamic operation. However, the wings of birds and insects move through a large angle which may be obtained using piezofan through large deflection. Therefore, non-linear dynamic model is needed to perform dynamic analysis. Mahmoodi and Jalili (2007) derived the non-linear equations of motion of a non-homogenous piezoelectrically actuated microcantilever beam. The non-linear terms appeared in the form of quadratic expression due to presence of piezoelectric layer, and cubic form due to geometrical non-linearities. In order to consider the piezofan for flapping wing applications, it is necessary to analyze its aerodynamic performance. Hence, aerodynamic model is needed for obtaining the aerodynamic forces.

Aerodynamic models used for the flapping wing flight can be broadly classified into quasi-steady models and unsteady models. The quasi-steady models assume low flapping frequencies so that shed wake effects are negligible (Betteridge and Archer, 1974). In the unsteady models, unsteady aerodynamic characteristics are accounted for by the unsteady wake effects (DeLaurier, 1993). Selected researchers have used computational fluid dynamics (CFD) to simulate the flapping flight (Wang, 2000; Wu and Sun, 2004). CFD methods provide a clear picture of the flow by solving the incompressible form of the Navier-Stokes equations. However, CFD simulations are computationally intensive. DeLaurier (1993) proposed an unsteady aerodynamic model based on modified strip theory. The aerodynamic model makes it possible to estimate the aerodynamic performances of harmonically flapping wings in the phase of preliminary design and development (Ke et al., 2008). Various aerodynamic effects can be considered
in this model such as camber effect, partial leading edge suction effect, viscous effect, unsteady wake effect and dynamic stall model of pitching motion. Therefore, the DeLaurier model is useful for estimating the lift generated by a flapping wing.

In this paper, an energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly *Aeshna Multicolor*, are analyzed using numerical simulations. Flapping angle variations of the smart flapping wing is compared with experimental data of the actual dragonfly wing. Experimental data of flapping angle variations of actual dragonfly wing is obtained from literature. Finally, an unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces.

2. Structural Model

Figure 1 shows the schematic diagram of the flapping wing where a piezoelectric unimorph is attached to the uniform flexible wing. Piezoelectric unimorph is utilized to actuate the wing by supplying a voltage, $P_e(t)$.

![Figure 1. Schematic of the piezoelectrically actuated flapping wing.](image)

Schematic diagram of the wing geometry used for the structural modeling is shown in Figure 2(a). Figure 2(b) shows a wing segment of length s. To describe the dynamics of the wing, two coordinate systems are utilized: the (x, y, z) system is
considered to be inertial and the \((\xi, \theta, \zeta)\) system is local principal system (Mahmoodi and Jalili, 2007).

![Figure 2. (a) Schematic diagram of flapping wing geometry used for modeling, and (b) Principal and inertial coordinate systems.](image)

The relationship between the principal and the inertial coordinates is described by the Euler rotation \(\psi(s,t)\). Using Figure 2(b), angle \(\psi(s,t)\) for an element of length \(ds\) can be written as

\[
\psi = \tan^{-1} \frac{v'}{1+u'}
\]

(1)

where the over prime denotes derivative with respect to the arc length. The longitudinal and transverse displacements are described by \(u(s,t)\) and \(v(s,t)\), respectively. Utilizing Green’s strain theory, strain of the neutral axis \(\epsilon_0\) is given by (Hsieh, Shaw and Pierre, 1994)

\[
\epsilon_0 = \sqrt{(1+u'^2)+v'^2} - 1
\]

(2)

Longitudinal and bending vibration can be related using inextensibility condition which demands no relative elongation of the neutral axis. Using the Taylor series expansion, Equation (2) reduces to

\[
u' = -\frac{1}{2}v'^2
\]

(3)
The piezoelectric layer is not attached to the entire length of the wing. Therefore, the neutral surface, \(y_n \), changes for each section and can be obtained as

\[
y_n = \begin{cases}
0, & s < l_1 \text{ or } s > l_2 \\
\frac{E_p t_p (t_p + t_b)}{2(E_p t_p + E_0 t_b)}, & l_1 < s < l_2
\end{cases}
\]

(4)

The equations of motions are derived using an energy method (Mahmoodi and Jalili, 2007). The total kinetic energy \((T) \) of the system can be expressed as

\[
T = \frac{1}{2} \int_0^l \left[m(s) \left(\dot{u}^2 + \dot{v}^2 \right) + J(s) \left(\dot{v}^2 - 2\dot{v}' u' - 2\dot{v}' \dot{v}' - 2\dot{v}^2 \dot{v}' \right) \right] ds
\]

(5)

where,

\[
m(s) = b \left(\rho \dot{v}_h + \left(H_s - H_t \right) \rho \dot{v}_p \right)
\]

(6)

Here, \(H(s) \) is the Heaviside function and \(J(s) \) is the mass moment of inertia of the wing.

Similarly, the total potential energy \((V) \) of the system can be written as

\[
V = \frac{1}{2} \int_0^l \left[\int_A \sigma_{11}^b \epsilon_{11}^b dA dS + \frac{1}{2} \int_0^l \left(\int_A \sigma_{11}^b \epsilon_{11}^b dA dS + \frac{1}{2} \int_0^l \left(\int_A \sigma_{11}^p \epsilon_{11}^p + Q_2 D_2 \right) dA dS \right) \\
+ \frac{1}{2} \int_0^l \int_A \sigma_{11}^b \epsilon_{11}^b dA dS + \frac{1}{2} \int_0^l \left(EA(s) \left(u'^2 + u' \dot{v}'^2 + \frac{1}{4} \dot{v}'^4 \right) \right) ds
\]

(7)

The following fundamental assumptions are made for the analysis:

a) The wing is initially straight and it is clamped at one end and free at other end,

b) The Euler-Bernoulli beam theories are followed, where shear deformation and rotary inertia terms are negligible,

c) The wing is inextensible,

d) Both, the piezoelectric layer and the wing have same width, and
e) Bonding layer is assumed to be perfect.

Considering all the assumptions and applying the extended Hamilton’s principle, governing equations of motion can be obtained as

\[
m(s)\ddot{v} + \frac{\partial^2}{\partial s^2}\left[C_\xi(s)v^\tau\right] + \frac{\partial}{\partial s}\left[v^\prime m(s)\int_0^l (\ddot{v}v^\prime + v^2)ds\right] + \left[v'\frac{\partial^2}{\partial s^2}\left(C_\xi(s)v^\tau\right) + v^\tau \frac{\partial}{\partial s}\left(C_\xi(s)v^\tau\right)\right] + v \frac{\partial}{\partial s}\left[C_\beta(s)\nu^\tau - bC_\beta(s)P_t(t)v^\prime\right] - \frac{\partial^2}{\partial s^2}\left\{bC_d(s)P_t(t)\left(1 - \frac{1}{2}v^2\right) + \frac{C_d^2(s)}{C_\beta(s)}v^\tau\right\} = 0
\]

with the boundary conditions

\[
v(0,t) = v'(0,t) = v''(l,t) = v'''(l,t) = 0
\]

where

\[
C_\xi(s) = (H_0 - H_{i1})E_bI_b + (H_{i1} - H_{i2})E_b\left(I_b + bt_y^2\right)
\]

\[
+ (H_{i1} - H_{i2})E_pI_p + (H_{i2} - H_1)E_bI_b
\]

\[
C_d(s) = (H_{i1} - H_{i2})h_{i2}I_d
\]

\[
C_\beta(s) = (H_{i1} - H_{i2})bt_y\beta_{22}
\]

\[
I_p = b\left(t_py_n^2 + \left(t_p^2 + bt_p\right)y_n + \frac{1}{3}\left(t_p^3 + \frac{2}{3}t_p^2t_p + \frac{3}{4}t_p^2t_p\right)\right)
\]

\[
I_d = \frac{b}{2}\left(bt_{p} + t_{p}^2 - 2t_{p}y_n\right)
\]

\[
I_b = \frac{bt_{p}^3}{12}
\]

Cubic non-linear terms of inertia and stiffness, resulting from the geometry of the vibrating wing, appear in the equations of motion. Moreover, coupling of electrical and
mechanical fields introduces quadratic and cubic nonlinearities due to piezoelectric effect. The Galerkin method is utilized to discretize the system as

\[v(s,t) = \sum_{n=1}^{\infty} v_n(s,t) = \sum_{n=1}^{\infty} \phi_n(s) q_n(t) \]

(14)

where \(\phi_n \) are companion functions and \(q_n \) are generalized time-dependent coordinates. In order to solve the equations of motion utilizing the method of multiple scales (Nayfeh and Mook, 1979), Equation (8) is rewritten in the form:

\[\ddot{q}_n + \varepsilon \mu \dot{q}_n + \omega_n^2 q_n + \varepsilon^2 k_{1n} f(t) q_n^2 + \varepsilon k_{2n} q_n^3 + \varepsilon k_{3n} (q_n \dot{q}_n + q_n q_n^2) + \varepsilon k_{4n} f(t) = 0 \]

(15)

where

\[\omega_n^2 = g_{2n}, \quad k_{1n} = \varepsilon^{-1} \frac{g_{3n}}{g_{1n}}, \quad k_{2n} = \varepsilon^{-1} \frac{g_{4n}}{g_{1n}}, \quad k_{3n} = \varepsilon^{-1} \frac{g_{5n}}{g_{1n}}, \quad k_{4n} = \varepsilon^{-1} \frac{g_{6n}}{g_{1n}}, \quad f_n(t) = \varepsilon^{-1} P(t) \]

(16)

\[g_{1n} = \int_0^t m(s) \left[\phi_n(s) \right]^2 ds \]

(17)

\[g_{2n} = \int_0^t \int_0^t C_\zeta(s) \phi_n'(s) ds - \frac{h_{12} l_d}{b t_\beta} \left(\phi_n'(l_2) - \phi_n'(l_1) \right) \int_0^t C_d(s) \phi_n''(s) ds \]

(18)

\[g_{3n} = \frac{1}{t_\beta} \int_0^t C_d(s) \phi_n''(s) \left[\phi_n'(s) \right]^2 ds \]

(19)

\[g_{4n} = 2 \int_0^t C_\zeta(s) \left[\phi_n''(s) \right]^2 ds - \frac{h_{12} l_d}{b t_\beta} \left[\phi_n''(l_2) - \phi_n''(l_1) \right] \int_0^t C_d(s) \phi_n''(s) ds \]

\[- \frac{h_{12} l_d}{b t_\beta} \left(\phi_n'(l_2) - \phi_n'(l_1) \right) \int_0^t C_d(s) \phi_n''(s) \left[\phi_n'(s) \right]^2 ds \]

(20)
The linear mode shapes of a cantilever beam are considered here to be the following companion functions:

\[
\phi_n(x) = \cosh(z_n x) - \cos(z_n x) + \left[\sin(z_n x) - \sinh(z_n x) \right] \frac{\cosh(z_n) + \cos(z_n)}{\sinh(z_n) + \sin(z_n)}
\]

where \(z_n \) are the roots of the frequency equation

\[
1 + \cos(z_n) \cosh(z_n) = 0
\]

Now, \(q_n(t) \) can be expressed by order of \(\varepsilon \) as (Nayfeh, 1973)

\[
q_n(t; \varepsilon) = q_{0n}(T_0, T_1) + \varepsilon q_{1n}(T_0, T_1) + \cdots
\]

where, \(T_0 \) and \(T_1 \) are the time scales. \(T_1 = \varepsilon \alpha \) is defined shift in the natural frequencies because of the non-linearity, while \(T_0 = t \) demonstrates motion occurring at the natural frequencies, \(\omega_n \). Frequency response of the system can be expressed as

\[
\left(\frac{1}{2} \mu \omega_n a_n \right)^2 + \left(\frac{3}{8} k_{2n} a_n^3 - \omega_n^2 \sigma a_n \right)^2 = k_{4n}^2 f^2
\]

where \(\sigma \) is a detuning parameter and \(a_n \) is the amplitude of the generalized coordinate \(q_n(t) \). Finally, the deflection at the tip of the wing is obtained by
\[v(l,t) = \phi_n(l) a_n(t) \cos(\beta_n t + \beta_o) = \phi(l) q(t) \] \hspace{1cm} (27)

where \(a_n \) and \(\beta_n \) are real functions of time scale.

3. Aerodynamic Model

The aerodynamic model is based on the modified strip theory as proposed by DeLaurier (1993), in which the aerodynamic forces of the flapping wing are obtained by integrating the sectional aerodynamic forces calculated in each section. In this unsteady aerodynamic model, the kinematics for a section of the wing is represented by a plunging velocity \(\dot{h} \) and a pitch angle of the chord \(\dot{\theta} \) relative to the free stream velocity, as shown in Figure 3 (DeLaurier 1993).

![Figure 3. Aerodynamic forces and motion variables of a wing section.](image)

The local parameters determining the forces includes the section’s geometry, relative angle of attack at the \(\frac{3}{4} \)-chord location, pitch rates and the dynamic pressure at the \(\frac{1}{4} \)-chord location. The aerodynamic forces acting on each section of the wing are divided into the normal force \(dN \), and the chordwise force, \(dF_X \). The components of the normal force are: (i) \(dN_c \), a circulatory force normal to the chord at the \(\frac{1}{4} \)-chord location and (ii) \(dN_a \), an apparent-mass force normal to the chord at the \(\frac{1}{2} \)-chord location. The expressions for the normal force components are as follows:

\[dN_c = \frac{\rho_{\text{air}} UV}{2} C_n c dy \] \hspace{1cm} (28)
\[dN_a = \frac{\rho_{\text{air}} \pi c^2}{4} \dot{v}_x dy \] (29)

Therefore, the section’s total attached flow normal force is

\[dN = dN_c + dN_a \] (30)

The components of the chordwise force are: (i) \(dT_s\), a chordwise leading edge suction force, (ii) \(dD_{\text{camber}}\), a chordwise drag due to camber, and (iii) \(dD_f\), a chordwise drag due to skin friction. The expressions for the chordwise force components are as follows:

\[dT_s = \eta_s 2\pi (\alpha' + \bar{\alpha}_a - \frac{c\dot{\theta}}{4U})^2 \frac{\rho_{\text{air}} UV}{2} cdy \] (31)

\[dD_{\text{camber}} = -2\pi \alpha_0 (\alpha' + \bar{\alpha}_a + \bar{\theta}_w) \frac{\rho_{\text{air}} UV}{2} cdy \] (32)

\[dD_f = (C_d)_f \frac{\rho_{\text{air}} V^2}{2} cdy \] (33)

Thus, the total chordwise force is

\[dF_x = dT_s - dD_{\text{camber}} - dD_f \] (34)

The equations for the segment’s instantaneous lift \(dL\) and thrust \(dT\) are

\[dL = dN \cos \theta + dF_x \sin \theta \] (35)

\[dT = dF_x \cos \theta - dN \sin \theta \] (36)
These may be integrated along the span to give the whole wing’s instantaneous lift and thrust:

\[L(t) = 2 \int_0^b \cos \gamma dL \]
\[T(t) = 2 \int_0^b dT \]

where \(\gamma(t) \) is the section’s dihedral angle at that instant in the flapping cycle.

The wing’s average lift and thrust are obtained by integrating \(L(t) \) and \(T(t) \) over the cycle. Integrating with respect to cycle angle, \(\phi \), instead of time, \(t \), where

\[\phi = \omega t \]

so that the average lift and thrust are expressed as

\[\overline{L} = \frac{1}{2\pi} \int_0^{2\pi} L(\phi) d\phi \]
\[\overline{T} = \frac{1}{2\pi} \int_0^{2\pi} T(\phi) d\phi \]

The complete details of the aerodynamic model are given by DeLaurier (1993).

4. Results and Discussion

In order to validate the dynamic model, numerical analysis is carried out for a structure which is used by Mahmoodi and Jalili (2007) as shown in Figure 4. The physical properties, used for this analysis, are given in the Table 1.
Figure 4. Geometry of the microcantilever beam.

Figure 5. Tip deflection due to 0.5 Vpp excitation.
Figure 6. Tip deflection due to 1.5 Vpp excitation.

Figure 5 shows the tip deflection due to the excitation voltage of 0.5 Vpp. Excitation voltage is increased to 1.5 Vpp and the corresponding tip deflection is shown in Figure 6. It can be seen from the Figure 5 and Figure 6 that tip deflection is sensitive to the input excitation voltage. Moreover, the results of this analysis match well with the results presented in Mahmoodi and Jalili (2007). Therefore, the model implementation is validated.

Table 1. Material and geometric properties used for model validation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcantilever beam</td>
<td></td>
<td>Piezoelectric Layer</td>
<td></td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>105 GPa</td>
<td>Young’s modulus</td>
<td>104 GPa</td>
</tr>
<tr>
<td>Beam length</td>
<td>500 µm</td>
<td>Piezoelectric length</td>
<td>375 µm</td>
</tr>
<tr>
<td>Width</td>
<td>250 µm</td>
<td>Width</td>
<td>130 µm</td>
</tr>
<tr>
<td>Tip mass width</td>
<td>55 µm</td>
<td>Coupling coefficient</td>
<td>500 MV/m</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.28</td>
<td>Poisson’s ratio</td>
<td>0.25</td>
</tr>
<tr>
<td>Density</td>
<td>2330 Kg/m³</td>
<td>Density</td>
<td>6390 Kg/m³</td>
</tr>
<tr>
<td>Thickness</td>
<td>4 µm</td>
<td>Thickness</td>
<td>4 µm</td>
</tr>
</tbody>
</table>
In the present study, the size of the flapping wing is chosen to an insect scale. Insects, such as the dragonfly, fly with unusual aerial agility. Dragonfly flight satisfies all the requirements of an MAV flight envelope therefore providing inspiration for MAV design. The length and width of the flapping wing, made of Mylar, are taken as 4 cm and 1 cm, respectively, which are typical values for the dragonfly *Aeshna Multicolor* wing (Combes and Daniel, 2003). Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration as shown in Figure 1. Input excitation voltage is assumed to be harmonic to generate flapping motion. Material and geometric properties pertaining to the flapping wing is given in Table 2.

Table 2. Material and geometric properties of the flapping wing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Wait et al., 2007)</th>
<th>Parameter</th>
<th>Value (Chung et al., 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>4.6 GPa</td>
<td>Young’s modulus</td>
<td>62 GPa</td>
</tr>
<tr>
<td>Wing length</td>
<td>40 mm</td>
<td>Piezoelectric length</td>
<td>10 mm</td>
</tr>
<tr>
<td>Width</td>
<td>10 mm</td>
<td>Width</td>
<td>10 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>200 µm</td>
<td>Thickness</td>
<td>200 µm</td>
</tr>
<tr>
<td>Density</td>
<td>1240 Kg/m³</td>
<td>Piezoelectric constant</td>
<td>-320×10^{-12} m/V</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.44</td>
<td>Density</td>
<td>7800 Kg/m³</td>
</tr>
<tr>
<td>Mass</td>
<td>99.2 mg</td>
<td>Mass</td>
<td>156 mg</td>
</tr>
</tbody>
</table>

These properties are used to calculate tip deflections of the flapping wing. Figure 7 shows the tip deflections of the flapping wing due to different input excitations. Since tip deflection is sensitive to the input excitation voltage, tip deflections increases with the increase of input excitation voltage. The first natural frequency of the flapping wing is found to be 41 Hz. Maximum tip deflection is obtained when the wing is actuated at 41 Hz because resonance occurs at this frequency. In order to compare the results with linear methods, the method as proposed by Chung et al. (2009) is used to obtain the natural frequencies of the wing. For the flapping wing, as shown in Figure 2(a), equations of motion can be written as

\[E_b I_b v_{1}^{'''} + \rho_b A_b \dot{v}_1 = 0, \quad 0 \leq x \leq l_1 \]

(42)
\[
\left(E_b I_{bn} + 2a_z I_{pn} + 2a_3 A_p \right) v_2''' + \left(\rho_b A_b + \rho_p A_p \right) \ddot{v}_2 = 0, \quad l_1 \leq x \leq l_2 \tag{43}
\]

\[
E_b I_b v_3''' + \rho_b A_b \ddot{v}_3 = 0, \quad l_2 \leq x \leq l \tag{44}
\]

where

\[
a_2 = \frac{1}{2} \left(E_p + \frac{E_s^2 d_{31}^2}{\varepsilon_{33}} \right) \quad \text{and} \quad a_3 = \frac{-E_p d_{31}^2 \left(2y_n^2 + t_p \right)^2}{8\varepsilon_{33}} \tag{45}
\]

The geometric boundary conditions are given by

\[
v_1(0,t) = 0; \quad v_1(l_1,t) = v_2(l_1,t); \quad v_2(l_2,t) = v_3(l_2,t)
\]

\[
v_1'(0,t) = 0; \quad v_1'(l_1,t) = v_2'(l_1,t); \quad v_2'(l_2,t) = v_3'(l_2,t) \tag{46}
\]

And the natural boundary conditions are

\[
E_b I_b v_1''(l_1,t) = \left(E_b I_{bn} + 2a_z I_{pn} + 2a_3 A_p \right) v_2''(l_1,t)
\]

\[
E_b I_b v_1''(l_1,t) = \left(E_b I_{bn} + 2a_z I_{pn} + 2a_3 A_p \right) v_2''(l_1,t)
\]

\[
\left(E_b I_{bn} + 2a_z I_{pn} + 2a_3 A_p \right) v_2''(l_2,t) = E_b I_b v_3''(l_2,t)
\]

\[
\left(E_b I_{bn} + 2a_z I_{pn} + 2a_3 A_p \right) v_2''(l_2,t) = E_b I_b v_3''(l_2,t)
\]

\[
v_3''(l,t) = 0
\]

\[
v_3''(l,t) = 0 \tag{47}
\]

Introduction of a time-separable solution

\[
v_i(x,t) = V_i(x) e^{i\omega t} \quad i = 1, 2, 3 \tag{48}
\]

For the displacement fields in the three regions results in the following general solution

\[
V_i(x) = C_{i,1} \sin(\delta_i x) + C_{i,2} \cos(\delta_i x) + C_{i,3} \sinh(\delta_i x) + C_{i,4} \cosh(\delta_i x) \tag{49}
\]

Where

\[
\delta_i = \frac{\left(\frac{E_b I_b \omega^2}{E_b I_{bn} + 2a_z I_{pn} + 2a_3 A_p} \right)^{1/3}}{4} \quad \text{and} \quad \delta_2 = \left[\frac{\left(\rho_b A_b + \rho_p A_p \right) \omega^2}{E_b I_{bn} + 2a_z I_{pn} + 2a_3 A_p} \right]^{1/2} \tag{50}
\]

Here, the numbers of unknown constants are 12 and there are 12 equations. In matrix form, these equations can be written as
\[M_{12x12} C_{12x2} = 0 \] \hspace{1cm} (51)

Vanishing values of the determinant of the matrix \(M_{12x12} \) yields the natural frequencies and mode shapes of the wing. Therefore, natural frequencies, zeros of the determinant, are obtained using MatLab®. Using linear model the first natural frequency is calculated to be 53 Hz which is higher than first natural frequency obtained using non-linear model as shown in Figure 8. This shows that non-linear effects are important for the flapping wing.

![Graph showing tip deflection of the flapping wing due to application of different voltages.](image)

Figure 7. Tip deflection of the flapping wing due to application of different voltages.

It can be seen from the Figure 7 that a tip deflection of 24 mm is obtained at 90 Vpp and it reaches up to 27 mm at 120 Vpp at 41 Hz. Flapping angle can be measured from the tip deflection following the procedure as explained schematically in Figure 9. Flapping angle variation of the wing is shown in Figure 10. It can be seen from the Figure 10 that flapping angle of 31\(^0\) is obtained at 90 Vpp and it increases up to 34\(^0\) at 120 Vpp. Flapping angle which is obtained using the non-linear dynamic model, given in section 2, at 120 Vpp belongs to non-linear regime. Therefore, dynamic behavior in this regime cannot be accurately obtained using linear model. Flapping angle variations of the smart
flapping wing is compared with the flapping angle variations of actual dragonfly wing as measured experimentally by Zeng, Matsumoto and Kawachi (1996). Figure 10 shows the tip motion of the smart flapping wing is similar to the actual dragonfly wing tip motion in the flapping mode. Here, the smart flapping wing is actuated at a frequency 41 Hz which is close to the flapping frequency, 32 Hz, of the actual dragonfly wing (Zeng, Matsumoto and Kawachi, 1996). As mentioned earlier, it is necessary to analyze aerodynamic performance to consider the smart flapping wing for MAV applications.

![Figure 8. Comparison of natural frequencies obtained using linear and non-linear model.](image)

![Figure 9. Schematic diagram of calculating flapping angle.](image)
Figure 10. Comparison of flapping angle variations with experimental data.

Figure 11. Average lift at different pitch angle
Figure 12. Average thrust at different pitch angle

Figure 13. Average lift at different flight speed
Figure 14. Average thrust at different flight speed

Figure 15. Net lift at different flight speed
For aerodynamic modeling, kinematics pertaining to the wing section located at 75% of the wing span is considered for calculation of the aerodynamic forces. Selection of the pitch angle of the flapping axis θ_a, as shown in Figure 3, is important for the performance of the flapping wing. Average lift pertaining to single wing at different pitch angle is shown in Figure 11 when different voltages are applied. Figure 12 shows the average thrust at different pitch angle and at different applied voltages. It can be seen from the Figure 11 that the lift is maximum at the pitch angle of 7.80. However, at the pitch angle of 7.80, thrust which is same for all the three applied voltages has a negative value. Since average thrust force must be positive to satisfy the condition for cruise flight, therefore the value of θ_a is selected as 70.

Figure 13 shows the average lift produced by the smart flapping wing at different flight speeds. It can be seen from the Figure 13 that maximum lift force of 1.02 g is obtained at 90 Vpp. It can also be seen that the maximum lift force can reach up to 1.34 g at 120 Vpp. In both the cases, maximum lift force occurs at the flight speed of 6.2 m/s. Average thrust force at different flight speeds is shown in Figure 14. The average thrust force is found to be 0.0128 N at the flight speed of 6.2 m/s when 120 Vpp is applied. Figure 15 shows the net lift force, obtained by subtracting the total wing weight from the total lift force, when two smart flapping wings are used. It can be seen from the Figure 15 that flapping wings can carry a payload of 2.17 g at 120 Vpp. They are therefore a prospective candidate for flapping wing MAVs at insect scales.

In order to be capable of autonomous flight, the flapping wing MAV requires several sub-systems such as power supply unit, control unit, sensory systems etc. These sub-systems can be made of light weight components such as thin sheet of solar cell may be used for power supply unit (Deng et al, 2006; Tanaka et al, 2009). The net lift force generated by the smart flapping wing may be used to carry one or more of these sub-systems.

It should be noted that the value of the lift curve slope used for calculating the aerodynamic forces is 2π which is same as the theoretical lift slope of a thin airfoil. In the
present study, the flapping wing is a thin rectangular flat plate. Therefore, there may be a small change in the value of lift slope from the thin airfoil assumption. However, the results presented in this paper will not change substantially if the slope of lift coefficient for a thin plate is used for the numerical results.

5. Conclusions

In this study, an energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly *Aeshna Multicolor*, are analyzed using numerical simulations. A flapping angle of 31^0 is obtained at 90 Vpp. It is possible to produce a flapping angle of 34^0 when the input excitation voltage is 120 Vpp at 41 Hz. Therefore, it can produce same flapping angle variation as an actual dragonfly wing. An unsteady aerodynamic model is used to obtain the aerodynamic forces. The smart flapping wing can generate 1.34 g average lift force at the flight speed of 6.2 m/s when driven by sinusoidal voltage of 120 Vpp at 41 Hz. The average thrust is found to be 0.0128 N at the same flight conditions. Moreover, it is possible to carry a payload of 2.17 g by using a pair of smart flapping wings actuated at 120 Vpp, 41 Hz and flying at 6.2 m/s. The smart flapping wing based on the piezofan concept may be considered as a potential candidate for use in MAV applications.

References

Nomenclature

- \(b \): Wing width
- \(c \): Airfoil chord
- \(c_n \): Normal force coefficient
- \((C_d)_f \): Drag coefficient due to skin friction
- \(D \): Electrical displacement vector
- \(E_b \): Wing modulus of elasticity
- \(E_p \): Piezoelectric modulus of elasticity
- \(f(t) \): Harmonic excitation voltage
- \(h \): Coupling co-efficient matrix
- \(l \): Wing length
- \(l_2 - l_1 \): Piezoelectric layer length
- \(m \): Mass per unit length of the wing with piezoelectric layer
- \(Q \): Electrical field vector
- \(t \): Time
- \(t_b \): Wing thickness
- \(t_p \): Piezoelectric layer thickness
- \(U \): Flight speed
- \(V \): Relative velocity
- \(\alpha_0 \): Angle of section’s zero lift line
- \(\alpha' \): The flows relative angle of attack at the ¾ chord location
- \(\varepsilon \): Perturbation parameter
- \(\varepsilon_{33}^s \): Dielectric constant at constant strain
- \(\eta_s \): Leading edge suction efficiency
- \(\theta \): Pitch angle of chord with respect to U
\(\theta_n \) : Pitch angle of flapping axis with respect to U

\(\bar{\theta}_w \) : Mean pitch angle of chord with respect to flapping axis

\(\mu \) : Damping co-efficient

\(\rho_{air} \) : Atmospheric density

\(\rho_b \) : Volumetric mass density of the wing

\(\rho_p \) : Volumetric mass density of the piezoelectric layer

\(v_2 \) : Mid-chord normal velocity component due to the wing’s motion

\(\Phi_f \) : Flapping angle

\((\)^b \) : Parameters pertaining to the wing

\((\)^p \) : Parameters pertaining to the piezoelectric layer

\((\)_n \) : Parameters pertaining to the neutral axis