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Abstract

In this paper, a novel wavelet based spectral finite element is developed for studying elastic wave propagation in 1-D
connected waveguides. First the partial differential wave equation is converted to simultaneous ordinary differential
equations (ODEs) using Daubechies wavelet approximation in time. These ODEs are then solved using finite element
(FE) technique by deriving the exact interpolating function in the transformed domain. Spectral element captures the
exact mass distribution and thus the system size required is very much smaller then conventional FE. The localized nat-
ure of the compactly supported Daubechies wavelet allows easy imposition of initial-boundary values. This circumvents
several disadvantages of the conventional spectral element formulation using Fast Fourier Transforms (FFT) particu-
larly in the study of transient dynamics. The proposed method is used to study longitudinal and flexural wave
propagation in rods, beams and frame structures. Numerical experiments are performed to show the advantages over
FFT-based spectral element methods. The efficiency of the spectral formulation for impact force identification is also
demonstrated.
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1. Introduction

Wavelets have several properties which are encouraging their use for numerical solutions of partial dif-
ferential equations (PDEs) (Amaratunga et al., 1993, 1994; Qian and Weiss, 1993a,b; Glowinski et al., 1990
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and Joly et al., 1994). Dahmen (2001) has provided a review of wavelet techniques for solution of PDEs.
The orthogonal, compactly supported wavelet basis of Daubechies (Daubechis, 1988, 1992) exactly approx-
imates polynomial of increasingly higher order. These wavelet bases can provide accurate and stable rep-
resentation of differential operations even in region of strong gradients or oscillations. In addition, the
orthogonal wavelet bases have the inherent advantage of multi resolution analysis over the traditional
methods.
Numerical solution of elastic wave equations requires high accuracy in numerical differentiation and at

the same time has larger spatial grids and time steps to make it computationally efficient. Wave propagation
problems deal with loadings that have very high frequency content. Finite element formulation for wave
propagation problems requires large system size to capture all the higher modes. Hence the element size
has to be comparable to wavelengths, which are very small at high frequencies. These problems are usually
solved in frequency domain using Fourier methods, which can in principle achieve high accuracy in numer-
ical differentiation. One such method is spectral finite element method (SFEM) developed by Doyle (1999).
In conventional SFEM, first the governing PDE is transformed in frequency domain using FFT in time.

For one dimensional (1-D) structures, PDE is reduced to a set of ODEs with constant coefficients, with fre-
quency as a parameter. The resulting ODEs are much easier to solve than the original PDE. These ODEs
are then usually solved exactly, which are used as interpolating functions for spectral element formulation.
This results in exact mass distribution and dynamic stiffness matrix. Hence, in the absence of any discon-
tinuity, one single element is sufficient to handle an 1-D structure of any length. This substantially reduces
the system size and it is many orders smaller compared to conventional FE. First, the exact dynamic stiff-
ness is used to determine the system transfer function (frequency response function). This is then convolved
with load. Next, inverse fast Fourier transform (IFFT) is used to get the time history of the response. Such
FFT based spectral finite element (FSFE) has been reported in the literature by Doyle (1988) for elementary
rod, by Doyle and Farris (1990a,b) for elementary beam, by Gopalakrishnan et al. (1992) for multiply con-
nected one dimensional Timoshenko beam and by Martin et al. (1994) for higher order rod. In the area of
composite, FSFE has been developed for Euler–Bernoulli beam by Mahapatra et al. (2000) and for Tim-
oshenko beam by Mahapatra and Gopalakrishnan (2003). FSFE formulation for wave propagation anal-
ysis in functionally graded beam is presented Chakraborty and Gopalakrishnan (2003a).
The main drawback of Fourier based spectral approach is that it cannot handle waveguides of short

lengths. This is because, short length forces multiple reflections at smaller time scales. Since Fourier trans-
forms are associated with a finite time window (that depends on time sampling rate), shorter lengths of
waveguide do not allow the response to die down within the chosen time window, irrespective of the type
of damping used in modeling. This forces the response to wrap around, that is the remaining part of the
response beyond the chosen time window, will start appearing first. This totally distorts the response. It
is in such cases compactly supported wavelets, which have localized basis functions can be efficiently used
for waveguides of short lengths. Different wavelet based modeling techniques for simulation of wave prop-
agation have been presented by Hong and Kennett (2002), Joly et al. (1995) and Robertsson et al. (1994).
In the present work an approach similar to SFEM is followed. Daubechies scaling functions are used for

approximation in time and this reduces the PDE to ODEs in spatial dimension. These ODEs formed are
coupled unlike those in FFT based SFEM (FSFEM). The system of coupled ODEs are decoupled perform-
ing an eigenvalue analysis, which decreases the computational cost considerably. The eigen analysis
involved is time consuming, but this can be computed and stored as it is not related to the particular prob-
lem. The decoupled ODEs are then solved similarly as in SFEM and a wavelet based spectral element
(WSFE) is formulated.
In this paper, first, a periodic boundary condition is adapted and for this case the results are expected to

be similar to those obtained using FSFEM. Next, an extrapolation technique proposed by Amaratunga and
Williams (1995, 1997) and Williams and Amaratunga (1997), is used for adapting wavelet in a finite domain
and imposition of initial values. The latter approach is expected to remove the problems associated with



‘‘wrap around’’ due to the assumed periodicity of solutions in FSFEM and thus may result in smaller time
window for the same problem. Further, FSFEM cannot be used for finite length undamped structures. For
such cases a semi-infinite element (throw-off element (Doyle, 1999)) is normally used to allow some leakage
of response, which in turn amounts to adding artificial damping through the release of trapped energy.
One of the biggest advantages of the spectral approach is in the performance of inverse problems. This is

because, in spectral approach, system transfer function which is one of the principle ingredients to perform
inverse problem, is obtained as direct byproduct. Force identification is one such inverse problem. Identifica-
tion of dynamic force from the experimentally measured response at some point is a problem of wide appli-
cability. In many cases like high velocity impact of aircraft by bird hit, gust or tool drop etc., it is difficult to
measure the impacting force and the only way is to obtain it inversely from the measured response. The con-
venience of using SFEM to predict the force history from the measured responses has been demonstrated for
mono-material beam, bi-material beam, isotropic and orthotropic plates by Doyle (1984, 1993, 1987a,b)
respectively. Similar force identifications using FSFEM were presented by Rizzi and Doyle (1991) for isotro-
pic layered media and by Chakraborty and Gopalakrishnan (2003b, 2004) for inhomogeneous layered media.
However, for accurate force identification, complete trace of the measured response is required. Experimen-
tally recorded signals are bound to be truncated. The truncation point proves to be an important factor to
determine the accuracy of the reconstructed force in FSFEM. This problem is even more severe in dispersive
system, where the wave response will not die down completely within the chosen time window. All these prob-
lems occur in FSFEM due to assumed periodicity in both forward and inverse Fourier transforms. This prob-
lem is expected to be solved using wavelet transform as no such periodicity is assumed in the formulation of
WSFE. In addition, the localized nature of the wavelet basis functions enable easy handling of finite geom-
etries. Hence, as explained in the case of forward problem, the accuracy of the identified force using wavelet
based SFEM (WSFEM) is independent of the point of truncation unlike FSFEM.
Wavelet based technique has been used for inverse problems of measuring temperature from sideways

heat equation by Reginska (1995), Reginska and Elden (1997) and Elden et al. (2000). Meyer and Daube-
chies wavelets were used to approximate the time derivative and were compared with Fourier based approx-
imation. In (Doyle, 2002), reconstruction of force is done from experimentally recorded wave response of
an impacted plate with hole using wavelet representation of unknown load and FE method. In the present
work, truncated FE responses obtained at certain points are used as surrogate experimental responses.
These truncated FE responses are given as input to spectral element solver and the force data are recon-
structed by performing inverse analysis. Though these truncated responses obtained from FE simulations
are used as input, they are free from several complexities associated with experimentally measured response.
Vandergheynst et al. (2001), presented a continuous wavelet transform based method for identification of
excited modes, moment of rupture and denoising in an impact test.
The organization of the paper is as follows. In Section 2, a brief overview of the orthonormal bases of

compactly supported wavelets are presented. In Sections 3–5, the details of wavelet based spectral element
formulation are given for isotropic rods and beams. In Section 6, various numerical experiments are pre-
sented. First, longitudinal and transverse wave propagations in rods, beams and frames obtained using the
formulated element are presented. The results are compared with FSFEM and 2-D FE results for various
cases. Next, the element is used for force identification by using surrogate FE responses as input and are
compared with those obtained using FSFEM for rods, beams and frame. The paper ends with some impor-
tant conclusion and scope for further research.
2. Daubechies compactly supported wavelets

In this section, a concise review of orthogonal basis of Daubechies wavelets (Daubechis, 1988, 1992) is
provided. Wavelets, wj,k(t) form compactly supported orthonormal bases for L2(R). The wavelets and



associated scaling functions uj, k(t) are obtained by translation and dilation of single functions w(t) and u(t)
respectively.
wj;kðtÞ ¼ 2j=2wð2jt � kÞ; j; k 2 Z ð1Þ

uj;kðtÞ ¼ 2j=2uð2jt � kÞ; j; k 2 Z ð2Þ
The scaling function u(t) is derived from the dilation or scaling equation,
uðtÞ ¼
X
k

akuð2t � kÞ ð3Þ
and the wavelet function w(t) is obtained as
wðtÞ ¼
X
k

ð�1Þka1�kuð2t � kÞ ð4Þ
ak are the filter coefficients and they are fixed for specific wavelet or scaling function basis. For compactly
supported wavelets only a finite number of ak are nonzero.
The filter coefficients ak are derived by imposing certain constraints on the scaling functions which are as

follows. (1). The area under scaling function is normalized to one.
Z 1

�1
uðtÞdt ¼ 1 ð5Þ
(2) The scaling function u(t) and its translates are orthonormal
Z 1

�1
uðtÞuðt þ kÞdt ¼ d0;k k 2 Z ð6Þ
and (3) wavelet function w(t) has M vanishing moments
Z 1

�1
wðtÞtm dt ¼ 0 m ¼ 0; . . . ;M ð7Þ
The number of vanishing moments M denotes the order N of the Daubechies wavelet, where N = 2M.
The translates of the scaling and wavelet functions on each fixed scale j form orthogonal subspaces,
V j ¼ f2j=2uð2jt � kÞ; j 2 Zg ð8Þ

W j ¼ f2j=2wð2jt � kÞ; j 2 Zg ð9Þ

such that Vj form a sequence of embedded subspaces
f0g; . . . ;
 V �1;
 V 0;
 V 1; . . . ;
 L2ðRÞ ð10Þ

and
V jþ1 ¼ V j � W j ð11Þ

Let Pj(f)(t) be approximation of a function f(t) in L2(R) using uj, k(t) as basis, at a certain level (resolution) j,
then
P jðf ÞðtÞ ¼
X
k

cj;kuj;kðtÞ; k 2 Z ð12Þ
where, cj, k are the approximation coefficients. Let Qj(f)(t) be the approximation of the function using wj, k(t)
as basis, at the same level j.



Qjðf ÞðtÞ ¼
X
k

dj;kwj;kðtÞ; k 2 Z ð13Þ
where, dj, k are the detail coefficients. The approximation Pj+1(f)(t) to the next finer level of resolution j + 1
is given by
P jþ1ðf ÞðtÞ ¼ P jðf ÞðtÞ þ Qjðf ÞðtÞ ð14Þ
This forms the basis of multi resolution analysis associated with wavelet approximation.
3. Reduction of wave equations to ODEs

3.1. Longitudinal wave equation for rods

The governing differential wave equation of an isotropic rod is given as
EA
o
2u
ox2

� gA
ou
ot

¼ qA
o
2u
ot2

ð15Þ
where, E, A, g and q are the Young�s modulus, damping ratio, cross sectional area and density respectively.
u(x, t) is the axial deformation. Let u(x, t) be discretized at n points in the time window [0tf]. Let
s = 0,1, . . . ,n�1 be the sampling points, then
t ¼ Dts ð16Þ

where, Dt is the time interval between two sampling points. The function u(x, t) can be approximated by
scaling function u(s) at an arbitrary scale as
uðx; tÞ ¼ uðx; sÞ ¼
X
k

ukðxÞuðs � kÞ; k 2 Z ð17Þ
where, uk(x) (referred as uk hereafter) are the approximation coefficient at a certain spatial dimension x.
Substituting Eqs. (17) and (16) in Eq. (15) we get,
EA
X
k

d2uk
dx2

uðs � kÞ � gA
Dt

X
k

uku0ðs � kÞ ¼ qA
Dt2

X
k

uku00ðs � kÞ ð18Þ
Taking inner product on both sides of Eq. (18) with u(s�j), where j = 0,1, . . . ,n�1 we get
EA
X
k

d2uk
dx2

Z
uðs � kÞuðs � jÞds � gA

Dt

X
k

uk

Z
u0ðs � kÞuðs � jÞds

¼ qA
Dt2

X
k

uk

Z
u00ðs � kÞuðs � jÞds ð19Þ
The translates of scaling functions are orthogonal i.e.
Z
uðs � kÞuðs � jÞds ¼ 0 for j 6¼ k ð20Þ
Using Eq. (20), Eq. (19) can be written as n simultaneous ODEs
EA
d2uj
dx2

� gA
Dt

XjþN�2

k¼j�Nþ2
X1

j�kuj ¼
qA
Dt2

XjþN�2

k¼j�Nþ2
X2

j�kuk j ¼ 0; 1; . . . ; n� 1 ð21Þ



EA
d2uj
dx2

¼
XjþN�2

k¼j�Nþ2

gA
Dt

X1
j�k þ

qA
Dt2

X2
j�k

� �
uk j ¼ 0; 1; . . . ; n� 1 ð22Þ
where, N is the order of the Daubechies wavelet as discussed earlier. X1
j�k and X2

j�k are the connection coef-
ficients defined as
X1
j�k ¼

Z
u0ðs � kÞuðs � jÞds ð23Þ

X2
j�k ¼

Z
u00ðs � kÞuðs � jÞds ð24Þ
For compactly supported wavelets, X1
j�k;X

2
j�k are nonzero only in the interval k = j�N + 2 to k = j + N�2.

The details for evaluation of connection coefficients for different orders of derivative are given by Beylkin
(1992).
The forced boundary condition associated with the governing differential given by Eq. (15) is
EA
ou
ox

¼ F ð25Þ
where, F(x, t) is the axial force applied. F(x, t) can be approximated similarly as u(x, t) in Eq. (17)
F ðx; tÞ ¼ F ðx; sÞ ¼
X
k

F kðxÞuðs � kÞ; k 2 Z ð26Þ
Substituting Eqs. (17) and (26) in Eq. (25) and taking the inner product with u(s�j) we get,
EA
duj
dx

¼ F j j ¼ 0; 1; . . . ; n� 1 ð27Þ
While dealing with finite length data sequence, problems arise at the boundaries. It can be observed from
the ODEs given by Eq. (22) that certain coefficients uj near the vicinity of the boundaries (j = 0 and
j = n�1) lie outside the time window [0tf] defined by j = 0,1, . . . ,n�1. Several approaches like capacitance
matrix methods (Qian and Weiss, 1993a,b), penalty function methods for treating boundaries are re-
ported in the literature. In this paper, first a circular convolution method is adopted assuming periodicity
of the solution. The solution obtained by this method is exactly similar to those obtained using FSFEM.
Next, a wavelet based extrapolation scheme proposed by Amaratunga and Williams (1995, 1997) and
Williams and Amaratunga (1997), is implemented for solution of boundary value problems. This ap-
proach allows treatment of finite length data and uses polynomial to extrapolate wavelet coefficients
at boundaries either from interior coefficients or boundary values. The method is particularly suitable
for approximation in time for the ease to impose initial values. The details of the formulation in given
in Section 4.
After treating the boundaries for analysis of finite system, the simultaneous ODEs and associated

boundary conditions (Eqs. (22) and (27)) are solved using spectral element methods. The formulation of
spectral element is described in detail in Section 5. Prior to these, the flexural wave equation for beams
are reduced to ODEs following similar approach as in rod. This is discussed in the next subsection.

3.2. Flexural wave equation for beams

The flexural wave equation for beam has a fourth order derivative in space and is given as
EI
o4w
ox4

þ gA
ow
ot

þ qA
o2w
ot2

¼ 0 ð28Þ



where, w(x, t) is the transverse displacement and I is the moment of inertia of the cross section. The main
difference between longitudinal and flexural waves is that the later is dispersive, in other words the wave
speeds vary with frequencies.
The transverse displacement w(x, t) is approximated as
wðx; tÞ ¼ wðx; sÞ ¼
X
k

wkðxÞuðs � kÞ; k 2 Z ð29Þ
where, wk(x) (referred as wk hereafter) are the approximation coefficients. Substituting Eq. (29) in Eq. (28)
and following similar steps of Eqs. (16), (19) and (20), we get the reduced ODEs as
EI
d4wj

dx4
þ gA

Dt

XjþN�2

k¼j�Nþ2
X1

j�kwj þ
qA
Dt2

XjþN�2

k¼j�Nþ2
X2

j�kwk ¼ 0 j ¼ 0; 1; . . . ; n� 1 ð30Þ

EI
d4wj

dx4
þ

XjþN�2

k¼j�Nþ2

gA
Dt

X1
j�k þ

qA
Dt2

X2
j�k

� �
wk ¼ 0 j ¼ 0; 1; . . . ; n� 1 ð31Þ
The forced boundary conditions associated with the governing equation (28) are
EI
o2w
ox2

¼ M ð32Þ

EI
o3w
ox3

¼ �V ð33Þ
where M and V are the applied moment and transverse force respectively. Similar to Eq. (26), M(x, t) and
V(x, t) are written as
Mðx; tÞ ¼ Mðx; sÞ ¼
X
k

MkðxÞuðs � kÞ; k 2 Z ð34Þ

V ðx; tÞ ¼ V ðx; sÞ ¼
X
k

V kðxÞuðs � kÞ; k 2 Z ð35Þ
Substituting Eqs. (34) and (35) in Eqs. (32) and (33) respectively we get the following ODEs
EI
d2wj

dx2
¼ Mj j ¼ 0; 1; . . . ; n� 1 ð36Þ

EI
d3wj

dx3
¼ �V j j ¼ 0; 1; . . . ; n� 1 ð37Þ
Spectral element for beam is formulated using the ODEs given by Eqs. (31), (36) and (37). In the following
sections the formulation and numerical experiments are given for both rod and beam and finally for 2-D
frames.
4. Boundary value problem

In this section, the treatment of boundaries for finite domain analysis is given. From Eq. (22) of previous
section, we get n coupled ODEs, which are to be solved for uj using method described later. For numerical
implementation, we can deal with only finite sequence. In other words, u(x, t) and hence uj are only known
in the interval [0, tf] and j = 0 to j = n�1. In Eq. (22), the ODEs corresponding to j = 0 to j = N�2, contain



coefficients uj that lie outside the [0, tf]. Similarly, on the other boundary, for j = (n�1)�N + 2 to j = (n�1)
same problem exists. In the remaining part of this section, the details of two approaches adopted to solve
this boundary value problem are provided.

4.1. Periodic boundary condition

In this approach, the function u(x, t) is assumed to be periodic in time, with time period tf. Thus the un-
known coefficients on LHS are taken as
u�1 ¼ un�1
u�2 ¼ un�2

..

.

u�Nþ2 ¼ un�Nþ2

ð38Þ
Similarly the unknown coefficients on RHS i.e. un,un+1, . . . ,un+N�2 are equal to u0,u1, . . . ,uN�2 respectively.
With the above assumption, the coupled ODEs given by Eq. (22) can be written in matrix form as
d2uj
dx2

� �
¼ gA

EA
K1 þ qA

EA
K2

� �
fujg ð39Þ
where, K1 and K2 are n · n circulant connection coefficient matrices and have the form
K1 ¼ 1

Dt

X1
0 X1

�1 . . . X1
�Nþ2 . . . X1

N�2 . . . X1
1

X1
1 X1

0 . . . X1
�Nþ3 . . . 0 . . . X1

2

..

. ..
.

. . . ..
.

. . . ..
.

. . . ..
.

X1
�1 X1

�2 . . . 0 . . . X1
N�3 . . . X1

0

2
666664

3
777775 ð40Þ
K2 for second order derivative has a similar form. For a circulant matrix K1 (Davis, 1963), the eigenvalues
ka are
ka ¼
XN�2

k¼�Nþ2
X1

ke
�2piak=n a ¼ 0; 1; . . . ; n� 1 ð41Þ
and the corresponding orthonormal eigenvector va, a = 0,1, . . . ,n�1 are
ðvaÞk ¼
1ffiffiffi
n

p e�2piak=n; k ¼ 0; 1; . . . ; n� 1 ð42Þ
As discussed earlier, the spectral element formulation in the later part of the paper, involves eigenvalue
analysis. This is done to diagonalize the matrix in Eq. (39) and decouple the ODEs. For periodic boundary
condition, these eigenvalues are known analytically and hence decreases the computational cost. However,
the solutions obtained are same as those obtained using FSFEM and possess several problems such as wrap
around due to assumed periodicity of the solution.

4.2. Non-periodic boundary condition

In this section boundaries are treated using wavelet extrapolation method for Daubechies compactly
supported wavelets. The detail of the formulation is given in (Amaratunga and Williams, 1995, 1997
and Williams and Amaratunga, 1997), here a brief outline is presented for completeness.



In this method a polynomial of order p�1, (p = N/2) is assumed to extrapolate the values at the bound-
aries. Since, in this work the wavelets are used in time, the unknown coefficients on the LHS (i.e.
u�1,u�2 ,. . . ,u�N+2) are extrapolated from the initial values. The coefficients un,un+1, . . . ,un+N�2 on RHS
are extrapolated from the known coefficients u(n�1)�p+1,u(n�1)�p+2, . . . ,un�1.
Assuming polynomial representation of order p�1 for u in the vicinity of t = 0 and using Eq. (17)
uðx; sÞ ¼
X
k

ukðxÞuðs � kÞ ¼
Xp�1
l¼0

clsl ð43Þ
where cl are constant coefficients. Taking inner product on both sides of Eq. (43) and using Eq. (20), we get
uj ¼
Xp�1
l¼0

clll
j j ¼ �1;�2; . . . ;�N þ 2 ð44Þ
where, ll
j are the moments of the scaling function defined as
ll
j ¼

Z 1

�1
sluðs � jÞds ð45Þ
and are derived by solving a recursive equation (Latto et al., 1991). Solution of Eq. (43) to obtain cl requires
p�1 initial values of u(x,s) at s = 0,1, . . . ,p�1 and these may be obtained using schemes like finite differ-
ence. Next, the values of cl obtained in terms of the initial values are substituted back into Eq. (44). Thus
the unknown coefficients uj, j = �1,�2, . . . ,�N + 2 are obtained as
u�1

u�2

..

.

u�Nþ2

2
666664

3
777775 ¼

l0�1 l1�1 . . . lp�1
�1

l0�2 l1�2 . . . lp�1
�2

..

. ..
.

. . . ..
.

l0�Nþ2 l1�Nþ2 . . . lp�1
�Nþ2

2
6666664

3
7777775

c0

c1

..

.

cp�1

2
666664

3
777775 ð46Þ
The unknown coefficients at the RHS boundary are evaluated assuming the same polynomial representa-
tion and
uj ¼
Xp�1
l¼0

clll
j�n j ¼ ðn� 1Þ � p þ 1; ðn� 1Þ � p þ 2; . . . ; n� 1 ð47Þ
Eq. (47) can be written in matrix form as
l0�p l1�p . . . lp�1
�p

l0�pþ1 l1�pþ1 . . . lp�1
�pþ1

..

. ..
.

. . . ..
.

l0�1 l1�1 . . . lp�1
�1

2
666664

3
777775

c0
c1

..

.

cp�1

2
66664

3
77775 ¼

uðn�1Þ�pþ1

uðn�1Þ�pþ2

..

.

uðn�1Þ

2
66664

3
77775 ð48Þ
The cl obtained are then substituted into Eq. (47) for j = n, n + 1, . . . , n + N�2 to derive u(n�1)�p+1,
u(n�1)�p+2, . . . , un�1 as



un
unþ1

..

.

un�1þN�2

2
66664

3
77775 ¼

l00 l10 . . . lp�1
0

l01 l11 . . . lp�1
1

..

. ..
.

. . . ..
.

l0�Nþ2 l1�Nþ2 . . . lp�1
�Nþ2

2
666664

3
777775

c0
c1

..

.

cp�1

2
66664

3
77775 ð49Þ
Finally these coefficients are substituted in Eq. (22) and the system of ODEs can be written in a matrix form
similar to Eq. (39) as,
d2uj
dx2

� �
¼ gA

EA
C1 þ qA

EA
C2

� �
fujg ð50Þ
It should be noted that though all the formulations are done with reference to the governing differential
equation for rod, the connection coefficient matrices K1, K2 and C1, C1 are independent of problem and
depend only on the order of wavelet i.e. N. Hence the system of ODEs for beam (Eq. (31)) can be written
in matrix form as
d4wj

dx4
þ gA

EI
K1 þ qA

EI
K2

� �
wj ¼ 0 j ¼ 0; 1; . . . ; n� 1 ð51Þ
or,
d4wj

dx4
þ gA

EI
C1 þ qA

EI
C2

� �
wj ¼ 0 j ¼ 0; 1; . . . ; n� 1 ð52Þ
It can be seen from the above derivations that the wavelet coefficients of first and second derivatives can be
obtained as
f _ujg ¼ K1fujg ð53Þ

f€ujg ¼ K2fujg ð54Þ

The second derivative can also be written as
f€ujg ¼ K1f _ujg ð55Þ

Substituting Eq. (53) in Eq. (55) we get
f€ujg ¼ ½K1�2fujg ð56Þ

Thus though the second order connection coefficient matrices K2 and C2 can be evaluated independently
(Beylkin, 1992), they can also written as
K2 ¼ ½K1�2 ð57Þ

and
C2 ¼ ½C1�2 ð58Þ
5. Spectral element formulation

From the previous sections, we get a system of coupled ODEs for both rods and beams in a transformed
wavelet domain. These equations are required to be solved for uj, wj and the actual solutions u(x, t), w(x, t)
are obtained using inverse wavelet transform. For finite length data, the wavelet transform and its inverse



can be obtained using a transformation matrix. The transformation of a data sequence of length n, involves
a n · n transformation matrix (Williams and Amaratunga, 1994) that can be derived from equation similar
to Eq. (17), for s = 0,1, . . . ,n�1. These equations also involve coefficients that lies outside the finite interval
and the matrix is obtained either by circular convolution or wavelet extrapolation. In Eq. (17), u(s�k) is
nonzero for 0 < (s�k) < N�2 for Daubechies wavelet.
As discussed earlier in FSFEM (Doyle, 1999), the governing PDEs are reduced to a set of ODEs by FFT.

These ODEs are solved exactly, which are then used as interpolation function for SFE formulation. The
exact interpolating functions capture the exact mass distribution of the structure. In this paper, a similar
approach is adopted for solving the ODEs obtained through wavelet transform. In this section, elements
are formulated for rod and beam, which are combined together as in FE to obtain the frame spectral
element.
In WSFEM, the reduced ODEs are coupled unlike those in FSFEM. However, the system of equation

can be decoupled by diagonalizing the connection coefficient matrix. This can be done by eigenvalue anal-
ysis of the matrix as
C1 ¼ UPU�1 ð59Þ

where, U is the eigenvector matrix of C1 and P is the diagonal matrix containing corresponding eigenvalues
kj. Similar expression holds for K1 where U and P are known analytically (Eqs. (42) and (41)). From Eq.
(58), C2 can be written as
C2 ¼ UP2U�1 ð60Þ

where, P2 is a diagonal matrix with diagonal terms k2j . This eigenvalue analysis is costly but can be done
once and stored as it is completely independent of the problem. This makes the computational time com-
parable to FSFEM.

5.1. Spectral element for rod

Fig. 1(a) shows the spectral rod element with two nodes and one longitudinal degree of freedom (dof) ûj
and nodal axial load bF j at each node. The formulation of 2 · 2 elemental dynamic stiffness matrix is ex-
plained as follows. The ODEs obtained by decoupling the Eq. (50) (and similarly Eq. (39)) can be written
as
d2ûj
dx2

¼ gA
EA

kj þ
qA
EA

k2j

� �
ûj j ¼ 0; 1; . . . ; n� 1 ð61Þ
where
ûj ¼ U�1uj ð62Þ
F1
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u
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Fig. 1. (a) Rod element and (b) beam element with nodal forces and displacements.



Similarly, the force boundary condition given by Eq. (27) can be written as
dûj
dx

¼ bF j j ¼ 0; 1; . . . ; n� 1 ð63Þ
where,
bF j ¼ U�1F j ð64Þ

The exact interpolating function obtained by solving Eq. (61) are
ûjðxÞ ¼ Aje
�bjx þ Bje

�bjðL�xÞ where bj ¼
gA
EA

kj þ
qA
EA

k2j

� �1
2

ð65Þ
The constants {aj} = {Aj,Bj}
T are obtained from the boundary conditions at the two nodes (see Fig. 1(a))

i.e. ûjð0Þ ¼ û1j and ûjðLÞ ¼ û2j . This can be written as
fûjg ¼ ½B�fajg where fûjg ¼ fû1j ; û2jg
T ð66Þ
where the matrix [B] is
½B� ¼ 1 �e�bjL

�e�bjL 1

� �
ð67Þ
Force boundary condition at the nodes, (see Fig. 1(a)) i.e. bF jð0Þ ¼ �bF 1j and bF jðLÞ ¼ bF 2j are used in Eq.
(64) and we get
fbF jg ¼ ½C�fajg where fbF jg ¼ fbF 1j ; bF 2jgT ð68Þ
where the matrix [C] is
½C� ¼ EAbj

1 �e�bjL

�e�bjL 1

� �
ð69Þ
From Eqs. (66) and (68) we can obtain a relation between transformed nodal forces and displacements sim-
ilar to conventional FE
fbF jg ¼ ½C�½B��1fûjg ¼ ½bK �fûjg ð70Þ
where ½bK � is the dynamic stiffness matrix. After the constants {aj} are known from the above equation, they
can substituted back to Eq. (65) to obtain ûj at any given x.

5.2. Spectral element for beam

Fig. 1(b) shows the beam spectral finite element with node and two dofs ŵj and oŵj=ox at each nodes.
The nodal transverse forces and moments are bV j and bMj respectively. Spectral element formulation for
beam is very similar to that for rod. The only difference is that the governing differential equation for beam
involves fourth order derivative in space and this makes the waves dispersive in nature. The equations ob-
tained by decoupling the system in Eq. (52) (and Eq. (51)) are
d4ŵj

dx4
þ gA

EI
kj þ

qA
EI

k2j

� �
ŵj ¼ 0 j ¼ 0; 1; . . . ; n� 1 ð71Þ
where,
ŵj ¼ U�1wj ð72Þ



The forced boundary conditions given in Eqs. (36) and (37) are similarly transformed as
EI
d2ŵj

dx2
¼ bMj j ¼ 0; 1; . . . ; n� 1 ð73Þ

EI
d3ŵj

dx3
¼ �bV j j ¼ 0; 1; . . . ; n� 1 ð74Þ
The solutions of Eq. (71) are
ŵjðxÞ ¼ Aje
�icjx þ Bje

�icjðL�xÞ þ Cje
�cjx þ Dje

�cjðL�xÞ ð75Þ

where
cj ¼
gA
EA

kj þ
qA
EA

k2j

� �1
4

Next, steps similar to Eq. (66) and (68) are followed to obtain Eq. (70). However, for beam
{aj} = {Aj,Bj,Cj,Dj}

T, the nodal displacements fŵjg ¼ fŵ1j ; oŵ1j=ox; û2j ; oŵ2j=oxg
T and

fbF jg ¼ fbV 1j ; ; bM 1j
bV 2j ; bM 2jg

T (see Fig. 1(b)) and the ½bK � is 4 · 4. The explicit form of [B] and [C] for beam
are given as
½B� ¼

1 e�icjL 1 e�cjL

�icj icje
�icjL �cj cje

�cjL

e�icjL 1 e�cjL 1

�icje
�icjL icj �cje

�cjL cj

2
6664

3
7775 ð76Þ

½C� ¼ ðEIc2j Þ

icj icje
�icjL �cj �cje

�cjL

1 e�icjL �1 �e�cjL

�icje
�icjL �icj cje

�cjL cj
�e�icjL �1 e�cjL 1

2
6664

3
7775 ð77Þ
5.3. Force identification

The basic idea of SFEM is to obtain a system transfer function that relates the input to the output. From
WSFE formulation given in previous sections, the transform of the load bF j and displacements buj can be
related through transfer function bGjðxÞ as
bujðxÞ ¼ bGjðxÞbF jðxÞ ð78Þ

Other parameters like stress, velocity, strain etc are related to load and displacements and can be used as
input or output with required modification in bGjðxÞ. The inverse problem of calculating the input force bF j

can be done as
bF jðxÞ ¼ ûjðxÞ=bGjðxÞ ð79Þ

The system transfer function bGjðxÞ is obtained as follows. After the global ½bK � is formed, the structure is
solved for unit impulse at the desired location. This will directly give bGjðxÞ. The measured response
u(x, t) in the time domain is then transformed to the wavelet domain to get ûjðxÞ. Then Eq. (79) is used
to obtain the force history in wavelet domain, which is then transformed by inverse wavelet transform
to obtain required force history.



6. Numerical experiments

Here, first the formulated wavelet spectral element is compared with 2-D FE. It is later used to study
axial and flexural wave propagations in 2-D frame. As pointed out earlier, FSFEM has several disadvan-
tages due to the required assumption of periodicity. Such problems can be circumvented using wavelets.
Several numerical experiments are presented in this section which support the above statement.
Spectral element is particularly suitable for force identification. The applied force is reconstructed from

experimentally measured responses. However, here FE results are used as surrogate experimental data. As
discussed in Section 1, the point of truncation of the responses, is a decisive factor for the accuracy of the
identified force in conventional SFEM. The numerical examples provided show that such problems are
completely eliminated by use of wavelet transform here.

6.1. Wave propagation analysis

First, wave propagation analysis is done for an aluminum rod with Young�s modulus E = 70 GPa and
density q = 2.7 · 103 kg/m3. The rod is fixed at one end and an axial impulse load is applied at the free end.
The load shown in Fig. 2 has an unit amplitude and duration of 50 ls with a frequency content of 44 kHz.
The length, width and depth of the rod are L = 20 in., b = 1 in. and h = 0.01 in. respectively.
Fig. 3(a) shows the tip longitudinal velocity in undamped (g = 0) rod due impact load applied at tip. The

result obtained using a single formulated spectral element is compared with FE results. The FE results are
obtained using 400 3-noded plane stress triangular elements and Newmarks time integration with time step
1 ls. For the all the FE results presented hereafter, the above Newmarks scheme is used for time integration
unless otherwise mentioned. The wavelet basis function used in this example and elsewhere has an order of
N = 8 and the sampling rate Dt = 1 ls unless otherwise mentioned. Thus for a time window Tw = 512 ls,
the number of sampling points is n = 512 and the system size is 512 · 512. It can be seen that the FE results
match well with those obtained using formulated WSFE. FSFEM cannot be used for wave propagation
analysis of such undamped finite length structures, where multiple reflections from the boundaries and wrap
around completely distort the solution.
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Fig. 2. Impact load and Fourier transform of the load (inset).
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Fig. 3. Longitudinal tip velocity in rod due to tip impact load simulated with time interval (a) Dt = 1 ls, (b) Dt = 2 ls and (c)
Dt = 4 ls.
In Fig. 3(b) and (c), the FE results obtained using the above mesh (400 3-noded plane stress triangular
elements) but with time steps of 2 ls and 4 ls for Newmarks time integration are presented. These are com-
pared with corresponding WSFE results obtained with Dt = 2 ls and 4 ls respectively. The time window Tw
is kept fixed at 512 ls. It can be seen from Fig. 3(a)–(c) that as the time step is increased, the FE method
with Newmarks time integration scheme gradually shows distortions. However, WSFE is free from such
distortions even at Dt = 4 ls.
In Table 1, the CPU time taken by FE and WSFE methods for the above numerical examples are pre-

sented for Dt = 1 ls, 2 ls and 4 ls. The numerical experiments are performed on an IBM IntelliStation
Table 1
CPU time taken by FE with Newmarks time integration and WSFE methods for simulation of longitudinal tip velocity in rod shown in
Fig. 3

Time interval Dt (ls) CPU time (s)

2-D FE Present (WSFE)

1 54.00 18.00
2 27.00 2.00
4 15.00 1.00



workstation (with Intel Pentium 4 processor). It can be seen that the CPU time taken by the present WSFE
method is much less than that taken by FE method. In addition, it can be seen from Fig. 3(c) that for
Dt = 4 ls, WSFE solution is much more accurate than the corresponding FE solution. This leads to further
computational savings in WSFEM compared over FE analysis with Newmarks time integration.
Wave propagation analysis of finite length structures using conventional SFEM based on Fourier trans-

form requires the structures to be damped or use of throw off element to artificially induce damping. In
addition, for such methods, the time window should be large to remove the wrap around problem. The time
window is dependent on the damping and length, being more for lightly damped short length structures.
WSFEM is completely free from such problems where the accuracy of solution is independent of these
parameters. In Fig. 4 longitudinal velocities in the rod due to tip impact load are plotted considering
g = 0.5. For the solution obtained using WSFE, the time window of Tw = 512 ls is sufficient, while for
FSFEM time windows, Tw of 1024 ls, 2048 ls and 4096 ls and sampling time Dt = 1 ls are used. It can
be seen that for Tw = 1024 ls (Fig. 4(a)) FSFE solution is highly distorted and the accuracy gradually in-
creases with increase of Tw (Fig. 4(c)). Thus, the present spectral element results in substantial reduction of
computational cost as the Tw is directly related to the system size.
In the numerical experiments presented the results obtained using periodic wavelets are not provided as

they match exactly with the FSFEM solutions except the advantage of having multi-resolution analysis.
Next, numerical experiments are performed to study flexural wave propagation in an aluminum beam

due to the unit impulse load (Fig. 2) applied at tip in transverse direction. The elastic properties and
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Fig. 4. Longitudinal tip velocity in rod due to tip impact load for time window Tw (a) Tw = 1024 ls (b) Tw = 2048 ls and
(c) Tw = 4096 ls.



dimensions are same as the rod except that here the length L is even shorter and is equal to 10 in. The trans-
verse velocity at the tip simulated using a single WSFE is shown in Fig. 5. A time window of Tw = 2048 ls
with a sampling rate Dt = 1 ls, is used to solve the problem. It is also compared with FE result obtained
using 400, 3 noded plane stress triangular elements. Figure shows excellent agreement between FE and
WSFE solutions. As in the case of rod, FSFEM cannot be used for such undamped short length beam
and the analysis requires consideration of damping or semi-infinite structures.
In Fig. 6, transverse velocity in the beam due to tip impact load is plotted considering a damping of

g = 0.5. For the results obtained with wavelet spectral element, the time window used is Tw = 1024 ls, how-
ever as stated earlier the accuracy of the solution is independent of Tw. For conventional SFEM solutions,
the time windows, Tw used are 1024 ls, 2048 ls and 4096 ls. It can be seen that the distortions gradually
decrease by increasing Tw (Fig. 6(a)–(c)).
Finally wave propagation analysis is performed on a 2-D frame structure with a vertical load P applied

as shown in Fig. 7. This example is much more complicated as multiple reflections occur from the joints and
supports. For analysis of this structure, three spectral elements, for the three members are used and the ele-
mental dynamic stiffness matrices of these members are assembled using standard FE technique.
In Fig. 8 the transverse wave velocity at point A (shown in Fig. 7) is presented and compared with FE

result. The FE result is obtained using 2-noded 1-D beam element with an axial, transverse and rotational
degree of freedom at each node. Each of the three members of the frame is discretized with 5000 elements.
Results show very good agreement between these two solutions. Since FSFE cannot be used for similar
analysis of undamped finite length structures, the wave velocities are plotted in Fig. 9(a)–(c) considering
a damping of g = 0.5. In the above mentioned figures for all the plots obtained using wavelet, a time win-
dow Tw of 1024 ls is used. For FSFEM, Tw is increased from 1024 ls to 4096 ls in Fig. 9(a)–(c) to remove
wrap around. It can be seen that for Tw = 1024 ls the results are highly distorted which gradually decreases
with increase in Tw. In Fig. 9(c), even increasing Tw to 4096 ls is not capable of completely eliminating the
response distortion. It further requires higher resolution.
The above numerical experiments have been done using basis function of order N = 8 and sampling rate

Dt = 1 ls. Higher order basis functions approximate polynomials of increasingly higher orders and thus it is
expected that for a given Dt, the solution will get refined further. Fig. 10(a) shows the refinement achieved
using different basis functions for a given time window Tw = 512 ls. The tip longitudinal velocity shown in
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Fig. 5. Transverse tip velocity in beam due to tip impact load.
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Fig. 6. Transverse tip velocity in beam due to tip impact load for time window Tw (a) Tw = 1024 ls (b) Tw = 2048 ls and
(c) Tw = 4096 ls.

Fig. 7. 2-D frame structure.
Fig. 4 obtained using N = 8 and Dt = 1 ls is taken to be the most refined solution (vf). The coarser solutions
(vc) are obtained by increasing Dt to 2 ls, 4 ls, 8 ls for a fixed Tw and thus decreasing the number of sam-
pling points n. The error is obtained as kvf � vck=

ffiffiffi
n

p
for different basis function and Dt. Fig. 10(a) shows

that the error gradually decreases for N = 6 to N = 20. To show the dependence of Tw, the time window,
for obtaining accurate solutions in FSFEM, the above error is plotted considering same vf for fixed sam-
pling rate of 2 ls. This is shown in Fig. 10(b). It is observed that the error gradually decreases with increas-
ing Tw as distortion due to wrap around decreases. Also, for a particular Tw, the measured error does not
vary much as the Dt is increased from 1 ls to 8 ls.
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Fig. 8. Transverse velocity at A of 2-D frame in Fig. 7 due to the applied load P.
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Fig. 9. Transverse tip velocity at A of 2-D frame in Fig. 7 due to the applied load P, for time windows Tw (a) Tw = 1024 ls
(b) Tw = 2048 ls and (c) Tw = 4096 ls.
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6.2. Force identification

The earlier examples demonstrate the presence of wrap around problems in FSFE solutions. When such
solutions are used to perform inverse problem such as force identification on a shorter waveguide, due to
time window limitation, the solution obtained may yield a highly distorted force history. This is
where the formulated WSFE will be of great utility. Its use in force identification is demonstrated in this
section.
First, force identification from measured axial velocity is done considering undamped condition. The

longitudinal velocity at the mid point of the rod due to tip axial load obtained using FE is used as input.
The unit impulse load described in Section 6.1 and shown in Fig. 2 is used as the applied load to obtain the
FE solution. The rod is modeled with 400, 3 noded plane stress triangular elements and the response is pre-
sented in Fig. 11. Fig. 12(a) shows the force reconstructed from the above response truncated at
Tc = 512 ls, which shows excellent match with applied force. The forces identified from responses trun-
cated at different points are same irrespective of the point of truncation (Tc). Thus this spectral element
can efficiently reconstruct the force even from responses recorded for a small time duration. Similar to
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Fig. 11. Longitudinal velocity in rod measured at mid point (x = 10 in.) due axial impact load at tip (x = 20 in.) using 2-D FE.
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the forward problem in Section 6.1, FSFEM cannot be used for performing inverse problem in undamped
finite length structure.
Though the above example shows the advantage of WSFE over FSFE in force identification, the recon-

struction will involve certain problems when experimental data are used. This is because the experimental
responses are never free from noise which causes distortion in the reconstructed force. In Fig. 13(a), a noisy
response is simulated by adding white noise to the response shown in Fig. 11, to produce a signal to noise
ratio of 7.5. The reconstructed force is shown in Fig. 13(b) and it can be seen that it is highly distorted. This
example shows, that as mentioned earlier, when experimentally measured responses are used as input, deno-
ising of the signal is required prior to reconstruction.
Next, we deal with damped structures to compare the results obtained using WSFEM and FSFEM. The

response used as input is similar to that shown in Fig. 11 except that a damping of g = 1.0 is considered.
The force reconstructed using wavelet in this case is very much similar to that presented in Fig. 12(a). Fig.
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Fig. 13. Reconstruction of impulse load applied to rod (a) response used as input (Fig. 11 with simulated white noise) and (b)
reconstructed impulse load.
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Fig. 14. Transverse velocity in beam measured at mid point (x = 5 in.) due transverse impact load at tip (x = 10 in.) using 2-D FEM.
12(b) presents the forces identified using FSFEM for different truncation points (Tc). It can be seen that for
Tc = 512 ls, the force obtained is highly inaccurate and gradually gets refined with increased Tc.
Similar experiments are performed for force identification from recorded transverse velocity in beam.

The flexural velocity measured at the mid point of the beam due tip impact load simulated using FE
and shown in Fig. 14 is used as input. The impulse loading and the 2-D FE mesh used are same as that
used for rod. First an undamped (g = 0) case is considered for which FSFEM is unable to predict the re-
sults. Fig. 15(a) shows the force reconstructed from the above response truncated at Tc = 512 ls using
WSFE. As stated for the rod, force identification using WSFEM is independent of the point of truncation
(Tc).
The response plotted in Fig. 14 with a damping of g = 1.0 is used as input next to compare the forces

identified using WSFEM and FSFEM. The force reconstructed using wavelet has no interpretable differ-
ence from Fig. 15(a) and hence is not replotted. In Fig. 15(b) the force obtained using FSFEM is presented
for Tc = 512 ls, 1024 ls and 2048 ls respectively. These plots reemphasize the advantages of WSFEM over
FSFEM for inverse problems.
Finally force identification is done for the 2-D frame structure (Fig. 7) from the flexural response ob-

tained through FE analysis and is shown in Fig. 8. The impulse loading is same as that used for rod and
beam. The FE meshing is done with 5000 1-D beam element for each of the three members of the frame
and a total of 15000 elements. Similar to the previous force identification experiments done, for 2-D
frames WSFE reconstructs the impulse force accurately, irrespective of Tc and the plot is presented in
Fig. 16(a). For this problem the forces identified using FSFEM and considering a damping of g = 1.0
are plotted in Fig. 16(b). It can be seen that for accurate reconstruction of force the method requires
the truncation point Tc = 4096 ls which is higher than that required in previous examples of beam and
rod. This can be justified as the response in this problem contains multiple reflections. Another way of
using FSFEM for force identification from truncated responses, is to use throw-off element at the two
fixed boundaries to release trapped energy. That is, the above 2-D frame (Fig. 7) can be thought of to
be made of semi infinite members at the boundaries by adding throw-off element of stiffness 10 times that
of the other members. The response simulated using FE, shown in Fig. 8 is used as input to the FSFE
solver with throw-off element for force identification. The reconstructed forces are plotted in Fig.
16(c). The figure shows that for such complex structures, a large truncation point (Tc = 4096 ls) is re-
quired to get good results in FSFEM. However, these problems prove the efficiency of WSFEM in force
reconstruction even for such complex structures.
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Fig. 15. Reconstructed impulse load applied to beam (a) WSFEM and (b) FSFEM.
7. Conclusions

This paper presents the formulation and validation of wavelet spectral element for simulation of wave
propagation and force identification in rod, beam and 2-D frames. Spectral element method proves to
be an efficient alternative of FE analysis of wave propagation problems and decreases the computational
cost substantially. Moreover, SFEM can be used to perform inverse problems with great ease. The novelty
of the spectral element developed is that it uses wavelet transform to reduce the PDEs to ODEs unlike the
solution which is used in the SFE formulation. This wavelet based approach retains all the advantages of
FSFEM, while it removes the problems associated with Fourier transform. First the axial and flexural
velocities in undamped finite length structures obtained using present spectral element are validated with
FE results. Next, numerical examples presented for damped finite length rod and beam show that wavelet
spectral elements can remove the wrap around problem associated with the Fourier technique. This allows
use of much smaller time window compared to FSFEM and thus decreases the cost substantially. The accu-
racy of identified force from the measured wave responses using FSFEM is determined by the point of trun-
cation and the error is very high for small duration responses. The method proposed predicts the applied
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Fig. 16. Reconstructed impulse load applied to 2-D frame (a) WSFEM, (b) FSFEM and (c) FSFEM (with throw off).
force to a high degree of accuracy irrespective of truncation point, damping and length of structure. The
reconstructed force may not be so accurate when experimentally measured responses are used as input,
due to associated noise and complexities. Such cases will demand more refinement and/or modifications
for efficient impulse load identification.
The scope of further research lies in the areas of extending the present formulation for 2-D PDEs. This

may be done similarly to the FSFE formulation for semi-infinite plates presented by Chakraborty and
Gopalakrishnan (in press). Alternatively, use of conventional FE for solutions of the transformed ODEs
can be thought of instead of exact solution. The present WSFEM is restricted only to the analysis of linear
elastic materials. Further work can be done to study the possibility of extending the present method for
non-linear cases. A probable approach can be to update the WSFE solution of the non linear system after
certain time step. The use of other compactly supported wavelet bases (B-spline wavelets) for spectral ele-
ment formulation can also be studied.
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