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Abstract

Phase transitions from a metastable state often occur by nucleation accompanied by particle growth and eventually

by Ostwald coarsening. In closed systems, the supersaturation declines as particles nucleate and grow, causing an

increase in the stable critical nucleus size. Particles below the critical size dissolve spontaneously during coarsening and

their mass is released to contribute to further growth of remaining particles. By developing a population balance model

that represents nucleation, growth, and coarsening, we here determine the dynamics of particle size distributions

(PSDs). The governing equations are solved numerically to show that the transition from nucleation and growth to

coarsening occurs over a relatively long time period. The asymptotic coarsening stage reveals a power-law increase in

average particle mass as the PSD evolves to a (minimum) polydispersity index of unity for both two-dimensional (2-D)

and 3-D phase transitions. The model agrees with published conclusions that nucleation and coarsening overlap when

interfacial energy is small or supersaturation is large.
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1. Introduction

Nucleation, growth, and coarsening constitute
three basic processes in condensation phase
transition [1], where particles nucleate, grow, and
eventually form a single condensed ripened parti-
cle. In a metastable supersaturated phase, nuclei
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will be generated and will also contribute to the
growth of particles [2–4]. With the decrease of
supersaturation due to growth, the size of the
critical nucleus increases and the driving force for
growth decreases. The Gibbs–Thomson effect and
Ostwald coarsening become significant as the
growth and nucleation rates decline. When parti-
cles shrink to their critical nucleus size, they
become thermodynamically unstable and sponta-
neously disintegrate [5,6] so that the particle
distribution narrows. After a very long time, the
particle size distribution (PSD) approaches a delta
distribution of zero variance with a single remain-
ing particle at equilibrium [5]. The theory of
coarsening has its origins in the work of Ostwald
[7], Lifshitz and Slyozov [8], and Wagner [9]
(LSW), as outlined by Dunning [10] and Mullins
[11]. Applications to two-dimensional (2-D) sys-
tems began at least 40 years ago [12] and continue
to be an active area of research.
The model developed here quantitatively de-

scribes this complete range of phenomena for both
2-D and 3-D systems. Much of the discussion that
follows applies to both 2-D and 3-D systems,
unless specifically noted otherwise. The sequence
of reversible condensation processes is mathema-
tically similar to reversible polymerization–depo-
lymerization by monomer addition–dissociation
[13]. Written for the PSD, the population balance
equation (PBE) for a batch system (closed to flow)
has an accumulation (time derivative) term,
addition and dissociation terms, and a source (or
sink) to represent nucleation (or denucleation). An
expansion [14] of the PBE, for small ratio of
monomer to particle mass, converts the difference-
differential equation into a Fokker–Planck equa-
tion conventionally applied to Ostwald coarsening
[1]. This approach has already been applied to
investigate coarsening dynamics in our previous
publications [5,6,15,16]. The particle distribution
approximates an exponential self-similar solution,
and eventually narrows until but one large particle
remains, satisfying the mass balance. The long-
time asymptotic result for the numerical solution
of the scaled PBE shows a power-law decrease of
particle number and a power-law growth of
average particle mass, CavgðyÞ: The asymptotic
power-law growth with time y, Cavg

�y1/(1�l+1/d),
is determined by the dimension d and the power
law for the mass in rate coefficient expressions.
Experimentally observed coarsening behavior can
thus be quantitatively represented by choosing l
for a given time range.
As described above, the decomposition of a

supersaturated solid solution by precipitation of a
new phase is often supposed to occur in three
distinct steps: nucleation, growth and coarsening.
Traditionally, these three processes have often
been considered separate from each other with the
implicit assumption that one process goes to
completion before the next process begins. How-
ever, recent theories by Kampmann and Wagner
[17], Robson [18] and our previous studies [5,6]
have shown that nucleation, growth, and coarsen-
ing significantly overlap; thus, the time evolution
of the particle number density and size depends on
the rates of all three processes. While many models
predict the evolution of the mean precipitate
parameters like size and radius, we have developed
models, similar to the Kampmann and Wagner
[17,18] numerical (KWN) model, capable of
predicting the full evolution of the size distribu-
tion. We use a population balance model to
describe the evolution of the PSD through the
first appearance of nuclei, subsequent monomer
deposition and growth, and eventual coarsening to
a single large remaining particle. Though some
models [16,17,19,20] account for denucleation
by allowing the particles above the critical
size to shrink gradually, we consider that particles
of size less than the critical nucleus size are
unstable and disintegrate instantaneously and
spontaneously into the monomer phase. This
provides a rational and predictable way to reduce
the particle population until a single large particle
exists for t ! 1; as dictated by Ostwald coarsen-
ing [1,21]. The theory shows the time evolution of
the PSD for all times, and matches the LSW
theory [8,9] in its restricted long-time range.
Further, the classical LSW theory of coarsening
applies only in the regime where the mean and
critical radii are equal. When the size of a particle
is smaller than the critical size, however, it
will disintegrate and disappear from the PSD.
This may occur well before the onset of the
conditions that lead to LSW coarsening, and both
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the KWN and our theory incorporate this effect
into the model.
The KWN model and the proposed model

determine the time evolution of the PSD using
mean field approximations for rates. Though the
general limitations of disregarding spatial inho-
mogeneous diffusion fields are well known [22],
attempts at avoiding mean-field theories are
mostly restricted to a few particles. By approach-
ing the problems based on distribution kinetics, we
describe properties of the time-dependent PSD
that may be difficult to compute by other methods.
Indeed, the model can incorporate some inhomo-
geneities such as allowing for distributions con-
sisting of a large particle surrounded by small
particles [15]. The capture number (defined
as the mean rate of capture of diffusing adatoms
by islands), the local environment of a particle,
and particle mobility all influence the evolution of
the PSD, but have limited influence on the
essential behavior of the average island size and
number density [15]. The validity of predictions
suggests that the capability of a theory to quantify
the PSD evolution is more important than avoid-
ing the mean field approximation.
The KWN model has successfully predicted

precipitate evolution in a wide range of model
alloy systems [23–25], including Cu–Co, Ni–Al,
Al–Sc and Fe–Ni. These predictions, in conjunc-
tion with experimental evidence, confirm that for
certain alloys and heat treatment conditions, there
is an overlap of nucleation and coarsening, as
discussed by Robson [18]. In contrast to the
modified KWN model [18], the distribution
kinetics model can describe systems with high
precipitate volume fractions [26] (by including
interactions between particles) and the effect of
temperature [27]. We have applied this approach
separately to investigate nucleation with growth
[28], Ostwald coarsening [6], transition [29] in 3-D,
and the effect of temperature on these processes
[27,30]. For a fixed temperature, analysis of the
nucleation and growth equations show that the
three most critical system-dependent variables are
the interfacial energy, supersaturation, and solute
diffusivity. The model provides a simple yet
effective and powerful tool for systematically
analyzing the effect of supersaturation, diffusivity,
and interfacial energy on nucleation, growth and
coarsening. In addition, the size-independent,
diffusion-controlled and surface-controlled pro-
cesses can be represented by simply choosing the
value on the power on mass in rate coefficient as 0,
1
3
; and 2

3
; respectively.

The objective of this paper is (a) to develop
the phase transition dynamics for a 2-D system
based on the theory developed earlier [27]
for 3-D systems, and (b) to compare the results
obtained by the theory to that obtained by the
modified KWN model [18]. The paper develops
and evaluates these concepts in the following
sections. Section 2 uses the capillarity approxima-
tion [2] to represent homogeneous nucleation
kinetics and distribution kinetics to model the
transition from growth to Ostwald coarsening.
Section 3 describes the numerical scheme for
solving the PBEs for the supersaturation and
PSD evolution and discusses the results obtained.
Section 4 presents a summary and the major
conclusions.
2. Theory

The 2- or 3-D size distributions are defined by
cðx; tÞdx; representing the area or volume concen-
tration of particles at time t in the differential mass
range (x, x+dx). Moments [31] are defined as
integrals over the mass,

cðnÞðtÞ ¼

Z 1

0

cðx; tÞxn dx: (2.1)

The zeroth moment, cð0ÞðtÞ; and the first moment,
cð1ÞðtÞ; are the time-dependent number and mass
concentration of particles, respectively. The ratio
of the zeroth and first moments is the average
particle mass, cavg ¼ c

ð1Þ
= cð0Þ: The polydispersity,

cpd; defined as c(2)c(0)/(c(1))2, is a measure of the
breadth of the distribution.
Reversible addition of monomer, MðxmÞ; to a

particle, CðxÞ; with rate coefficients, kgðxÞ and
kdðxÞ; for growth and dissolution, respectively, is
represented by

CðxÞ þMðxmÞ $
kgðxÞ

kdðxÞ
Cðx þ xmÞ. (2.2)
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island
monomer

Fig. 1. Schematic of 2-D islands (disks) on a surface with

monomers.
The distribution of the particles, cðx; tÞ; is
governed by the kinetic equation (population
balance),

qcðx; tÞ=qt

¼ �kgðxÞcðx; tÞ

Z 1

0

mðx0; tÞ dx0

þ

Z x

0

kgðx � x0Þcðx � x0; tÞmðx0; tÞ dx0

� kdðxÞcðx; tÞ

þ

Z 1

x

kdðx
0Þcðx0; tÞdðx � ðx0 � xmÞÞ dx0

þ Idðx � x
Þ. ð2:3Þ

The distribution of monomers, m(x,t) ¼ m(0)(t)
d(x�xm), for a closed system with no input of
monomer evolves according to

qmðx; tÞ=qt

¼ �mðx; tÞ

Z 1

0

kgðx
0Þcðx0; tÞ dx0

þ

Z 1

x

kdðx
0Þcðx0; tÞdðx � xmÞ dx0

� Idðx � x
Þx
=xm, ð2:4Þ

where nucleation of critical nuclei of mass x*
at the rate I uses a number of monomers equal
to x*/xm. The distribution changes according to
Eq. (2.3), which becomes, when the integrations
over the Dirac distributions are performed, the
finite-difference integrodifferential equation,

qcðx; tÞ=qt

¼ �kgðxÞcðx; tÞm
ð0Þ þ kgðx � xmÞcðx � xm; tÞm

ð0Þ

� kdðxÞcðx; tÞ þ kdðx þ xmÞcðx þ xm; tÞ

þ Idðx � x
Þ. ð2:5Þ

The governing equations show that c(x,t) increases
by addition and decreases by the loss of mass xm.
Eq. (2.5) can be expanded for xm5x to convert the
differences into differentials.
Microscopic reversibility for the growth process

implies

kdðxÞ ¼ mð0Þ
eq kgðxÞ (2.6)
and we assume the growth rate increases as a
power of mass,

kgðxÞ ¼ gxl. (2.7)

Thus, the mass dependences of the growth and
dissolution rate coefficients are identical with
l ¼ 0, 1

3
; 2
3
representing various deposition rates.

The power is l ¼ 1
3
for diffusion-controlled and

l ¼ 2
3 for surface-controlled processes [32–34].

In 3-D the nucleus energy is the sum of
interfacial and volume terms,

W 3ðrÞ ¼ 4pr2s� ð4
3
Þpr3�. (2.8)

Here, � ¼ ðr=xmÞkBT lnS is expressed in terms of
mass density r; monomer mass xm; the Boltzmann
constant kB; and absolute temperature T ; and s is
the interfacial energy between the condensed phase
of the disk and the free monomers on the
substrate. The term �kBT lnS is the chemical
potential difference between the two phases in
terms of supersaturation S: The maximum energy
occurs at r
 ¼ 2s=�; or in terms of the spherical-
particle mass, x* ¼ (4

3
)pr*3r,

x
3 ¼ x
=xm ¼ ðo3= ln SÞ3, (2.8a)

where o3 ¼ (s/kBT)(32xm
2 p/3r2)1/3.

For two dimensions we consider disk-shaped
islands of height h and radius r (Fig. 1), which
have volume pr2h and curved edge surface area
2prh: The island mass is x ¼ rpr2h: Because only
surface processes are being considered, only the
edge effects are important energetically and the
energies associated with the top and bottom
surfaces can be neglected. The combined surface
and volume energies provide

W 2ðrÞ ¼ 2prhs� pr2h�. (2.9)
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The maximum energy according to Eq. (2.9) is at
the radius r
;

r
 ¼ s=� (2.10)

or

x
2 ¼ ðo2= ln SÞ2,

where

o2 ¼ ðs=kBTÞðxmph=rÞ1=2: (2.10a)

For either 2- or 3-D, we can generalize and write

x
d ¼ ðod= ln SÞd (2.10b)

in terms of the dimension d.
Classical nucleation theory accounts for particle

growth by means of the particle energy, W. For a
supersaturated (metastable) 3-D system, the en-
ergy of a particle of radius r, W(r), reaches a
maximum value, W*, at the critical particle radius,
r*, given by Eq. (2.8), and equivalent to the
Gibbs–Thomson equation,

W 

3 ¼

16
3

� �
ps3=�2. (2.11)

For 2-D, one obtains the maximum energy
expression,

W 

2 ¼ hps2=�. (2.12)

For ror* (or in terms of mass, xox*), the
energy W increases with size, implying that the
particle is unstable and subject to fluctuations that
dissociate most particles to monomer. For r4r*,
the energy decreases with size and the particle can
grow or dissolve by diffusive or other stable,
reversible kinetic mechanisms. By analogy with
Eqs. (2.8) and (2.9), for an 1-D system, there is no
interface curvature and the first term for W is
independent of size; hence, no maximum energy
exists, and nucleation, denucleation, and Ostwald
coarsening would not occur. To generalize, we
have for the nucleus energy,

W 

d=kBT ¼ od

dðln SÞ1�d=ðd � 1Þ, (2.13)

which reduces to the expression derived earlier for
3-D systems [6]. Strain energy can be incorporated
into the expression for excess free energy of a
cluster, but because the effects cannot be experi-
mentally verified [35], they are neglected in this
model.
The classical expression [2,36] for the nucleation
rate (moles of nuclei/vol � time) is the flux over the
maximum energy barrier (at r ¼ r
),

Inuc ¼ knuc expð�W 
=kBTÞ (2.14)

with a prefactor that varies with the square of
monomer concentration, and thus with the square
of the supersaturation, S2: We will consider the
prefactor as a parameter for the computations
described below.
Dimensionless quantities are defined as

x ¼ x=xm; y ¼ tgmð0Þ
1 xl

m; S ¼ mð0Þ=mð0Þ
1 ,

C ¼ cxm=mð0Þ
1 ; CðnÞ ¼ cðnÞ=ðmð0Þ

1 xn
mÞ,

J ¼ I=ðgðmð0Þ
1 Þ

2xl
mÞ, ð2:15Þ

where x is the number of monomers in a particle.
The scaled time y; particle distribution C; nuclea-
tion rate J; and monomer concentration S; are
scaled by the monomer concentration, mð0Þ

1 ; in
equilibrium with an uncurved surface.
The dimensionless monomer equation is

dSðyÞ=dy ¼ ½�SðyÞ þ eOa 
CðlÞ � Jx
. (2.16)

Because Eq. (2.16) is a moment equation, Oa is
evaluated for the average-sized particle, Oa ¼ od/
(Cavg)1/d. Exact for an infinitely narrow distribu-
tion, this approximation has been shown to be
reasonable in previous computations [6] for crystal
growth and Ostwald coarsening. The mass bal-
ance, dðS þ Cð1ÞÞ=dy ¼ 0; is always satisfied,

SðyÞ ¼ S0 þ C
ð1Þ
0 � Cð1ÞðyÞ, (2.17)

which can be substituted into Eq. (2.5) to give the
dimensionless equation for C;

qCðx; yÞ=qy

¼ ½S0 þ C
ð1Þ
0 � Cð1ÞðyÞ
½�xlCðx; yÞ

þ ðx� 1ÞlCðx� 1; yÞ
 � xl expðox�1=d
ÞCðx; yÞ

þ ðxþ 1Þl expðoðxþ 1Þ�1=d
ÞCðxþ 1; yÞ


þ Jdðx� x
Þ. ð2:18Þ

The critical nucleus size and Gibbs–Thomson
factor have the scaled forms

x
 ¼ ðod= ln SÞd and OðxÞ ¼ od=x
1=d . (2.19)
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3. Numerical solution

The problem of unsteady state nucleation,
growth, and coarsening requires a numerical
solution. Several numerical techniques have been
reviewed [37,38] and the most common method
that is used to solve PBE is the sectional method
[39], wherein particles are assigned to different
sections according to their volume. This method
was extended by other investigators [40,41] to a 2-
D sectional model in which agglomerate volume
increased through coagulation. However, due to
excessive computation time required for these
methods, a modified sectional model [42,43] was
developed, in which particles in each section were
assumed to have the same size. Faster computa-
tions can be also achieved using 1-D sectional
models [44,45], where it is assumed that the
primary particle size is identical in a section.
Recent computational methods such as the mov-
ing-sectional model [44] and fixed-sectional model
[46] have been developed which are accurate and
computationally efficient.
In this study, we use a numerical scheme similar

to that developed previously [6]. While this
computational technique may not be as computa-
tionally efficient as the techniques described above,
CPU time of only 2 h on a Compaq AlphaServer
ES40 is required to reach y ¼ 106; by which
time the asymptote is reached. The differential
Eq. (2.18) was solved by a Runge-Kutta technique
with an adaptive time step with Cðx; yÞ evaluated
sequentially at each time step. At each time step,
the mass balance (Eq. (2.17)) is verified to ensure
accuracy of the numerical scheme. The particle
moments were calculated by integration of the
nonzero PSD from the critical particle size, x
 to
1: Because Cðx; yÞ lies in the semi-infinite domain,
it was converted to a bounded range (0,1) by the
mapping function, x ¼ x
 þ ðCavg � x
Þy=ð1� yÞ:
When y varies from 0 to 1, x varies from x
 to 1:
By this mapping, when y is centered at 0.5, the
distribution is centered around CavgðyÞ and is
bounded at the lower end by x
: The choice of this
grid ensures that the mapping is fine in the range
of prevalent sizes and coarse at very high and very
low sizes. It is, therefore, possible to consider a
narrow PSD with a few hundred intervals to do
the numerical analysis. The mass variable (x) was
divided into 1000 intervals and the adaptive time
(y) step varied from 0.001 to 0.1 ensuring stability
and accuracy at all values of the parameters.
In the first step of the numerical routine, the

concentration of all particles is zero and nuclei are
generated at their critical size. The first terms on
the right-hand sides of Eq. (2.18) are zero, so that
the decrease of S and the increase of Cðx ¼ x
; yÞ
can be determined. In the second step, the critical
nucleus size has grown owing to the reduced value
of S, but the particles evolving from the initial
nuclei have also grown because of monomer
deposition. All terms in Eq. (2.18) contribute to
the computation. At each step of the iteration,
particles smaller than the critical size instanta-
neously denucleate and transfer their mass to the
uncondensed phase, an assumption that has been
demonstrated by computations to be valid [16].
The choice of parameters is based in part on

example calculations for water vapor nucleation
[36] at 273K where o ¼ 6:18; and so we illustrate
computations for o ¼ 4–6. Values of initial super-
saturation, S0; influence the results significantly,
such that S0 ¼ 10; 50, and 100 show good visual
separation of the curves in our illustrative results.
Because J depends exponentially on �W*/kBT, a
slight increase in S causes a huge increase in the
classical nucleation rate [36]. By contrast, the value
of a in the prefactor influences J only linearly and,
therefore, it is chosen to span two orders of
magnitude, 0.01, 0.1, and 1.0. The remaining
parameter that affects the computations is the
power on mass in rate coefficient expressions and
we choose l ¼ 0; 1

3
; and 2

3
; representing size-

independent, diffusion-controlled and surface-con-
trolled processes.
4. Results

As described above, the PSDs broaden initially
and then narrow as coarsening occurs. The generic
temporal behavior of supersaturation, SðyÞ; and
Gibbs–Thomson factor, eOðyÞ; shows that both
approach unity at long times with their difference
being the driving force. The effects of entropy and
energy driving forces in nucleation are governed
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by the prefactor, J0 ¼ aS2; and the scaled ex-
ponential, exp[�W/kBT] ¼ exp[�od(lnS)1�d/(d�1)],
respectively, which are in turn related to a; o; and S:
As J is the time derivative of the particle number
concentration [29], the transition time between
nucleation-growth and coarsening occurs when
Cð0Þ is maximum.
The influence of four parameters, o; S0; a; and

l; on the time evolution of the PSD (or its
moments) was determined. Figs. 2–5 show the
effects of changing o; S0; a; and l; respectively.
The time when particle generation (nucleation)
becomes particle loss (denucleation) is the princi-
pal marker in the transition from nucleation-
growth to coarsening. The turnaround time occurs
when Cð0ÞðyÞ is maximum and hence J ¼ 0: The
number density maxima determine when max-
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Fig. 2. Effect of o on time dependence of (a) number

concentration Cð0Þ and (b) number average particle mass Cavg:
Parameter values are S0 ¼ 50; a ¼ 0:1; and l ¼ 0: The dotted
lines represent the cases for 3-D.
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Fig. 3. Effect of the initial supersaturation S0 on time

dependence of number concentration Cð0Þ and number average

particle mass Cavg: Parameter values are o ¼ 5; a ¼ 0:1; and
l ¼ 0: The dotted lines represent the cases for 3-D.
imum curvature appears for the average mass and
polydispersity index (Figs. 2–5).
A significant parameter controlling precipitate

evolution is the interfacial energy, which influences
both the nucleation rate (Eq. (2.14)) and critical
nucleus size (Eq. (2.19)). In addition, interfacial
energy also influences growth through the capil-
larity effect and drives the coarsening process. Fig.
2 shows the effect of o on particle nucleation,
growth, and coarsening. It can be seen that
changing the interfacial energy has a marked
effect on the shape of the number density
evolution curves (Fig. 2a). At low interfacial
energy values, there is no plateau when the number
density reaches a constant. While an overlap
between nucleation, growth, and coarsening al-
ways occurs, at low interfacial energies, the
addition of new particles by nucleation effectively
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Fig. 5. Effect of the exponent l on time dependence of number
concentration Cð0Þ and number average particle mass Cavg:
Parameter values are o ¼ 5; S0 ¼ 50; and a ¼ 0:1: The dotted
lines represent the cases for 3-D.
ceases, and coarsening causes dissolution of the
smallest particles, reducing the number density. A
steady-state number density is, therefore, never
obtained during precipitation at low interfacial
energies. At higher interfacial energies, a plateau
appears wherein the number density is nearly
constant for some time. This corresponds to a case
where there is a delay between the time at which
the nucleation rate is nearly zero and the onset of a
reduction in number density due to coarsening.
The plateau is an extended time over which the
mean particle radius increases while the critical
radius increases slowly. When the interfacial
energy is lowered, this plateau period is consider-
ably reduced. Because the nucleation rate depends
on the square of the supersaturation but depends
exponentially on the interfacial energy, a small
solute depletion results in a rapid reduction in the
nucleation rate when the interfacial energy is high
but there is still sufficient solute left for growth of
all the precipitates. When the interfacial energy of
the particle is low, however, a greater level of
solute depletion can be tolerated before the rate of
nucleation becomes negligible.
Supersaturation is an important parameter that

determines the driving force for precipitation, and
hence the nucleation and growth rates. Fig. 3
depicts how three values of initial supersaturation
influence the process. In addition to a change in
kinetics, a change in supersaturation changes the
shape of the number density versus time plot. For
low supersaturations, a plateau occurs at the
maximum number density when there is no over-
lap between nucleation and coarsening. As the



ARTICLE IN PRESS

1

100

1000
2/3

10 100 1000 10000 100000

C
av

g

θ

1/3

(b)

λ=0

1 10 100 1000 10000 100000
θ

0.1

1

b=−6/7

(a)

2/3
1/3

b=−2/3

b=−3/4b=−6/5

C
(0

)
λ=0

Fig. 6. Time evolution of the (a) particle number density,

Cð0ÞðyÞ; and (b) average particle size, CavgðyÞ; showing

asymptotic power-law decrease with time for various l: The
parameters used in the calculations are o ¼ 5; S0 ¼ 5; with
C
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avg
0 ¼ 75: The

dashed line represents the case for 3-D. The dotted lines

represent the asymptotic slopes given by b ¼ (1�l+1/d).
supersaturation is increased, the plateau disap-
pears when nucleation and coarsening start to
overlap. Classical homogeneous nucleation is
opposed by substantial denucleation, so that the
overall nucleation rate is reduced. This occurs
because as supersaturation declines, the critical
nucleus size (Eq. (2.19)) increases faster than the
particles growth. This is like the effect observed
when the interfacial energy is increased and has
similar origins. Nucleation is more sensitive to
supersaturation than its growth. If the initial
supersaturation is small, then even a small reduc-
tion in the solute level is sufficient to cause
nucleation to become negligible. The coarsening,
however, has not begun because many particles are
below the critical size and there is no overlap of
nucleation and coarsening. At large supersatura-
tions, a significant nucleation rate is maintained
even when a substantial proportion of the solute
has been precipitated. This causes the critical
radius to increase above the smallest particle size
and coarsening begins, leading to an overlap of
nucleation and coarsening. The effect of super-
saturation and interfacial energies on the transi-
tion from nucleation to coarsening is consistent
with the modified KWN model [18].
Fig. 4 shows the influence of prefactor a on the

evolution of crystal size distribution. Homoge-
neous nucleation increases proportionately with a;
producing the expected effects on the evolution of
number and average particle size. According to
our computations, the maximum can occur over a
rather large time interval, thus separating the two
stages from each other, as mentioned above. This
explains why the onset of coarsening can be
delayed significantly, and is therefore safely
ignored for many precipitation or crystallization
processes.
Fig. 5 shows how different values of l determine

the coarsening mode. Thus, l ¼ 0; 1
3
; or 2

3
represent

size-independent, diffusion-controlled, and sur-
face-controlled coarsening, respectively, which
shows that the onset of denucleation occurs sooner
as l increases.
Next, let us consider the effect of heterogeneous

nucleation to show the asymptotic behavior. In the
model, we assume that the critical size is the same
for both homogeneous and heterogeneous nuclea-
tion. However, due to the shape factor, the volume
of the critical nucleus will depend on the wetting
angle and can be smaller for heterogeneous
nucleation. We take o ¼ S0 ¼ 5 and assume initial
conditions such that the dimensionless zeroth
moment C

ð0Þ
0 ¼ 1 and the initial average particle

mass C
avg
0 ¼ 75: Figs. 6a and b show the time

evolution of the particle number concentration
and average particle mass for various values of l
for 2- and 3-D systems for an initial delta
distribution. The log–log plots indicate power-
law decrease, C(0)

�y�b, and increase, Cavg
�y b,

with time. The polydispersity (not shown) always
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approaches unity. It is obvious that the increase in
average particle mass is caused by the decrease in
number of particles. The power b approaches the
long-time asymptotic value given by (1�l+1/d)�1,
where d is the dimension. For l ¼ 0; the value of b

is 2
3
and 3

4
for 2- and 3-D, respectively. Experi-

mental techniques such as scanning tunneling
microscopy (STM) and low-energy electron micro-
scopy have been used to determine the asymptotic
slope during the coarsening of homoepitaxial
systems like Si(0 0 1) [47], Ag(1 1 1) [48], Ni(1 0 0)
[49], and TiN(1 0 0) and TiN(1 1 1) [50], for which
the clusters are one atom high islands. Asymptotic
slopes of �2

3
and �1 were obtained for the decay of

islands of TiN(0 0 1) and TiN(1 1 1), respectively.
This is consistent with the asymptote predicted by
our theory with l ¼ 0 and 1

2
:

Thus, the coarsening stage exhibits asymptotic
power-law time dependence of the particle number
concentration and average mass, with the poly-
dispersity always approaching unity. The asymp-
totic analysis demonstrates that the long-time
behavior is independent of the assumed values
for initial number concentration C

ð0Þ
0 ; initial

average particle mass C
avg
0 ; initial supersaturation

S0; and also o and a:
5. Conclusion

The temporal evolution of the PSD or its
moments and of the supersaturation driving force
is represented by a distribution kinetics approach
based on PBEs for the particles and uncondensed
monomer. Coarsening is accounted directly in the
model. As the supersaturation decreases, the
critical size of the particle increases and the driving
force for growth decreases. The governing equa-
tions are solved numerically and it is shown that
the transition from nucleation and growth to
coarsening occurs over a relatively long time
period. The previously reported overlap of nuclea-
tion, growth, and coarsening is confirmed by
present results.
Four dimensionless parameters determine the

evolution of a metastable uncondensed phase: the
initial supersaturation S0; the ratio of interfacial to
thermal energy o; the power on the rate coeffi-
cients l; and the preexponential or frequency
factor for nucleation a: The important quantity
x
 is the critical (or stable) size of a particle in units
of the monomer mass. Particles smaller than x
 are
unstable and hence vanish spontaneously. The
reason that metastable phases can exist is that an
energy barrier must be surmounted for particles to
become stable and hence to grow by monomer
deposition. Homogeneous nucleation theory pre-
scribes the rate of formation of stable nuclei of size
x
: Coarsening exhibits asymptotic power-law time
dependence for decrease in particle number density
and increase in average particle mass. The
asymptotic coarsening stage shows a power-law
increase in average particle mass as the PSD
evolves to a delta distribution with zero variance
for both 2- and 3-D phase transitions.
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