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The combined effect of forced and free convecticn on the unsteady laminar
incompressible boundary-layer flow of a thermo-micropolar fluid over a semi-
infinite vertical plate has been studied when the free-strem velocity, surface
mass transfer and wall temperature vary arbitrarily with time, The partial
differential equations with three independent variables governing the flow
have been solved using quasilinearization in combination with an implicit
finite-difference scheme. The results indicate that the buoyancy para-
meter, coupling parameter, mass transfer and unsteadiness in the free-stream
velocity strongly affect the skin friction, microrotation gradient and heat
transfer whereas the effect of microrotation parameter on the skin friction
and heat transfer is rather weak, but microrotation gradient is strongly
affected by it. The heat transfer is strongly dependent on the Prandtl
number, the dissipation parameter and the variation of the wall temperature
with time whereas the skin friction and microrotation gradient are weakly
dependent on it. The buoyancy parameter causes an overshoot in the velocity
profile. The magnitude of the velocity overshoot increases as the buoyancy
parameter increases and it decreases as time increases.

1. INTRODUCTION -

When the velocity of the fluid is small and the temperature difference between
the surface and ambient fluid is large than the buoyancy effects on forced convective
beat-transfer become important. The combined effect of forced and free convection
over a heated vertical plate for Newtonian fluid has been studied by several investi-
gatorsi-4, The flow and heat transfer behaviour of Polymeric fluids, colloidal fluids,
real fluid with suspensions, liquid crystals and animal blood cannot be explained on
the basis of Newtonian and non-Newtonian fluid theory. The theory of micropolar
and thermomicropolar fluids was introduced by Eringen®*. An excellent review of the
micropolar theory is given by Ariman ef al.®=%. Several investigators'®'* have studied
the steady forced or free convection boundary-layer flow for micropolar fluids,
Recently, Jena and Mathur!® have studied the steady mixed convection laminar
boundary-layer flow of a micropolar fluid from a vertical plate without dissipation
effects. It may be noted that the unsteady mixed convection flow over a vertical plate
in a micropolar fluid has not been studied so far,
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We have investigated the unsteady laminar incompressible boundary-layer flow
of a micropolar fluid over a vertical flat plate when the free-stream velocity, mass
transfer and the wall temperature vary arbitrarily with time. The effects of the surface
mass transfer which varies arbitrarily with time, viscous dissipation and the Prandtl
number have also been taken into account. The partial differential equations with
three independent variables governing the flow have been solved numerically using a
quasilinear finite-difference scheme. The results have been compared with Oosthuizen
and Hart®, Gryzagoridis* and Jena and Mathur?’,

2. GoverNING EqQuATIONS

We consider the unsteady laminar incompressible boundary-layer flow of a
thermomicropolar fluid past a vertical plate under the combined effect of forced and
free convection. It has been assumed that the free-stream fluid temperature remains
constant and the free-stream velocity, surface mass transfer and the wall temperature

vary with time. Under the foregoing assumptions, the equations governing the flow
can be written as®'7'19-18

U + vy =0 ...(1a)

u, + uux + Vuy = (ue)t + [(P‘ + kl])/P] Uyy + (kllp) Ny + gB (T - TOO)
.. (1b)

Ny 4+ uN: + vN, = (‘{/Pj) Nyy —~ (kllpj) [2N + "y] .-.(rlc)

T: + uTx + vy = Pr-* (u[p) Tyy + (a:fPc,) [TxNy —TyNx]
+ (1pes) [+ D) 0+ 26 (N + w2y
+ym]. . (1d)

The relevant initial and boundary conditions are

...(2a)
Ny 0 =Ny, T(xy0 =Ty )
u(x,0,1) =0,v(x,0,1) = v, (t) 1!
N(x 0,1)=0,T(x,0,1) = T, (1) g ...(2b)
ux, o0, 1) =u(x, 1), N(x,00,1) = 0, T(x, 00,t)=Tc, . J

Here x and y are the distances along and perpendicular to the surface, respecti-
vely; tis the time; u and v are the velocity components in the x and y directions,
respectively; N is the component of microrotation whose direction of rotations is in
the x — y plane; g is the acceleration due to gravity; P and T are the density and
temperature of the fluid; p, k; and y are the viscosity, vortex viscosity and spin
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gradient viscosity, respectively; B is the coefficient of thermal expansion; ai is the
micropolar heat conduction coefficient; ¢, is the specific heat of the fluid at constant
pressure; j is the micro-inertia density; the subscripts f, x and y denote derivatives
with respect to #, x and y, respectively; and the subscripts e and w denote conditions
at the edge of the boundary layer and on the surface, respectively. The subscript i
denotes values at the initial time ¢ = 0 and T, is a constant.

It may be remarked that we have assumed that the microrotation N is equal to
zero on the boundary. The justification for using such a boundary condition is given in
detail by Kirwan Jr'®. Here the free-stream velocity #. which vary with time can be
expressed in the form

Ue = Ugy @ (1Y), t* = Uy, 2/L. ...(3)

¢ is an arbitrary function of the time t* representing the nature of unsteadiness in the
external stream and has a continuous first derivative for t* = 0,

On applying the transformations

N = (oo [2VEL) ]’ y,§ =%, % = x[L } .(42)
$ = (2wue & L)' f(E, 1*) 9 (*)
u=uF,f = F, u = uy, o(t*% ]
v = —(lgo RELY 2 @ [ f + 28 fz — MF]
N = [ud, 2E/(VL)}% s l> ...(4b)
(T =TTy — Teo) = G
(Tw — Too)[(Two — Tew) = G @, (1¥) )

" ]
f=1Fin+fufo=4Br '> 40
A = —(nfuey) (Rer/)', Re = ug Lis |

to (1), we find that (1a) is satisfied identically and (1b—d) reduce to
A+ N)F + ofF + 2%[¢ @* (1 — F) — F*] + 28 97 [N + AG]

= 28 ¢ [FFs — f3 F'] ...(5a)
Nss" + Nyglfs’ —sF]— N1 [45 s + ¢ F'] — 2E N, s*
= 26 @ N, [Fsz — fe 5] ...(5b)

PrrG" + ¢ fG +25a[sGg — 535G’} — « sG' + Br{1 + N,J2] ¢* F?
+ 2N;Br[28 s + o F'[2] + 2E N,Brs'* — 2E G,*
= 2§ ¢ [FG: — fe G'] - wf5¢)
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where
N, = kJp, Nz = (uo JL) (P jlu) WI
N; = (U IL) (YP[p?), « = (ay/pcp) (Moo L) !
|
A= Gr[Re} , Gr = g8 (Tuwy — Too) L? p?/ut l} (6
Br = uio /[Cp (Twn - Too)]. ]

Here £ and v are transformed coordinates; ¢* is the dimensionless time; uo, i8
the free-stream velocity at ¢* = 0; L is the length of the plate; v is the kinematic
viscosity; ¢ and f are the dimensional and dimensionless stream functions, respectively;
F(f"), s and G are the dimeasionless velocity, microrotation and temperature, respecti-
vely. The parameters Ny, N,, N;, « and Br are the coupling parameter, micro-intertia
density parameter, microrotation parameter, micropolar heat conduction parameter
and dissipation parameter, respectively; A is the buoyancy parameter; Gr is the
Grashof number; and Pr is the Prandt] number. f, is the surface mass transfer para-
meter. If the normal velocity at the wall v, is selected in such a manner that (vu/ueo)
(Rer/2)'? is a constant then the parameter 4 will be a constant. Hence the mass
transfer parameter f,, will vary according to (4c). A 2 0 according to whether there is
a suction or injection. The subscripts § and ¢* denote derivatives with respect to §

and ¥, respectively. The prime denotes derivatives with respect to .
The transformed boundary conditions are given by
F=0,5s=0G= taty =0
® () at } for 1* = 0. (D)
F—>1,5s-0,6G6->0 asn — oo

We assume that the flow is initially steady and then becomes unsteady for ¢* > 0.
Hence the initial conditions for F, s and G at t* = 0 are given by steady flow equa-
tions obtained by putting

(") =o: (1) =1, q>‘.==F.-——s,==G,=0 ..(8)

in (5) and also in (7) (for boundary conditions) and they are
(1 + N)F 4 fF' + 26[N;s' + A G] = 28[FFg — fsF] ...(9a)
Nss” + Ny[fs' — sF] — N, [4Es + F'} = 26 N, [Fsz — fs 5] ...(9b)
Pr-'G" + fG + 28+ [s'Gz — 5:G'] — ¢ sG' + Br[t 4+ N,J2] F**

+ 2N, Br[2%s 4+ F|2P + 2E N; Brs® = 2E[FGg — f:G'].
...(9¢)

It may be remarked that the steady-state equations (9 (a)—(c)) reduce to that of
Jena and Mathur'® if we replace 2§ N,s‘ by N,s’ in equation 9(a), — NysF by N,sF and
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—N, [4ks + F'] by —2EN; [25 + F']in equation 9(b) and put « = Br = 0 in equation
9(c). The equations 9(a)—(c) also reduce to those of mixed convection for Newtonian
fluids which have been studied by Oosthuizen and Hart® and Gryzagoridis* if we put
N: = 0 and replace 2EA G by A G in 9(a), consequently, s = 0 and equation 9(b)
becomes superfluous.

The skin-friction coefficient at the wall is given by
Cr=20flP@’), 1=QCReH(1 4+ N)oF! ...{(10a)
f =0

where
Tw = [(p + k) uy + ky N}y ...(10b)

The heat-transfer coefficient in terms of Nusselt number is given by
Nu = 2xquflk: (Two — Two)] = (2Rex)'2 G, \ ..(11a)

where
gw = [ke Ty + Bc Nalymo. ...{11b)

The couple stress coeflicient is expressed in the form
M = m,[lp (u )', x] = (Rex)™ N3 s, ...(12a)
-0

where
my = v (Ny)y—op. ...(12b)

Here Cf, Nu and M are, respectively, the skin-friction coefficient, Nusselt number and
couple stress coefficient; Tw, g» and m, are, respectively, the shear stress, heat-transfer
rate and couple stress at the wall; f. is the heat conduction parameter and k. is the
thermal conductivity.

3. RESULTS AND DIsCcussioN

The equations (5a)—(5c) under boundary conditions (7) and initial conditions (9)
have been solved numerically using an implicit finite-difference scheme with a quasi-
linearization technique. Since the detailed description of the method is given in
Bellman and Kalaba'” and Inouye and Tate's, its description is not repeated here.
Computations have been a carried out for various values of the parameters
A(—~025<A<20), Nq(OSE N, £ 135), Ns (0SEK N, < 45, 4(—05€ 4
< 0.5), Pr (0.7 € Pr7.0) and Br (~0.2 £ Br< 0.2) with N,=1.0,a =1.0,¢ = 0.2,
¢ =01, ¢ =01 and »* = 56. The unsteady free-stream velocity and wall
temperature distributions considered here are given by

@ (%) =14 e*2, @ (1*) = 1 + € sin? (w® %), @, (1¥) = | + ¢, t*
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where ¢, ¢; and ¢, are constants and «»* is the frequency parameter. The effect of step
sizes in v, £ and t* directions and the edge of the boundary layer 7., on the solution
have been studied with a view to optimize them. Finally, the computations were
carried out with An == 0,02, AE = 0.05, Ar* = 0.1 and v, has been taken between
4 and 8 depending upon the values of the parameters. The results presented here
found to be independent of the step size Ay, AE, At* and the edge of the boundary
layer 7. at least up to 4th decimal place.

In order to asses the accurancy of method, we have compared our Nusselt
number results for Newtonian fluids (N, = 0) with those of Oosthuizen and Hart® and
Gryzagoridis*. We have also compared our skin-friction and heat-transfer results for
micropolar fluids (N, > 0) for steady flow (t* = 0) with those of Jena and Mathur'®,
In both the cases, the results are found to be in good agreement and the comparison
is shown in Figs. | and 2.

0.8

0 il L i )
0 2.0 4.0 6.0 8.0 10.0
A

—~1/3

Fic. 1. Comparison of heat-transfer coefficient Nu Rez fore(t*) =1.0, ¢, (") = 1. 0, N,

= Ny= N3 =8=A=P8r=0. ————, present method; 0, Oosthuizen and Hart; A,
Gryzagoridis.

The results for the case ¢ (1*) = 1 + ¢ t*3, ¢ > O (accelerating flow) are given
in Figs. 3-6 and those for the case ¢ (t*) = 1 + ¢, sin® («* ¢*) (fluctating flow) in
Fig. 7.

The effect of buoyancy parameter A, mass transfer parameter 4, Prandtl number
Pr, coupling parameter N, microrotation parameter Nj, variation of wall temperature
with time o, (¢*), distance £ and dissipation parameter Br on the skin-friction, micro-

rotation-gradient and heat-transfer parameters (F, , — s, , — G,) are shown in
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Fi1G. 2. Comparison of skin-friction parameter Fw and heat-transfer parameter — G:a for ¢ (¢%)

=10, ¢, (t*) = 1.0, Ny = 0.1, N3 = 0,02, Pr = 9.0, 4 = 0.0, « = 0.0, Br = 0.0. ———,
A= 0; ———, A = 4; @, Jena and Mathur.

Figs. 3-5. Figures 6(a)—(c) depict the effect of buoyancy parameter A on velocity,
microrotation and temperature profiles.

The results indicate that the skin-friction parameter F increases with time t* for
A < 0 and decreases with it for A > 0 whereas the microrotation-gradient parameter

—s,, increases with ¢* for values of A [see Figs. 3(a)<(b)]. For A < 0, the heat-transfer
parameter —G, increases with £* but for A > 0 it increases only after certain value of
t* [Fig. 3(c)]. It has also been observed that for all ¢*, the parameters F,, —s, and

—@,, increase as A increases. Similar behaviour has also been observed by Jena and

Mathur’® for steady case (t* = 0). This is due to the fact that the buoyancy force
(2 > 0) gives rise to favourable pressure gradient which accelerates the fluid in the
boundary layer and thereby increases the skin-friction, microrotation-gradient and
heat-transfer parameters. The skin-friction, microrotation-gradient and heat-transfer

parameters (F, , —s, , —G, ) are reduced due to injection (4 < 0) whatever may be

the value of #* and the effect of suction (4 > 0) is just the opposite. This is because
injection increases the momentum, microrotation and thermal boundary layer thick-
nesses which cause deceleration in the fluid and suction does the opposite. Figures

3(a)-(b) also show that the skin-friction parameter F, and microrotation-gradient
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FiG. 3 (a) Skin-friction parameter Fp Fic. 3. (b) microrotation-gradient parameter—s,,

4 i
o.zo 1.0 2.0 0
‘Q

F10. 3 (c) Heat-transfer parameter —G; fore(t*) =1 + €t*2, 9, (t*) = 1.0, N; = 1.5, N3 = 15,

Br=00,§=05 ——— A=~05, Pr=07, —————e—— A =00, Pr=07T,
ey, A = 0.5, Pr = 0.7, ——0O——, 4 = 0.0; Pr=3.0—— A ~—, 4=0.0,
Pr=10.
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parameter —s, decrease as Prandtl number Pr increases. Similar behaviour has also been

observed by Wilks®. On the other hand, the heat-transfer parameter ~ G/, is found to

increase with Pr (see Fig. 3(c)), because a large Prandtl number results in a thinner
boundary layer with a corresponding large temperature at the wall and hence a large
surface heat transfer. It has also been observed that the effect of Pr on the parameters

F, and —s, is less as compared to the parameter ~ G, .

Figures 4(a)-(c) show that any time ¢*, the skin-friction, microrotation-gradient
and heat-transfer parameters (F, ,s, , —G, ) decrease as the coupling parameter N,

increases. Similar behaviour has also been observed by other investigators'?’12°, The
cause of this reduction is due to the thickening of momentum, microrotation and
thermal boundary layers due to in the parameter N, which in turn decelerates the fluid

in the boundary layer. As N, increases, the parameters F,,, —s!, and —G,, decrease
whatever may be the value of #*. It has also been observed from Figs. 4(a)-(c) that

for £ = 0, the parameters F,, —s, and — G, increase as time ¢* increases from 0 to
3.0 but for § > 0, F, decreases with t* and —s,, and —G, increase with it. We have

also observed that as § increases, the parameters F, and —G, increase for A > 0 and
they decrease for A « 0. Similar trend has been observed by Jena and Mathur’® also.
It is also clear from these figures that the parameters F, , —s, and —G/ increase with
the variation of the wall temperature with t*. However, the heat-transfer parameter
~G,, strongly affected by the variation of the wall temperature with 1* whereas its effect

on F, and —s/, is rather weak.

The effect of dissipation parameter Br on the parameters F, , —s;, and -G, is
depicted in Fig. 5. This figure show that the parameters F, and —s, increase as Br
increases whereas the parameter — G, decreases with it. This behaviour is independent
of the value of t*. For all values of Br, F, decreases with 1* (after certain r*) whereas

—s,, increases with it. As 1* increases, the parameter —G,, increases for Br € 0 and
decreases for Br > 0. It has also beeen observed that the effect of Br is more pro-
nounced on the parameter — G, than on the parameters F, and ~s., .

The effect of A on the velocity, microrotation and temperature is shown in Figs.
6(a)-(c). Figure 6(a) shows that there is a velocity overshoot in F for buoyancy assisted
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F1G. 4. (c) Heattransfer parameter —G:a for ¢ (t*) = 1 + et*%, Pr =0.7, A=0.0, » =5.0, Br=0.0.
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Fi1G. 5. Skin-friction parameter Fu', , microrotation-gradient parameter -s;a and heat-transfer

parameter —G,, for ¢ (#*) =1 + e1*?, 9, (t*) = 1.0, Ny =15, Nz =15, 4 =00,

=350 Pr=07% =05 ————, Br=00, —————, Br==02; ————,
Br = 0.2.

fiow (A > 0), and;the velocity overshoot increses as A increases. However it decreases
as t* increases. There is no velocity overshoot either for purely forced flow (A = 0)
or buoyancy opposed flow (A < 0). The velocity overshoot is because buoyancy force
(A > 0) gives rise to a favourable pressure gradient resulting in velocity which adds to
the forced convection velocity. The buoyancy opposed flow (A < 0) gives to adverse

15 T T T T
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[} 1.0 20 30 4.0 5.0
3

FiG. 6. (a) Velocity profile in the x direction F.
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pressure gradient which reduces the forced convection velocity. As the combined
effect of buoyancy force A > 0 and forced convection force decrease with time which
results in reduction in velocity overshoot with time.

The microrotation profile —s and the temperature profile G are shown in Figs.
6(b)~(c). It is observed that the profiles —s and G are significantly affected by the
parameter A and the effect becomes more pronounced as time f* increases. The
profiles —s and G become more steep as t* and A increase.

T 1

1.0 T T - -1 !
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FI6. 6. (c) Temperature profile Gfor ¢ (¢*) = 1 + et*%, ¢, (1*) = 1.0; N; = 1.5, N2 = 1.5,
Pr=0.7, 4 =00, Br = 00, € =05, ———-—, t* = 0.0; ———.———, t* = 1.0;

—— ¥ = 2.0,



500 MAHESH KUMARI
The skin-friction, microrotation-gradient and heat-transfer parameters (F, , —s,,,

—G., ) for oscillatory free-stream velocity ¢ (1*) = 1 + ¢, sin® («* t*) are shown in

3.0 T T

'
o~ - ~Fu o~ _ -
\ , N4 N7 N ~N_”

|
w
%

w? ~Sw)

o =

@, 0
T
3l
1

0.6 2 ) ~Sw .

0.4 i i

0 10 o 2.0 3.0

Fig. 7. Skin-friction parameter Ft; , microrotation-gradient parameter —s"o and heat-transfer

parameter — G, for ¢ (t*) = 1 + ¢;sin? (w* %), 9, (t*) = 1.0, N, = 1.5, N; = 1.5,
Pr=07 A4=100,%=50 Br=00. ————, £ = 0.5 ———— £ = 1.0.

Fig. 7. It is clear from this figure that the parameters F,, , —s, and —G,, oscillate

as time #* increases but the oscillations are more for large E.

4. CONCLUSIONS

The skin friction, microrotation gradient and heat transfer are strongly dependent
on the buoyancy parameter, coupling parameter, mass transfer and unsteadiness in
free-stream velocity. The effect of microrotation parameter on microrotation gradient
is appreciable whereas its effect on skin friction and heat transfer is comparatively
small. The Prandtl number, dissipation parameter and the variation of the wall
temperature with time affect the heat transfer significantly whereas skin friction and
microrotation gradient are weakly affected by it. Buoyancy parameter induces over-



MICROPOLAR FLUIDS 501

shoot in the velocity profiles. The magnitude of the velocity overshoot increases as the
buoyancy parameter increases and it decreases as time increases.

ACKNOWLEDGEMENT
The author wishes to thank Professor G, Nath for many helpful suggestions.

REFERENCES

J.R. Lloyd, and E. M. Sparrow, Int. J. Heat Mass Transfer 13 (1970), 434.
G. Wilks, Int. J. Heat Mass Transfer 16 (1973), 1958.
. P. H. Oosthuizen and R. Hart, J. Heat Transfer 95 (1973), 60.
. J. Gryzagoridis, Int. J. Heat Mass Transfer 18 (1975), 911,
. A. C. FEringen, J, Math. Mech. 16 (1966), 1. .
. A. C. Eringen, in Contribution to Mechanics (ed.: D. Abir), Pergamon Press, New York,
1970, p. 23.
7. A.C. Eringen, J. Math. Anal. Appl. 38 (1972), 480.
8. T. Ariman, M. A. Turk and N. D. Sylvester, Int, J. Engng. Sci. 11 (1973), 905.
9. T. Ariman, M. A, Turk and N. D. Sylvester, Int. J. Engng. Sci. 12 (1974), 273.
10. G. Nath, Rheol. Acta. 14 (1975), 850.
11. G. Abmadi, Int. J Engng. Sci. 14 (1976), 639.
12. M. Balaram, and V. U. K. Sastry, Int. J. Heat Mass Transfer 16 (1973), 437.
13. S. K. Jena, and M. N. Mathur, Int. J. Engng. Sci. 19 (1981), 1431.
14. S. K. Jena, and M. N. Mathur, Acta Mechanica. 42 (1982), 227.
15. 8. K. Jena, and M. N. Mathur, Comp. Math. Appl, 10 (1984), 291.
16. A.D. Kirwan (Jr), Lett. Appl. Engng. Sci. 24 (1986), 1237.
17. R. E. Bellman, and and R. E. Kalaba, Quasilinearization and Non-linear Boundary Value Pro-
blems. Elsevier Publising Company, New York, 1965.
18. K. Inouye, and A. Tate, 4144 J. 12 (1974), 558.
19. P. S. Ramachandran, and M. N. Mathur, Acta Mechanica 36 (1980), 247.
20. R.S.R. Gorla, Int. J. Engng. Sci. 18 (1980), 611.

Wb

N L



