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The unsteady laminar incompressible two-dimensional and axisymmetric
stagnation-point flows over a moving wall with a magnetic field have been
studied when the free stream velocity and the wall velocity vary arbitrarily with
time. It has been shown that self-similar solution is possible when the free
stream velocity, the wall velocity and square of the magnetic field vary in-
versely as a linear function of time. The partial differential equations govern-
ing the semi-similar case and the ordinary differential equations governing
the self-similar case have been solved numerically usiog the finite-difference
scheme in combination with the quasilinearization technique. Analytical solu-
tions have also been obtained for certain limiting cases. The skin friction
and heat transfer are appreciably affected by the free stream velocity distribu-
tion, magnetic field and wall velocity. However, their effects on the heat tra-
nssfer is comparatively less compared to the skin friction.

1. INTRODUCTION

Flows over moving walls are of interest in a number of technical applications,
especially in metallurgy and chemical processes industries. Such flows belong toa
separate class of problems of boundary layer theory which is distinct from those over
stationary bodies. Sakiadis® was probably the first to study the flow over a moving
boundary in a fluid at rest. Subsequently, several investigators?~® considered the beha-
viour of boundary layer on moving surfaces under different situations. All these studies
pertain to steady flows. The unsteady flow over a moving wall with forced flow has
not been studied so far. However, the unsteady forced flow over a stationary wall has
been studied by Yang® when the free stream velocity varies inversely as a linear fun-
ction of time. Also, the unsteady flow over a moving wall in a fluid at rest has been
studied recently by Surma Devi and Nath?®,
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The aim of the present analysis is to study the unsteady laminar incompressible
forced flow over a moving boundary with an applied magnetic field when the free stream
velocity and the wall velocity vary arbitrarily with time. It has also been shown that
the self-similar solution is possible when the free stream velocity, wall velocity and the
square of the magnetic field vary inversely as a linear function of time. It may be noted
that here the wall is not moving as a rigid boundary as considered by Sakiadis?, but it
is stretched. The partial differential equations governing the semi-similar case and the
ordinary differential equations governing the self-similar case have been solved numeri-
cally using a finite-difference scheme in combination with the quasilinearization
technique'’!?, Also analytical solutions of certain limiting cases have been obtained.
The results have been compared with those available in the literature.

2. GoOVERNING EQUATIONS

We consider that a two-dimensional or an axisymmetric body is moving with
time-dependent velocity u, in a laminar incompressible fluid with free stream velocity
u. which also varies with time (see inset of Fig. 1). The fluid is assumed to be electri-
cally conducting and a magnetic field B fixed relative to the fluid is applied in the dire-
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Fic. 1. Comparison of skin-friction and heat-transfer results ( f; »— & ) for o (1*) =

14+t M=b=j)=0, Pr=1072, , Present results; 0, Kumari and Nath.
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ction perpendicular to the body. The magnetic Reynolds number is assumed to be
small, hence the induced magnetic field will be small compared to the applied magnetic
field and can be neglected. Since we are interested in the stagnation point region, the
viscous dissipation and Joule heating terms are neglected as they are small in the neigh-
bourhood of the stagnation point. The Hall effect is also neglected. The wall and
free srteam temperatures are taken to be constants. By assuming that Prandtl’s boun-
dary layers assumptions are valid in the present case, the governing equations can be
expressed as

(r')x + (r'v)y = 0 ...(1a)
ur Fusx + vity = (Ue)e + Ue (Ue)x -+ v ttyy + (6B [P) (1 — ufu.) ...(1b)
T: + uTy + vTy = Pr-tv Ty,. ...(1¢)

The initial and boundary conditions are given by

u (X, Y, 0) = U (x’ y)’ 14 (x’ Vs 0) = ¥ (xa y)’ T(-x) Vs 0) = ]} (x, y)
...(2a)
u(x,0,1) = u, (x,1),v(x,0,1) = 0, T(x,0,0) = T,, }

u (x, oo, 1) = UYe (x, t), T(X, oo, t) - Tv°° . ..(Zb)
2.1 Semi-similar Equations

In order to reduce the number of independent variables from 3 to 2 in eqns. (1a)
to (1c), we apply the following transformations

n=(1 4+ ) (av)'2y, u=axq (t*) f' (4, 1%),1* = at,
v=— (1 4+ D' @)2 o (t* f(n, t%), u, = a, x o (t*% }

ue = ax @ (1*), (T =T oo)[(Tw—Too) =g (n, 1*), r = x, M = Ha’/Re,_}

...(3a)

Hg® = oB2L%[x, Rer = al?ly, b = u,fu.
...(3b)
to eqns. (l1a) to (Ic), we find that eqn. (1a) is satisfied identically and eqns. (1b) to

(1c) reduce to
"+l + 0+ e —f) +ee, (1 —-f) — S
+M(1-f)=0. -..(4)
Prigitofg —(1+j)2g* =0 . (5)
The boundary conditions are given by

f=0,f'"mbg=1laty=0,



UNSTEADY LAMINAR BOUNDARY LAYER 789

The flow is initially assumed to be steady (#* = 0) and then changes to unsteady state
(¢t* > 0). Therefore, the initial conditions are given by the steady-state equations
obtained by putting

" =0p=1 f,=8s =94 =0 (7)
in eqns. (4) and (5) and the steady-state equations are

AT+ 0+ A= +MA~-f)=0 (8

Prlg"+ fg' =0, ; «.(9)

It may be noted that eqns. (4) and (5) contain two independent variables and are
known as semi-similar equations.

Here x and y are distances along and perpendicular to the surface, respectively;
u and v are the components of velocity along x and y directions, respectively: ¢ and 7*
are the dimensional and dimensionless times, respectively; T is the temperature: p and
v are the coefficient of viscosity and kinematic viscosity, respectively; 7 is the similarity
variable; f is the dimensionless stream function; f', g are the dimensionless velocity
and temperature, respectively; B is the magnetic field; ais the velocity gradient at
t* =0, r is the radius of the axisymmetric body; j = 0 and 1 for two-dimensional and
axisymmetric flows, respectively; M, Ha and Rer are the magnetic parameter, Hart-
mann number and Reynolds number, respectively; a, is the gradient of the wall velocity
at t* = 0; b is the ratio of the velocity of the wall and the free stream velocity (b= 0
according to whether the velocities of the wall and free stream are in the same direc-
tion or in opposite direction); o, Pr and L are respectively, electrical conductivity,
Prandtl number and charcteristic length. ¢ is an arbitrary function of ¢* having con-
tinuous first derivative for #* > 0. The subscript i denotes the initial conditions; the
subscripts e, w, and oo denote conditions at the edge of the boundary layer, on the
wall and in the free stream, respectively; the subscripts ¢, t*, x and y, denote partial
derivatives with respect to £, t*, x and y, respectively; and prime denotes derivatives
with respect to .

It may be noted that eqns. (4) and (5) forb = M = Oandj = 0 and 1 reduce
to equs. (3a) and (3¢) of Kumari and Nath'® withc = 0and 1 (¢ = 0 for a two-dimen-
sional flow and ¢ = 1 for an axisymmetric flow). Oureqns. (4) and (5) forj= 0
(two-dimensional flow) are identical to eqns. (3a) and (3¢) of Kumari and Nath!® with
¢ = 0. However, our eqns. (4) and (5) for j = 1 (axisymmetric flow) differ from eqns.
(3a) and (3c) of Kumari and Nath!® with ¢ = 1 by a scaling factor.

The skin friction and heat transfer coefficients can be expressed as

Cr=2p (4 )g] = 2 Re) o () f;, ]!
’ ...(10a)
)

»

Nu = x (@0TIey)ul(Tw — Too) = — (Rex)''* g,
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where

tw = p (uldy)w, Rex = axtlv, (u.) , = ax. ...(10b)
t -

Here C; and Nu are the surface skin friction coefficient and Nusselt number (heat
transfer coeﬂiciénts), respectively; 7. is the shear stress at the wall; /2 and —g, are
the skin friction and heat transfer parameters at the wall; Re.is the local Reynolds
number; and P is the density.

2.2. Self-similar Equations

The set of egns. (1a) to (Ic) is partial differential equations with three indepe-
ndent variables. It can be shown that if the free stream velocity and the wall velocity
vary inversely as a linear function of time and directly as a linear function of x (i.e.
e = ax {1 — M*)", u, = a, x (1 — Ar*)7?), and the magnetic field as a square root
of the linear function of time then eqns. (1a) to (1c) admit self-simllar solutions i. e.
they are reduced to a set of ordinary differential equations. We apply the following

transformations
N = (1 + )2 (@) (1 — M*)T12p, 1% = af, A < 1, 3
u=ax(1—a%)7 /(v = — (L +) (01— M) f), |
(T—Teo)] (To—Too)=g (1), B = By (1 = M*)™/%, M = Ha*[Rey, |
Ha* = ¢ B L*[p,ue = ax (1 — M*)7, uy = a, x (1 — At¥)72, {
...(11)
to eqns. (1a) to (Ic) and we find that eqn. (1a) is satisfied identically and eqns. (1b) to
(Ic) reduce to

"+ 7+ A+ A -+ A0 == )+ MU - f))=0.

. ..(12)
Prigi+ /g —(1+ )7 g2 = 0. ..(13)

The boundary conditions are
 f=0,f"=bg=1latn=0;f'—1=g=0as1 > oo, ...(14)

Here X is the parameter characterizing the unsteadiness in the flow field and B, is the
value of the magnetic field B at 1* = 0. A > < 0 according as the flow is accelerating
or decelerating. Also the magnetic field B is assumed to vary as the square root of a
linear function of time as given in (11) in order to obtain self-similar solution. In actual
practice, it may not be possible to create and maintain such a magnetic field. Inspite
of this weakness, the results may be used to gain some insight into the characteristics
of flow based on more realistic distribution of the magnetic field.
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It may be noted that the governing self-similar equations (12) and (13) with
boundary conditions (14) reduce to those of Yang® for M = b = j = 0. The self-simi-
lar solution implies that the solution at one value of time ¢ is similar to the solution at
any other value of time t. The advantage of the similarity solution is that the partial
differential equations reduce to ordinary differential which is a great mathematical
simplification. However, there are certain limitations to such solutions. The partial
differential equations do not impart their parabolic nature to the ordinary differential
equations on whose solution it is not possible to impose an arbitrary condition at an
initial time ¢ = #,, because the solution$ at all values of time f become equivalent.
Therefore, the self-similar solution can be considered as asymptotic and will be correct
in some limit ¢ — 1,.

The skin-friction and heat-transfer coefficients are given by
Cr=27 (Pul) =2 (1 + j)'/* (Rex) ' f4, Rex = we x|y |
t
e
Nu =xTy/(Ty — Too) = (1 + j)*:2 (Rex)!2 g‘: . Jl
3. SorLutioN ofF GOVERNING EQUATIONS

3.1. Asymptotic Solution

In this section, we consider the asymptotic behaviour of the governing equations
(12) and (13) (i. e. the behaviour of the equations when v becomes large). This will
enable us to find the range of values of A for which similarity solution is valid. For large
7 following the analysis of Watson and Wang'5, we set

S =n4+fi(m),gM@=g@. ...(16a)

From boundary conditions (14), it is evident that

Si=+0, fi »0,g,—>0asn — oo ...(16b)

where f, and g, are small. Now linearizing equations (12) and (13) using relations
given in eqn. (16a) and integrating the resulting equation corresponding to eqn. (12)
once and using the appropriate boundary conditions, we get !

fi +anf] —M(1+NTC+A+M)+alf,=0 ...(17a)
Proig’ + ang); =0,a=1-—2"1(1 + )t A ...(17b)

The solution of eqn. (17b) satisfying the relevant boundary condition given in (16b)
can be written in the form

g=&1=—-4A fexp (—Pra v*[2) dn | .. (18)
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where A is a constant. We apply the following transformation to equation (17a)

fi = exp (—x n*/4) H. ...(19)
Consequently, equation (17a) can be reduded to
H —[BR24+ 0 +DPQR+AMe+ M) + a2 9}l4] H=10 . (20)

where H — 0 as v —» oo, [Equation (20) is Weber’s type of equation whose solution
for large n can be written in terms of parabolic cylinder functions as'*

H = 4, exp (—a® n[4) (an)" P; (n) + B, exp («? 9*/4) (an)~""! P; (1)
...(21)

where

Pom) =1+ 21n(n+ 1) (ar)2 + O (@)™ +, ...},
n=—2-(14j)"Q2+ A4+ M)

P =0 —=2"n(m—1)(n)?+ 0 (@)*—, . ]
} 2D

Since H tends to zero as  — oo, the divergent part of the solution of H i. e. exp (a29?/
4) will be omitted. Hence from equations (19) aud (21) we find that

fi= d,exp[—a(x+ 1) 1%4] (« 9)" P, (v). .-(23)

It is clear from eqns. (18) and (23) that both g or g, and f, decay to zero exponentially
ifa>0i.e. 2 <2(1 + j). This fixes the upper limit of A. The lower limit of A is

given by that value of A (A < 0) for which the skin friction parameter % vanishes.

3.2. Analytical Solution

It may be remarked that it is not possible to obtain closed form solutions of
egns. (12) and (13) under conditions (14). However if b = 1, closed form solutions of
eqns. (12) and (13) satisfying conditions (14) can be obtained and they are expressed as

f=n
g=1—2 (a0 { exp (—a,m) dn ...(24b)
a, = (PrI2)[1 — 271 (1 + j)* AL ..(24¢)

Since we are interested in the closed form solution of eqn. (12) in the neighbourhood
of b = 1, we perturb f as

f=ntefs)+ 0@, c=1—b (25)
Linearizing eqn. (12) with the help of (25), we get

tanfi —(1+NDT2+A+ M ] =0 ...(26)
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The appropriate boundary conditions are

L0 =0, f, 0)=—1,f () =0 .27
We apply the following transformation

1, () = exp (—ox?/4) F(n) ...(28)

to eqn. (26) which then reduces to

F @2 + A+ D22+ A+ M) + «®n2/4] F=0. .(29)
The relevant boundary conditions are

F(0) = — 1, F (o0) = 0. ...(30)

It may be noted that eqn. (29) is Weber’s type of equation and its solution under con-
dition (30) can be expressed as

= — 2 _ q, 1 dznz)
F exp( “7),4)[11:1( 2’2, 2

—_ 2 w2
+ (B?IAz) o 1F1 ( 1 2 2 » %’9 “211 )]- ...(31.)
From eqns. (28) and (31), we get
1 2 L2
fi = - epl-s @+ DMLA (- 5. - )
— 2 nl
+ (Bz/Az)Oﬂ]lFi( . )] (2

where

- 3 - 3 . 2)2
+ 3.‘2.(28 D @ oy + ]J
...(33a)



794 . C. D. SURMA DEVI ET AL.

a=— @+ D2 =0 +D"Q4+A+M,a={1 -2 |

1+ )4, |

. 1l —a ’

a4, = A (57 ), B = 2P T(=11) ,'

1

I'(—af2). J
...(33b)

The shear stress at the wall is given by
. 2P M (e +3)+1A+ N2 H A+ M)}

FO="TFge+n+i0+0@+r+my - G

3.3. Numerical Solution

The partial differential equations (4) and (5) under boundary conditions (6) and
initial conditons (8) and (9) and the ordinary differential equations (12) and (13) under
boundary conditions (14) have been solved numerically using an implicit finite-difference
scheme in combination with the quasilinearization technigue. Since the detailed descri-
ption of the method is given eisewere'!’!?, it is not presented here. The effects of step
sizes Av and Ar* and the edge of the boundary layer v, on the solution have been
studied and optimum values of An, At* and 7. have been obtained. Consequently,
we have taken Ay = 0.05 and Ar* = 0.1 for computation. Also we have taken the
values of the edge of the boundary layer (n.,) between 4 and 8 depending on the
values of the parameters. The results presented here are independent of step sizes and
Moo at least up to 4th decimal place. For computation, the free stream velocity dis-
tributions have been taken to be of the form ¢ (#*) = 1 L ¢** ando (f) = (1 + ¢
cos o* t¥)/ (1 + ¢,), where € aed ¢, are constants and «* is the frequency parameter.
A typical case takes 15.2 seconds CPU time on DEC-1090 computer. For the self-
similar case where @ (#*) = (1 — Az*)™? a typical case takes 1.7 seconds CPU time.

4. RESULTS AND DISCUSSION

Computations have been carried out for various values of the parameters M, b, j
and A, However, the results are presented only for some representative values of these
parameters. Figs. 1 and 2 present the comparison with the results of the previous in-
vestigators. The results corresponding to the accelerating free stream velocity (o (#*)
= 1 +4¢€1*2, ¢ > 0) are presented in Figs. 3-6. The results corresponding to the flu-
ctuating free stream velocity (@ (t*) = [1 + ¢, cos w* t*}/(1 + ¢)) are given in Fig. 7.
The results for the self-similar case (p (1*) = (1 — Ar*)!) are shown in Figs. 8-11.

In order to assess the accuracy of our method, we have compared our skin-fri-

ction and heat-transfer results (f; > — &, ) for both accelerating flow (p (£*) =1+41%)

and fluctuating flow (p(t*) =14 €, sin® (o* 1*) for M = b = j = 0 with the corres-
ponding reults of Kumari and Nath'? and found them in excellent agreement. However,
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Fig. 5. Skin-friction and heat-transfer parameters (f; »— g;, )for ¢ (t*) = 1 + €1*%,e=0.25,

M=0,j=1, Pr=073. ,f:’o; ...... ,-—g;,
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for the sake of brevity, the comparison is given only for ¢ (t*) = 1 + ¢* in Fig. 1. We

have also compared our skin-friction and heat transfer results ( fr,-g ) for the
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self-similar flow for M= b = j = 0 with those of Yang® and they were also found to
be in excellent agreement. The comparison is shown in Fig. 2.

The effect of the magnetic parameter M and time 7* on the skin friction and heat-
transfer parameters ( fi.—g, ) is shown in Figs. 3-4. For a given time 1*, the skin-

friction and heat-transfer parameter (f,; y — &, ) increase as M increases. Howevers,
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the effect of M is more pronounced on the skin friction ( f: ) than on the heat trans-
fer ( - g, ) because the magnetic term explicitly occurs only in the momentum equ-

ation. Similarly, for a given M, both f, and — g, increase with time ¢*, but the
effect is more pronounced for * > 1. If the free stream velocity distribution is taken
to be decelerating with time (¢ (f*) =1 — ¢ ¢**, ¢ > 0, then f; and — g, decrease

as #* increases. However, for the sake of brevity, the results for ¢ (t*) = 1 — e 1*2,
€ > 0 are not presented here.

The effect of wall velocity b on the skin friction and heat transfer ( fo,—8, )

is presented in Fig. 5. The skin friction is found to decrease as b increases, but the heat
transfer increases. This is true for all values of M and ¢*. This is due to the fact that
as b — 1 (1, - u.), the fluid tends to be inviscid. This causes considerable reduction
in the skin friction as & — 1. On the other hand, the difference between the wall tem-

perature and free stream temperature (T, — T, ) increases which results in increase in
heat transfer.

The effect of the magnetic parameter M and time t* on the velocity and tempa-
rature profiles (f,’g) is shown in Fig. 6. The velocity and temparature profiles (1, g)
become more steep as M or t* increases, because of the reduction in the momentum
and thermal boundary layer thicknesses. Also for a given M or t*, the thermal boun-
dary layer thickness, is more than the momentum boundary layer thickness.

The skin-friction and heat-transfer parameters ( fo,— 8, ) for the oscillatory
free stream velocity given by ¢ (t*)=(1 + ¢, cos (w* ¢*)/(1 +¢,) are given in Fig. 7. Itis
observed that the skin friction| f ) responds more to the fluctuations of the free stream

as compared to the heat transfer ( -8, ), because the skin friction parameter is dire-

ctly proportional to the velocity gradient which is influenced more by the free stream
velocity as compared to the temperature gradient.

As mentioned earlier, the results for the self-similar flow have been presented in
Figs. 8-11, The effects of the magnetic parameter M and the unsteady parameter A on

the skin friction and heat transfer parameter ( . — &, ) are shown in Fig. 8. The
skin friction parameter (f; ) increases as the magnetic parameter M or un-

steady parameter A increases. However the heat transfer parameter ( - g;) incre-

ases as M increases, but it decreases as A increases. The reason for such a behaviour
is that both momentum and thermal boundary layer thicknesses decrease as M incresses,
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but as A increases momentum boundary layer thickness decreases and thermal boundary
layer thickness increases.

The effect of the velocity of the moving wall b on the skin friction and heat trans-
fer parameters (fw' y — &, ) is shown in Fig. 9. It also contains the skin frction

results obtained analytically for b = 1 (see eqn. (34)). The analytical result is found
to be @n good agreement with the numerical result. The effect of b is found to be more
pronounced on the skin friction parameter as compared to the heat-transfer parameter,

- 8 ) It is observed that f decreases rapidly as b approaches 1 and f;, = 0
for b = 1. This is due to the fact that for & = 1, the flow becomes potential and
hence the skin friction parameter f; vanishes.

The effects of the wall velocity b and the magnetic parameter M on the velocity
and temperature profiless (f', — g) are given in Figs. 10 and 11, respectively. Fora
given M, the velocity profile f' becomes more steep as b decreases, but the temperature
profile g becomes less steep. Similarly, for a given b, the velocity and temperature
profiles (f’, g) become more steep as the magnetic parameter M increases. The reason
for such a behaviour has been explained earlier.

5. CONCLUSIONS

The skin triction and heat transfer results are found to be significantly affected
by the free stream velocity, magnetic field and the wall velocity. However, their effects
on the heat transfer is comparatively less as compared to that on the skin friction.
The self-similar solution exists when the free stream velocity, wall velocity and the
square of the magnetic field vary inversely as a linear function of time. The skin fri-
ction and heat transfer increase as the magnetic parameter increases. However, the
skin friction decreases as the wall velocity increases, but the heat transfer increases.
The skin friction and heat transfer for the axisymmetric flow are found to be less than
those of the two-dimensional flow.
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