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ABSTRACT A structure-based, sequence-
design procedure is proposed in which one
considers a set of decoy structures that com-
pete significantly with the target structure in
being low energy conformations. The decoy
structures are chosen to have strong overlaps
in contacts with the putative native state. The
procedure allows the design of sequences with
large and small stability gaps in a random-
bond heteropolymer model in both two and
three dimensions by an appropriate assign-
ment of the contact energies to both the native
and nonnative contacts. The design procedure
is also successfully applied to the two-dimen-
sional HP model. Proteins 31:10–20, 1998.
r 1998 Wiley-Liss, Inc.
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INTRODUCTION

Functionally useful proteins are sequences of
amino acids that fold rapidly under appropriate
conditions into their native states, commonly as-
sumed to be their ground state conformations. The
functionality of a protein is controlled by its native
state structure. An outstanding vital problem is that
of protein design (Cordes et al., 1996; Kuroda et al.,
1994; Quinn et al., 1994; Lombardi et al., 1997;
Kamtekar et al., 1993; Yue et al., 1995; Shakhnovich
and Gutin, 1993; Yue et al., 1992; Sun et al., 1995;
Kurosky and Deutsch, 1995; Deutsch and Kurosky,
1996; Seno et al., 1996; Morrisey and Shakhnovich,
1996; Ponder and Richards, 1987; Bowie et al., 1991;
Pabo, 1983)—the identification of the sequence (or
sequences) of amino acids that has a desired target
structure as its ground state. The principal theme of
this article is the development of a new strategy for

the design problem that entails not only the study of
sequences but also the conformations that signifi-
cantly compete with the target structure in being the
ground state of candidate sequences. Our work under-
scores the importance of the role of the interaction
energies of both native and nonnative contacts in the
making of an ideal folder.

The simplest and the best-studied design strategy
consists of an exploration in sequence space in order
to identify the sequence that has the lowest energy
in the target structure. This is usually done for a
fixed composition of the amino acids because there
exists no mechanism within this procedure for choos-
ing between sequences having differing composi-
tions. Furthermore, the strategy is only approximate
because there is no guarantee that just because a
given sequence has a low energy in the target
structure that it would not have an even lower
energy in an alternative structure.

Aphysical and rigorous approach consists of explor-
ing both the family of sequences and the family of
conformations to identify a sequence (or sequences)
that has a lower energy in the target structure than
in any other conformation (Deutsch and Kurosky,
1996; Seno et al., 1996; Morrisey and Shakhnovich,
1996). Stated mathematically, in order to perform an
inverse design on a target structure, G, one needs to
identify the sequence of amino acids, S, that maxi-
mizes the ‘‘occupation probability’’ according to Boltz-
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evaluated at any convenient but sufficiently low
temperature. For sequences with a unique ground
state, any temperature below the folding transition
temperature, at which the probability of occupancy
of the native state is 1⁄2, would suffice. G8 denotes the
family of conformations that the sequence can adopt,
β is equal to 1/kBT, (kB is the Boltzmann constant
and T is the temperature) and ES(G) is the energy of
the sequence S in conformation G. A brute force
application of this rigorous design procedure, involv-
ing the exhaustive search of the sequence with
maximum PG(S), is often not feasible because of the
computational difficulty of determining an accurate
value of ZS for each of the sequences considered.

It has been recognized that a simple binary pat-
tern of hydrophobic and hydrophilic residues along
the polypeptide chain encode structure at the coarse-
grained level (Cordes et al., 1996; Kamtekar et al.,
1993). Thus, the simplest model of proteins consists
of sequences made up of just two kinds of amino
acids (H and P, representing hydrophobic and polar
residues) configured as self-avoiding chains on a
lattice and described by a contact Hamiltonian (Lau
and Dill, 1989, 1990; Chan and Dill, 1991). Alterna-
tively, one may consider multiple kinds of amino
acids with a specified interaction matrix analogous
to the one deduced by Miyazawa and Jernigan (1985)
for the amino acids of real proteins using a quasi-
chemical method. Such models are known to ad-
equately describe proteins at the coarse-grained
level with the advantage that the native states can
be determined exactly (Lau and Dill, 1989, 1990;
Chan and Dill, 1991; Dill et al., 1991; Onuchic et al.,
1995; Camacho and Thirumalai, 1993; Sali et al.,
1994; Bryngelson et al., 1995). Furthermore, they
provide a controlled laboratory for theoretical inves-
tigations and rigorous testing of concepts and ideas
for future use in studies on real proteins.

The design of ‘‘good’’ real proteins that are thermo-
dynamically stable and rapidly folding may be facili-
tated somewhat by the fact that the diversity of the
constituent amino acids allow for their harmonious
packing into the native structure, so that frustrating
influences are minimized (Cordes et al., 1996; Pon-
der and Richards, 1987; Pabo, 1983; Go and Abe,
1981; Bryngelson and Wolynes, 1987; Shrivastava et
al., 1995; Cieplak et al., 1996; Cieplak and Banavar,
1997). It has been suggested (Unger et al., 1996;
Abkevich et al., 1995) that a dominant factor control-
ling the foldability of a sequence is the strength of
possible interactions between residues close in se-
quence. It has also been recognized that a key
ingredient in a successful design strategy is the

necessity to take into account, for any given se-
quence, the conformations that compete significantly
with the target structure to be its ground state, an
idea called negative design (Yue and Dill, 1992;
Richardson et al., 1992).

RANDOM-BOND MODEL

We begin with a heteropolymer model in which one
considers self-avoiding chains N monomers long,
comprised of one each of N amino acids, configured
as a self-avoiding chain on a lattice. The amino acids
are labeled 1, 2, 3, —-, N in sequence. For a given
self-avoiding conformation, the contact Hamiltonian
is given by a symmetric interaction matrix, Bij,
denoting the interaction energy between the i-th and
j-th monomers that are in contact (next to each other
on the lattice but yet not next to each other along the
chain). The physically correct way to generate a new
sequence from the original one (assuming that the
composition of the amino acids is fixed) is by inter-
changing one of the amino acids along the sequence
with another. We will begin a much simpler bond-
random analog of the site-random problem which
instead allows an interchange of one of the Bij values
with another. In this approach a ‘‘sequence’’ is speci-
fied when a Bij is assigned to each pair of nodes i and
j. We will return to the physically correct approach
later in the article to show that our principal results
are independent of this simplifying assumption.

For a given choice of the Bij interaction matrix, a
sequence corresponding to minimal frustration can
be designed using a generalization of the Go-Abe (Go
and Abe, 1981) approach by assigning the most
attractive of the Bij values to the native contacts of
the target structure. This ensures that the ground
state of the designed sequence is indeed in the target
structure and the ground state is a deep minimum
that is thermodynamically stable (Shrivastava et al.,
1995). Studies of the kinetics of such a designed
sequence have shown that it folds rapidly and consis-
tently to the target structure and that one may
observe the formation of a folding funnel into the
native state (Shrivastava et al., 1995; Cieplak et al.,
1996; Cieplak and Banavar 1997). Strikingly, a
random assignment of repulsive interactions to the
nonnative contacts leads to a further stabilization of
the native state and even more rapid folding kinetics
(Shrivastava et al., 1995).

In this article, we study the N 5 27 case on a cubic
lattice, for which all maximally compact conforma-
tions can be enumerated exactly and the N 5 16 case
on a square lattice for which all conformations
(maximally compact and all others) can be accounted
for. The calculations of the thermodynamics of the
three-dimensional model are carried out approxi-
mately using only the maximally compact conforma-
tions and the validity of the results are assessed
within the two-dimensional model for which exact
calculations are feasible. The use of only the maxi-
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mally compact conformations in the three-dimen-
sional calculations is a fairly standard approxima-
tion and is justified when the contact energies have a
large overall attractive shift that promotes the com-
pact structures.

For a maximally compact target structure, there
are K native contacts and M nonnative contacts. In
the three-dimensional N 5 27 model, K 5 28 and
M 5 128, whereas in the two-dimensional N 5 16
model, K 5 9 and M 5 40. We begin by considering
sequences obtained by full rank ordering of the
contact energies, Bij’s. These sequences are designed
by assigning the K strongest attractive contacts to
the native contacts of a target maximally compact
conformation. The remaining M nonnative contacts
are assigned to the other couplings randomly.

In our studies, we assume that Bij 5 B̃ij 1 B0 where
the values of B̃ij are from a Gaussian distribution
with zero mean and unit variance and the shift B0 is
-2 and -1 in the three- and two-dimensional models,
respectively.

There are K! M! ways of constructing such se-
quences for a given set of values of the contact
energies. Each sequence has its own folding tempera-
ture Tf and stability gap, D. Tf is defined as a
temperature at which the probability to find a se-
quence in its native state is 1⁄2 and D is the difference
in energy between the native state and the first
excited state corresponding to another maximally
compact conformation. It is expected that, statisti-
cally, large D’s correlate with the larger values of Tf.
Furthermore, a high measure of thermodynamic
stability (as measured by a large D or equivalently a
large Tf) is associated with an increased stability
against mutations (Vendruscolo et al., 1997).

It is impossible to study the stability of all rank-
ordered sequences. In order to assess the approxi-
mate spread in the values of D of these sequences, we
devised a simple Monte Carlo procedure that in-
volves starting from a randomly chosen rank-
ordered sequence and making mutations correspond-
ing to the interchange of the contact energies. The
random swaps are carried out separately for the
native and the nonnative sets of contacts with no
mixing to ensure that one stays within the family of
fully rank-ordered sequences. Figure 1 shows the
result of our study in the form of a probability
distribution of D after 10,000 swaps of the contact
energies (2,000 of these swaps were among the 28
native contacts, whereas the remaining 8,000 corre-
sponded to swaps of the 128 nonnative contacts). The
inset of Figure 1 shows a plot of Tf versus D for
randomly chosen sequences with a range of values of
D and demonstrates a nice correlation between the
two quantities. Tf here is calculated approximately,
using only the maximally compact conformations in
the denominator of Eq. 1.

We note that the simple design procedure of rank
ordering is one that involves an optimal search in
sequence space. We now turn to a design procedure

with information from the space of conformations
that is complementary to the rank-ordering selection
procedure. The basic idea behind this structure-
based design is the identification of conformations
(in a sequence-independent manner) that are signifi-
cant competitors of the native state in being low
energy states for candidate sequences. High thermo-
dynamic and mutational stability would be expected
to result from ensuring that the energies of these
‘‘excited’’ states be as high as possible. For a given set
of contact energies, our goal is to find the sequences
which are the ‘‘end members’’ and which correspond
to maximum and minimum stability, as measured by
D. These sequences will be denoted by S1 and S2,
respectively.

Our strategy of search for the end members begins
with the selection of a set of decoy structures that
have maximal overlap with the target structure. The
overlaps are defined in terms of the common contacts
with the native state and their occurrence is based
on the geometry of the conformations and not on any
sequence-dependent properties. The more complete
and faithful the set of the decoy structures is, the
more accurate is the determination of the distribu-

Fig. 1. Histogram of the stability gap (the energy difference
between the maximally compact native state and the first excited
maximally compact conformation) as derived from a randomly
chosen, fully rank-ordered starting sequence followed by 2,000
random swaps of native contact energies and 8,000 random
swaps of nonnative contact energies for the three-dimensional
random-bond model. Arrows indicate the stability gap of the
structure-based designed sequences S2 and S1. The inset shows
a correlation between the stability gap and the folding transition
temperature (determined from the use of just the maximally
compact conformations).
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tion of the overlaps and, thus, the better the approxi-
mation to the true S1 and S2. In the two- (three)
dimensional model, the set of decoys may consist of
all conformations (maximally compact conforma-
tions) which have more than a certain cutoff number
of common contacts with the native state. In three
dimensions, all maximally compact conformations
with more than 13 common contacts with the native
state, and in two dimensions all structures with two
or more common contacts with the native state, were
usually considered as decoy structures.

The rank-ordered procedure is highly degenerate
because there is no selection principle for the assign-
ment of the K strongest interaction energies among
the native contacts and the M other interaction
energies among the nonnative contacts. The key goal
of the structure-based design procedure is the break-
ing of this degeneracy and a unique assignment of
each of the contact energies. We developed a simple
hierarchical scheme for doing this. The basic idea is
to divide the decoy conformations into groups depend-
ing on the number of common contacts they have
with the native state. The first step in the design
procedure is to ensure that the energies of this group
of conformations are increased as much as possible
to promote thermodynamic stability. This usually
leads to a breaking of some but not all of the
degeneracies. Respecting the choices made at this
stage, the next group of decoy conformations is
considered to further break the degeneracies. This
procedure is repeated until a unique assignment of
the interaction energies to the contacts becomes
possible and the S1 sequence is obtained. A similar
procedure in which the energies of the excited states
are lowered as much as possible leads to the S2

sequence.
Operationally, the contacts occurring in the first

group have the biggest overlap and are given the
highest weight. The contacts occurring in the second
group have the second biggest overlap and the
weights of each successive group are scaled down by
a sufficiently large numerical factor (typically 100) to
maintain the hierarchical process. The total weight
of a contact comes from summing the contributions
from subsequent groups. The number of groups must
be sufficiently large to remove degeneracies in the
weights of the contacts and the set of the decoy
structures must be extensive enough for each contact
to receive a non-zero weight. Once all the contacts
receive distinct weights, the native and nonnative
contacts are sorted according to the assigned weight.
In order to generate S1, we assign values of the
native contacts in such a way that the contact with
the largest weight (that occurs most significantly
among the putative excited states) receives the least
attractive Bij and the contact with the smallest
weight corresponds to the most attractive native
contact. At the same time, the assignment of the
nonnative contacts proceeds according to a similar
prescription.

Figure 1 (arrows) shows the gaps of the S1 and S2

sequences obtained in our three-dimensional calcula-
tion. As shown, the structure-based design proce-
dure leads roughly to end members in terms of the
stability gap. (Monte Carlo sampling in sequence
space starting from the S1 sequence occasionally
does lead to larger but quite comparable gap values.)
The corresponding values of Tf are shown in the inset
of Figure 1. We confirmed that the design procedure
works in both two and three dimensions and under-
scores the importance of the role of nonnative con-
tacts in promoting or decreasing thermodynamic
stability. The S1 sequence may be thought of as
corresponding to one with minimal frustration (Bryn-
gelson and Wolynes, 1987).

The design procedure outlined above can also be
applied to situations not necessarily generated by
rank-ordering of the bonds, in which there is a
division of the bonds into those which are allocated
to the native contacts and a separate set allocated to
the normative contacts. However, one must impose a
consistency requirement that the target conforma-
tion remains as a ground state of the sequences
studied.

Design of Partially Rank-Ordered Sequences

In order to study cases which are not fully rank-
ordered (sequences in which the most attractive
contact energies are not all assigned to the native
contacts), we consider a model in which the strengths
of the native contacts (the nonnative contacts are left
unaffected) are controlled by a parameter g that
reduces their absolute values, originally obtained
through the rank ordering, according to

Bij (g) 0native 5 Bij (g 5 0) 0native 1 g. (2)

Thus, for g 5 0 the contact energies in the native
contacts correspond to the largest attraction avail-
able (the fully rank-ordered case) but when g in-
creases in strength, the native contacts become more
and more comparable to the normative ones, with
the latter remaining unchanged. In particular, there
is a critical value of g at which the sequence S2

ceases to have the target conformation as its ground
state (Fig. 2). S1, however, continues to have the
target conformation as its ground state until a
higher critical value of g is reached. We constructed
the end member sequences and studied their proper-
ties.

In real proteins, the energy difference between the
folded and unfolded states is small (about 5 kcal/
mol), resulting in native states which are only mar-
ginally stable (Yang et al., 1992). Furthermore, a
fully rank-ordered situation seems to be quite excep-
tional as far as its probability of occurrence is
concerned. Furthermore, functional proteins that
have emerged from evolutionary processes are not
likely to evolve further significantly after they have
attained marginal stability and become fully func-
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tional. In the context of lattice models, it is therefore
relevant to determine whether naturally evolved
sequences can be modeled as ones that have a
combination of a bit of rank-ordering and some
structure-based design. Our procedure, which in-
volves the g-shift in the contact energies, allows the
generation of a whole spectrum of sequences in
which the stability gap varies between 0 (for g 5 gc

and S2) and a maximum value corresponding to
sequence S1 with g 5 0. At g 5 gc, one has the edge of
stability. The extreme sensitivity of the stability of
sequences on perturbing influences such as tempera-
ture, solvent properties, and mutations in the vicin-
ity of such a point may have resulted in the stability
edge being a prime candidate for the existence and
evolution of naturally occurring proteins.

We turn now to a discussion of the two-dimen-
sional model in which, initially, B̃ij are taken from
the upper right part of Table I in the article by
Dinner et al. (1994) (we shall denote this set as
DSKS) and the target native state shown in Figure
4a. There are altogether 802075 possible conforma-
tions in this model (Lau and Dill, 1989; Dinner et al.,
1994), of which 69 are maximally compact. We use all
conformations to calculate the partition function and
Tf but restrict the number of conformations that are
taken into account when designing the assignment
of the contact energies.

We consider two sets of decoys: one which involves
all conformations (maximally compact and other-
wise) which have at least three common contacts
with the target native state, and another in which

only the maximally compact states are considered.
Figure 5 shows Tf for the end member sequences as a
function of g for the two sets of decoys. Clearly, the
larger set of the decoy conformations gives a much
broader spread between the Tf’s for S1 and S2 (this
calculation is nearly exact) than when one restricts
the decoys to the maximally compact states. The
spread in the values of Tf of typical sequences is
substantial at all values of g which are less than gc.
At g 5 0, the range is between 0.954 and 1.278.

Folding Dynamics

While the stability gap and the thermodynamics
are controlled significantly by our design procedure,
a key feature of real proteins is that they fold rapidly
and reproducibly to the native state. We carried out
extensive studies of the folding dynamics within the
framework of the two-dimensional model. We found
that, while the placement of the contacts affects the
Tf in a significant way, the dynamics of folding is
affected by it to a much lesser extent. This can be
assessed by studying the values of the glass tempera-
ture, Tg, for S1 and S2. A median folding time, as
determined by considering the folding of 200 starting
conformations, has a U-shape dependence on tem-
perature (Socci and Onuchic, 1994). Tg is defined as a
temperature at which the low temperature branch of
the U-shaped curve becomes steep and signifies
freezing of the kinetic processes. For the two-
dimensional model, it is convenient to take Tg to be
the temperature at which the median folding time
crosses 300,000 Monte Carlo steps (Cieplak et al.,
1996; Cieplak and Banavar, 1997). We find that not
only the spread between the values of Tg at g 5 0 is
small, between 0.61 and 0.72, but also Tg is essen-
tially insensitive to g, as long as g , gc. Furthermore,
for most of the range of the allowed values of g, the
sequences remain good folders in the sense that

Fig. 2. Histogram of the stability gap (the energy difference
between the maximally compact native state and the first excited
maximally compact conformation) for the same bare contact
energies as in Figure 1 but with g 5 gc as derived from a randomly
chosen starting sequence followed by 2,000 random swaps of
native contact energies and 8,000 random swaps of nonnative
contact energies for the three-dimensional random-bond model.
Arrows indicate the stability gap of the structure-based designed
sequences S2 and S1.

TABLE I. Histogram of Maximally Compact
Conformations in Three Dimensions Classified

by the Number of Closest Siblings and the Number
of Common Contacts Between Each of These

Siblings and the Original Conformation*

24 22 21 20 19 18 17

1 46,083 10,087 1,380 552 235 7 0
2 12,662 12,049 289 156 219 23 2
3 703 8,654 15 29 151 24 0
4 8 5,074 0 4 84 19 0
5 0 2,740 0 0 35 2 0
6 0 1,458 0 0 11 7 1
7 0 428 0 0 0 4 0
8 0 127 0 0 0 0 0
9 0 20 0 0 0 0 0

10 0 4 0 0 0 0 0

*The total number of maximally compact conformations for the
N 5 27 model is 103,346. Column 1 represents the number of
nearest siblings while row 1 represents the maximum number
of common contacts that the nearest siblings have. For ex-
ample, 46,083 of the 103,346 maximally compact conformations
have exactly one closest sibling with 24 common contacts.
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Tg , Tf (Sasai and Wolynes, 1990; Goldstein et al.,
1992; Socci and Onuchic, 1994, 1995; Onuchic et al.,
1995). As one may expect, the best folding takes
place at full rank ordering.

In order to assess the dependence of the results on
the structure of the target native state, we consid-
ered 13 different maximally compact conformations
as the target native state. When one compares the
dynamics of these target conformations with the
same set of couplings strengths, one finds variations
which are larger than those exhibited by Tf. For
instance, at full rank-ordering, i.e., at g 5 0, and for
the most stable sequence S1, Tg varies between 0.55
and 0.98. Strikingly, for each of the target native
states there is little variation in the value of Tg as a
function of g. At gc, the range of Tg remains essen-
tially the same as the g 5 0 case—it varies between
0.56 and 0.99.

Designability

The designability of a structure is measured by the
number of unique amino acid sequences that fold
into this structure. It has been argued that, in the
evolutionary process, nature selects structures that
are more designable over others (Li et al., 1996). The
difference in designability of various structures has
been demonstrated within the HP model (Li et al.,
1996). An analysis of the protein databank and of the
sequence databank reveals that the structure of a
protein is much better conserved than the amino
acid sequence it encodes (Orengo, 1994). It has been
suggested that the number of unique three-dimen-
sional folds that can possibly exist is only around
1,000 (Chothia, 1992), thus implying that a huge
number of sequences ought to fit into a limited
number of three-dimensional folds. These would be
the designable structures.

The stability parameter, gc, can also be interpreted
as a measure of the designability of native conforma-
tions, since the structures with larger g, (for the
same set of contact energies at g 5 0) are precisely
those for which a larger set of sequences is stable
(Fig. 3). We suggest, therefore, that nature may
select structures with a large stability with respect
to the shifts of the contact energies over those in
which such stability is small.

We may gain insight into the geometry-based
design of proteins by studying numbers of ‘‘siblings’’
of native conformations. The nearest sibling of a
conformation is defined as that maximally compact
conformation which has the biggest number of com-
mon contacts with the conformation. Each conforma-
tion can be characterized by two numbers, the num-
ber of maximum contacts that the nearest sibling
has and the number of such siblings. These character-
istics are listed in Table I for the three-dimensional
model. For example, there are eight conformations
whose nearest sibling has 24 common contacts (there
are four such siblings). Likewise, only one conforma-
tion has six nearest siblings with each of them

having 17 common contacts with it. It would be
useful to test the hypothesis that stable conforma-
tions are those whose nearest siblings have a rela-
tively smaller number of common contacts as well as
having a smaller number of such siblings, i.e., a
conformation whose nearest sibling has 17 common
contacts and two such siblings might be expected to
be more stable than one whose nearest sibling has 17
common contacts and six such siblings, which, in
turn, is stabler than a conformation whose closest
sibling has 24 common contacts and one such sibling.
For example, the highly designable native state
structure reported by Li et al. (1996) which accommo-
dates Ns 5 3,794 sequences (Fig. 1 of their article)
has two nearest siblings with 18 common contacts
with the native state. These observations suggest
that an alternative way to pick out highly designable
structures may proceed by the exploration of the

Fig. 3. Histograms of the stability gap (the energy difference
between the maximally compact native state and the first excited
maximally compact conformation) as derived from two randomly
chosen, fully rank-ordered starting sequences followed by 2,000
random swaps of native contact energies and 8,000 random
swaps of nonnative contact energies for the three-dimensional,
random-bond model. The same set of Bij contact energies were
employed in both panels of the figure. The only difference is that
two distinct target native state conformations were used with
differing values of gc. The conformation chosen in the lower panel
is more designable than the one in the upper panel in that many
more sequences exist that could have the lower panel conforma-
tion as a native state than the upper one. The higher gc value in the
lower panel nicely correlates with much higher thermodynamic
stability as measured by a larger stability gap.
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space of conformations and overlaps with the native
state without a brute-force enumeration of se-
quences that design a particular native state.

Local vs. Nonlocal Interactions

The importance of the degree of local interactions
vs. nonlocal interactions in a rapidly folding protein
has been a subject of great interest. Within the
framework of a lattice model of heteropolymers, it
has been shown (Unger and Moult, 1996; Abkevich et
al., 1995) that native states with predominantly
nonlocal contacts show much faster folding kinetics
than those with many local contacts. A possible
criticism of the above result stems from the fact that
there is no simple way of comparing native struc-
tures that have quite different ground state energies.
All our designed native structures have the same
energies, E0, thus alleviating the problem of different
native states having different energies. With our
design procedure, we may choose target conforma-
tions from among the 103,346 (69) possibilities in
three (two) dimensions, which include a sizeable
number of short-, medium-, or long-range contacts.
Each target native state conformation is character-
ized by either a locality index, lI (inspired by Unger
and Moult (1996) but with the difference that we
have replaced N — 0 i — j 0 in the Unger and Moult
definition by 0 i — j 0 ) or a structure locality index, li.
The locality index is defined through

lI 5 o
i,j

(2Bij ) 0 i 2 j 0D ij, (3)

where Dij 5 1 if i and j are monomers which make a
contact on the lattice and 0 otherwise. lI incorporates
the coupling strengths and distances along a se-
quence that are involved in the contacts. In the
definition of the structure locality index, Bij is re-
placed by -1. Thus, li provides some characterization
of the geometry independent of the actual coupling
strengths and is thus somewhat ‘‘absolute’’ in na-
ture. Nevertheless, it assumes that the relevant
couplings are attractive. A small value for li should
indicate a conformation having a large number of
short-range contacts, while a large li represents a
conformation with many long-range contacts.

The target conformation shown in Figure 4a has
the maximum number of long-range contacts among
the 69 maximally compact states: it has three con-
tacts of the type i, i 1 13, where i labels consecutive
beads along the sequence. The corresponding li is
equal to 71. On the other hand, the target structure
shown in Figure 4b excels in the number of short-
range contacts: it has six contacts of the type i, i 1 3
and li 5 49. In this case, in order to break the
degeneracies and deduce a unique rank-ordering it is
necessary to include, in the set of decoy states,
conformations which have at least two common

contacts with the target state. The resulting gc is
0.61, which is significantly lower than gc of 1.09,
characterizing the target of Figure 4a with the DSKS
couplings. The lower value of gc signifies a reduced
stability of the structure against manipulations of
the strengths of the native couplings. The value of Tf

corresponding to S1 at gc acquires about 68% of its
g 5 0 value of 1.133 for the conformation. This
simply reflects different stabilities against the g-
shift, even though the g 5 0 values of Tf are close to
each other.

We have found that similar relationships hold for
other choices of the couplings strengths than the
DSKS. For instance, gc for the conformation of
Figure 4b is always lower (by about 0.5) than for the
conformation of Figure 4a. Qualitatively similar
conclusions are reached when the decoy structures
are the maximally compact conformations.

When considering a set of 11 more target conforma-
tions, however, we were unable to correlate the
values of Tf or gc either with the locality index, lI or
with li. For instance, the most unstable two-dimen-
sional target, with the lowest value of gc that we
found, corresponded to a conformation with the li of
59, i.e., midway between the two values characteriz-
ing the conformations shown in Figure 4. We con-
clude that in the two-dimensional model we see no
correlation of the stability either against the g-shift
or against temperature with lI or li.

A similar conclusion can be reached for the three-
dimensional model. This is demonstrated in Table II,
which shows results on Tf and D for 12 randomly
selected target conformations together with their li

index. While the data of Table II may suggest an
overall increase of gc with li, there are many devia-
tions. Furthermore, this trend appears to be the
opposite of that shown by the two-dimensional data
for the conformations of Figure 4. Thus, we do not
observe any clear influence of the degree of the local
vs. nonlocal interactions in the native state on its
thermodynamic stability.

RANDOM-SITE MODEL

We now turn to the site-random problem of hetero-
polymer design within the framework of the two-

Fig. 4. Two target native conformations for the two-dimen-
sional random-bond model.
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dimensional HP model, an extensively studied simple
lattice model with only two kinds of amino acids, H
and P (Lau and Dill, 1989, 1990; Chan and Dill,
1991). The Hamiltonian is

Hs(G) 5 o
ij

u(Si, Sj )D(ri 2 rj ). (4)

The i-th amino acid Si in conformation G sits on the
lattice site at position ri. The contact matrix D(ri 2

rj) is 1 if ri and rj are nearest neighbor sites that are
not occupied by consecutive amino acids along the
chain, and zero otherwise. Finally, u(H,H) 5 2e

(attractive interaction) whereas u(H,P) 5 u(P,P) 5 0.
A conformation G is defined to be ‘‘good,’’ or encod-

able, if there is at least one sequence, out of the

possible 2N, that has G as its nondegenerate ground
state. For the square lattice and N 5 16, there are
456 good conformations (out of the total of 802,075)
and 1,539 sequences with a unique ground state in
one of these good conformations—different se-
quences can have the same good conformation as
their native state.

Our design procedure starts with a target struc-
ture from one of the 456 good conformations. The key
new aspect of our negative design strategy is that in
addition to an exploration of sequences, we consider
an ensemble of decoy conformations that one hopes
are the significant competitors of the target struc-
ture in being the native state for the sequences being
considered. The procedure consists of considering,
for any given sequence, the energy in the target
structure and in all the decoy structures. In a

Fig. 5. The dependence of the folding temperature and the
glass temperature on parameter g for the two-dimensional confor-
mation shown in Figure 4a. The thick lines connect the data points
for Tf obtained by considering the set of decoy structures, which
consist of all conformations (not necessarily maximally compact)
which have at least three common contacts with the target state. In
this case gc 5 1.09. The thin lines correspond to the situation in

which the decoy states are all 68 maximally compact conforma-
tions which are different from the native conformation; gc 5 O.70.
The solid (broken) lines correspond to the construction of S1 (S2).
The data points not connected by lines are the values of Tg for S1

(black hexagons) and S2 (black triangles) as determined from the
procedure with the larger set of decoy structures.
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screening phase, only those sequences are chosen as
candidates for the design process for which the
target structure energy is lower than the energy in
any of the decoy conformations. If there are many
candidate sequences that satisfy this criterion, the
tie is broken by requiring that a cost function,
defined as the sum over all the decoys of the energy
difference between the decoy structure energy and
the target structure energy, be maximized. Our
choice of the cost function is not unique, but was
picked to ensure that the decoy structure energies
(viewed as excited states or energies of misfolded
states) were as high as possible relative to the native
state energy. Unlike real proteins, we note that the
HP model is not highly encodable and the overall
thermodynamic stability of HP sequences is not very
high. Thus, the HP model provides a particularly
stringent test of the design procedure.

We carried out the following tests of the new
design procedure: For a given set of decoy conforma-
tions, we seek to design in each of the 456 good
conformations. Using the exact enumeration tech-
nique, we then check what percentage of the cases
the design procedure is successful in. We repeat this
for various sets of decoy conformations. Our results
are summarized in Table III.

In our tests, we do not work with just a single
composition of the H and P monomers. Unlike the
simplified design procedure (Shakhnovich, 1994), we
are able to discriminate between differing composi-
tions using our procedure. Also, because we are
working with a fixed set of decoy conformations, the
calculational scheme is much simpler than the rigor-
ous design process for which the partition function
needs to be determined for each sequence.

In a recent work, Deutsch and Kurosky (1996)
approximated the free energy associated with Zs

(defined in Eq. 1) for the HP model (Fs 5 (2T log(Zs))

to be temperature independent and given by

Fs 5 o
ij

u(Si, Sj) 7D(ri 2 rj )8, (5)

where the average is performed over all conforma-
tions having seven or more contacts (maximally
compact conformations have nine contacts for the
N 5 16 case on the square lattice). It is interesting to
note that their approach is an approximate high
temperature cumulant expansion of Fs and leads to a
50–70% success rate for the HP model. The average
in the above equation may be considered to be over
decoy conformations which have seven or more con-
tacts and thus embodies the spirit of the structure-
based design strategy we have presented here.

SUMMARY AND CONCLUSIONS

Earlier protein design studies focused on strate-
gies for lowering the energy of the putative native
state. In this article, we present a new design
strategy which entails not only the study of se-
quences, but also the conformations which signifi-
cantly compete with the target structure. (It should
be stressed that there are earlier important studies,
referred to in the Introduction, that have considered
alternative design schemes, some of which do con-
sider the role played by nonnative contacts.) Our
approach embodies the idea of negative design in
that not only is the native state energy stabilized,
but also the low-lying excited states are destabilized,
leading to an overall higher thermodynamic stability
and a larger stability gap. These low-lying decoy
conformations can be obtained either with an exact
enumeration, as in the present studies, or by an
importance Monte Carlo sampling procedure (Seno
et al., 1996). The latter is effective for sampling both
maximally compact as well as noncompact conforma-
tions in situations in which exact enumeration is
impractical.

The design procedures are carried out on the
random-bond model in both three and two dimen-

TABLE II. Energy Gap and Tf of the S1 and S2

Sequences at g 5 0 and the Critical Values of g
for 12 Selected Three-Dimensional Native States*

li gc

S1 S2

D Tf D Tf

232 0.493978 15.380 3.160 1.939 2.089
232 0.426818 14.507 3.174 1.683 2.020
250 0.755568 13.421 3.183 4.517 2.507
252 0.506740 13.147 3.147 2.020 2.007
252 0.676224 9.119 3.080 4.862 2.700
254 0.623939 14.254 3.248 3.736 2.137
274 0.600423 15.903 3.201 3.546 2.339
274 0.428557 16.429 3.222 2.107 1.736
288 0.712084 15.840 3.188 2.447 2.014
302 0.612420 14.835 3.221 2.440 2.014
320 0.656889 16.614 3.296 5.882 2.664
320 0.824757 17.672 3.296 7.329 2.711

*The corresponding values of the structure locality index, li are
also displayed.

TABLE III. Percentage of Cases in Which the Design
Procedure was Successful in the Two-Dimensional

HP Model for Various Sets of Decoy Conformations*

Decoy conformations Percentage of success

Maximally compact 64.47
Good conformations 60.08
$6 common contacts with target 45.81
$5 common contacts with target 90.13
$4 common contacts with target 99.34
$3 common contacts with target 99.56

*The decoy conformations do not include the target structure
itself. An exact enumeration of all conformations and sequences
was carried out for this simple model.
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sions (we are limited to studying only the maximally
compact conformations in the former case, but the
latter allows for an exploration of all conformations
and studies of the kinetics of folding) and the random
site HP model in two dimensions, each offering
unique challenges and providing complementary
results.

In the random-bond model, for a maximally com-
pact target conformation with K native and M nonna-
tive rank-ordered contacts, there are K! M! se-
quences with the same native state energy, but yet
different thermodynamic stability as measured by
the folding transition temperature (Tf) and stability
gap (D). Our structure-based design strategy allows
us to identify the S1 and S2 sequences which maxi-
mally stabilize or destabilize the target native state
with respect to competing nonnative structures (de-
coy structures).

Our detailed studies of the random-bond model for
various target structures do not reveal any simple
correlation between thermodynamic stability and
the degree of local or nonlocal interactions. In order
to ensure the maximal stability of the designed
native state, one may assign the contact interactions
in a rank-ordered way to the native contacts. How-
ever, real proteins are only marginally stable and we
extended our design strategy for the study of such
cases by the introduction of a critical energy shift
parameter (gc) for which the S2 sequence is margin-
ally stable. In the two-dimensional, random-bond
model, we have shown that although the thermody-
namic stability varies significantly between the S1

and S2 sequences, the folding dynamics is affected to
a much lesser extent.

The question of designability is addressed in con-
nection with gc and overlap of the candidates for
being the low-lying excited states with the target
native state. The number of siblings of each maxi-
mally compact structure with the highest common
contacts is evaluated in three dimensions. The highly
designable structures are predicted to be those with
high gc and those with fewer numbers of siblings
with a smaller number of common contacts. These
observations suggest that highly designable struc-
tures can be identified by an exploration of conforma-
tional space and their overlaps instead of an enu-
meration of sequences that design a particular native
state.

The random-site model is more realistic because
mutations of the amino acids can be effected at given
sites. Our studies have been on the HP model which,
unlike real proteins, is not highly encodable and
provides a particularly stringent test of the design
procedure. A high degree of success is achieved for
the structure-based design by considering a suffi-
cient number of decoy structures in order to ensure
that the native state energy is lower than the energy
in these competing conformations.
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