
830 IEEE TRANSACTIONS ON ANTENNAS AND i'ROPAGATION, VOL. AP-34,  NO. 6, JUNE 1986 

Communications 

Diffraction by a Dielectric Half-Plane 

A.  CHAKRABARTI 

Abstract-The  problem of diffraction of a  plane  electromagnetic  wave 
by  a  dielectric half-plane is reconsidered for solution by utilizing a set of 
recently developed approximate  boundary conditions and  the  Wiener- 
Hopf technique.  It is observed from the  present solution of the  problem 
that  reflected  waves cease to exist if the angle of incidence  takes  up  the 
valne tan-'(l/n) where n represents  the  refractive  index of the  material of 
the half-plane under consideration. Expression for the diffracted far field 
is obtained by  using  a modification of the saddle point method, and 
numerical  values of the diffraction coefficients are  presented in the form 
of a table for a  special  value of the  refractive  index n and for different 
values of the  parameter kh, h representing  the  (small)  thickness of the 
half-plane and k the  wavenumber. 

I. INTRODUCTION 

Scattering by dielectric objects has several important practical 
applications as has been  explained by Rawlins [l] where a set  of 
approximate boundary conditions of  an absorption type  has  been 
derived  and  utilized  to  study  the  problem  of diffraction by an 
acoustically penetrable or an electrically dielectric half-plane. Similar 
diffraction problems have also been considered by Khrebet [7], 
Anderson [8], and Burnside and Burgener [9] by utilizing  boundary 
conditions  of different forms. Recently, Leppington [ 2 ]  has derived a 
new set of approximate boundary  conditions  at the surfaces of a 
dielectric slab of small thickness surrounded by a different dielectric 
medium. Leppington's boundary conditions differ from the ones  used 
in the works  of [ 11, [7], [g], and [9] in the sense that they  contain 
second order derivatives of the &own  potential  function  which are 
absent  in an absorption type of boundary condition. With  these  new 
boundary  conditions  of  Leppington  we  have  reconsidered  in  the 
present communication the problem of scattering of an electromag- 
netic  wave by a dielectric half-plane and, for the purpose of 
Simplicity,  we  have restricted our attention only to the  case  of an 
incident  plane  wave. The problem  is  solved by using the'wiener- 
Hopf technique, and Jones's method ([3], [4]) in a straightforward 
manner. 
In Section I we formulate the problem and  in  Section II we 

demonstrate the Wiener-Hopf procedure for its solution. Detailed 
CalcuIations are camed out for  the determination of the reflected 
wave  and  the diffracted far field  is  expressed  in terms of the Fresnel 
functions, by utilizing a modified saddle point  method (see [SI and 
[6]). It turns out that the presently determined reflection coefficient is 
different from that  obtained  in [l], and this difference can be 
attributed to our modeling the problem  through a different set of 
boundary conditions on the scatterer. Numerical  values  of the 
diffraction coefficient (see [8 ] )  are tabulated for one particular choice 
of the ratio E = e 2 / q  (= 0.17) (mica or porcelain, see [5]) of the 
dielectric constants of the surrounding medium  and the half-plane 
under consideration, respectively. 
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n. STATEMENT OF THE PROBLEM 

A dielectric half-plane  of dielectric constant E ]  and permeability p 
occupies the region - 00 <x< 0, y = 0 of the x-y plane (z-axis along 
the edge) which is supposed to be another dielectric medium  of 
dielectric constant E;? and the same permeability p (for simplicity). A 
time-harmonic plane electromagnetic wave of potential = exp { - 
ik (x cos eo + y sin eo) - i d }  falls on the half-plane x < 0, with 
the understanding that the incident electromagnetic fields are given by 

,?'=Re curl (0, 0, 

f i i =  -Re iwe2(0, 0, (1) 

It is required to determine the scattered potential $, where $ = q5 - 
+', + denoting the total potential, under a set of boundary conditions 
on the two surfaces of the half-plane to be described shortly and 
appropriate edge conditions and the radiation condition  of  outgoing 
waves at infinity. In what follows, we shall drop the timedependent 
factor e-'"' and the symbol  Re throughout. Then  utility  of  Maxwell's 
equations  shows that the governing partial differential equation for 
the  function + is 

(V2 + k2)+ = 0, (2) 

where k2 = O ~ ~ E ~ ,  and, if we employ the boundary conditions 
derived by Leppington, we have that on y = 0, for x < 0, 

[+1=h ;-1 (+;++J, 
( l  ) 

and 

[+yI= h(1 -e)(+&+ +J, (3) 

where the s u f f i x e s  represent partial derivatives, E = @ / E ] ,  h(< 1) 
being the very  small thickness of the half-plane under consideration. 
The symbol [+] represents the jump (++ - +-) where ++ and 6-  
are the limiting values of the function +(x, y )  as y approaches zero 
from above  and from below, respectively. 

behavior o + at the edge x = 0. We shall require that 4, &, and Gn 
possess.  at 1 ost an integrable singularity at  this point. 

With  these  boundary  and edge conditions and the radiation 
condition  of  outgoing  waves  at infinity we  next demonstrate the 
Wiener-Hopf procedure of the solution of our problem. 

In order ,to obtain a unique solution it is necessary to specify the * 

m. METHOD OF SOLUTION 

The partial differential equation  and the boundary conditions for 
the scattered potential $ are given by 

(V2+k2)$=0,  (4) 

$(x, O+)-$(x, O-1-h - - 1  [Ic'u(& O+)+$y(x, 0-11 (: 1 
= -2ikh (:- 1) sin &,e-ikrcoseO , (X<O) (5) 
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and  where 

and 

and for the purpose of  being able  to utilize  such  transforms in our 
problem  we  imagine  that k has a  positive  imaginary part k’ (k  = k 
+ ik’) (k’ will  be  taken to be zero at the end), so that  the transform 

exists  and is analytic in the strip - k ’ < Im s < k‘ cos Bo of the 
complex s-plane, while the transforms * + and * - are analytic in the 
overlapping  half-planes Im s > - k’ and Im s < k’ cos BO, 
respectively.  Taking  the Fourier transform of (4) and  solving the 
resulting ordinary differential  equation we find  that 

*(s, y)=Ae-’Y, y>O 

=BeYY, y<O (9) 

with y = (s2 - k2)”2, where  that  branch of the square root is 
understood for which y = - ik for s = 0. 

Applications of the Fourier transform to ( 3 ,  (6), and (7), along 
with (9) result  into the following  relations: 

ws, O+)-fk(s, 0 - ) - h  - - 1  [*’(s, O+)+*’(s, 0-)I (: ) 

9’0, O+)-*‘(s, O-)+h(l-€)[s2*(s, O+)+s2*(s, 0 - ) ]  

- y ( A + B ) = * ‘ ( s ,  O+)-*’(s, 0-)  

=*’(s, O+)-* ! . (s ,  0 - )  

= G- (s) 

and 

Using (9) in (10) and (1 1 )  and  eliminating A + B and A - B with 
the help of (12) and (1 3)  we arrive at the following two independent 
Wiener-Hopf  equations for the unknowns P+ , Q+ , F- and G- : 

2kh (:- 1) sin Bo 
[ I - h  ( f - 1 )  y] F - + P + = -  s-k  COS Bo (15)  

and 

[l-?] G-+Q+=+ 2ik2h(l s - k  - E )  COS COS’ Bo Bo * (16) 

The  principal  unknowns A and B are given by (using (12) and (13)): 

The solution  of  the  Wiener-Hopf  equations (15) and (16) thus 
determine the transformed scattered  potential  in  the two regions y > 
0 and y < 0, with  the  help of (9), from  which  the  potential $(x, y )  
can be  recovered  by  using Fourier inversion formula. 

Using the factorization  of the functions f ( s )  and g(s) as given  by 

and 

g(s)= 1 - 

to be obtained  by  standard procedure (see  Noble [3] and  Leppington 
[2]) withf, - 0 @‘I2),  and g, - 0 as Is1 --* 03 and free from 
zeros in corresponding half-planes, we arrive at the  following 
solution  of the Wiener-Hopf  equations 115) and (16) with  the  help  of 
LiouvilIe’s  theorem: 

2kh ( f -  1 )  sin Bo 

F-(s)  = - 
f - ( s ) f + ( k  COS %o)(s-k COS Bo) (19) 

and 

G - ( s )  = + 2ik2h(l - E )  cos2 Bo 
g-(s)g+(k COS %o)(s-k COS Bo)  . (20) 

Then  using (19), (20), and (17) in (9) and the Fourier inversion 
formula,  we amve at the result 

k COS’ Bo 
- m  (9-k COS Bo)? g-(s)g+(k COS Bo) 
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The form (21) immediately gives that for x > 0, 

kh(1-E) e& k cos2 Bo 
$(x,  0) = - 1 2 a ~  -- -,+-k COS e,) g-(s)g+(k COS e,) h, 

obtained by deforming the contour for the other terms in the lower 
half-plane. Then, by Abelian theorems on Fourier transforms, we 
find  that as x -+ 0+, 

$(x,  O)-O(x3l2) and $=(x, O)-O(X-'/~). 

We also obtain, in a similar fashion, from (14), that as x -+ O+ , 

&(x,  O ) - O ( X - ' / 2 ) .  

This is the actual edge behavior of the scattered field which  was 
assumed in a different form beforehand in order to apply the Wiener- 
Hopf procedure to  our problem. 

For a full howledge of the scattered field $(x, y )  we observe that 
details of the split functionsf, and g, are very  much required, while 
if our interest is just to calculate the reflection coefficient this can  be 
avoided. We  find that for x < 0, the reflected wave  as  given  by 

~ = ~ ~ - i k ( ~ ~ 0 ~ 8 o - ~ s i n 8 o )  (22) 

can be calculated from (21) by deforming the contour in the upper 
half-plane, when the pole s = k cos 0, is captured and  we obtain the 
reflection coefficient R as given  by 

with 

and 

P ( Z )  =e$ im ei? dt. 

In order to utilize (25) for computational purposes, we shall obtain 
approximate expressions for the factors f* and g, by following 
Leppington's analysis [2]. 

Z 

writing 

g( s) = (s2 - k2) - '12 g*(s), 

and 

R =  ikh(1 - E )  (cos2 eo- sin2 eo/€) 
l - i k h ( i - ~ )  (sin2 eo+€ cos2 e,)/(€ sin eo)-k2h2(1-E)2  cos2 eo/€ * 

The transmission coefficient also can be  completely  calculated  in a 
similar fashion. We observe that R = 0 is possible if 0, = tan-' 
(€'I2) = tan-' (k/kl) = tan-' ( l l n ) ,  with kl = nk, n being the 
refractive index of the half-plane under consideration. 

In order to determine the diffracted field we  proceed  as follows. 
Changing s to --s in (21) we express $(x, y )  in the form 

where s, = - k cos e,, and 

kh( 1 - E )  N(s)=-  k cos2 0, 
i g+(s)g+w COS 0,) 

("I;") (k2-s2)'/2 s g n  ( y )  1 - 

Then following  Rawlins [6], after substituting x = r cos 0, y = r 
sin 8, (- a < 0 < a), we observe that the diffracted far field (T, 

e), valid for  large kr, can be represented in the form 

where 

we  find that as h -+ 0, 

+s [ (I+i> 2 a  Eo-: In ( 9 1  
and 

f+(s)-1+- -(s2-k3'/2 tan-' '," [: (2) ' I2  

+(;-:) s+; is In ($)I . (27) 

We must  note  that these forms of the factors are nonuniform  when 
either s is close to + k  or when (SI is large. But for  the purpose of 
computing the diffracted far field with the help  of (25), the 
expressions (27) are useful except when s is  near f k. When s is near 
f k, we again adopt Leppington's analysis and obtain the following 
results. 

Nears  = k, 
g+(s)-1, g - ( S ) - ( ( S - ~ ) - " ( S - k ) ~ ~ 2 - 2 - " 2 E , k 3 / 2 ]  

and 

f+(s)- 1, f-(s)- 1 +? (2k)'/2(s-k)'/2,  (28) 

and nears = - k (changes to - s in above and use (s - k)1/2  = - 1 . 
(k - s)'/2) 

g-(s)-l, g+(s) - ( s+k)-1 /2[s+k) ' /2-e i~122-1/2EOk3/2]  
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TABLE I 
DIFFRACTION COEFFICIENTS C,,, FOR NORMAL INCIDENCE (0, = 90”) - 

B CdUff (kbO.001) Cdiff (kh=O.Ol)  Cdiff(kb-O.l) 

0’ 0 0 0 

10’  0.00085666 0.00818086 0.05412580 

20°  0.00176842 0.01690641 0.11283916 
~~ 

30’  0.00200503  0.02686441  0.18190884 

40’  0.00401386  0,03910999  0.21014369 

50’ 0.00516119 0.05552835 0.39323780 

60’  0.00821111 0.01990401 0.58279119 

IO’ 0.01241746 0.12039114 0.90191999 

ao’ 0.01990119 0.19441961 1.52062260 
* 

90’ 
~ ~~ ~ 

0.03421254  0.33421254  2.11495580 

100’  0.01999861 0.19613622 1.65556630 

1l.O’  0.01243818 0.12242526 1.01294300 

120’  0.00829131 0.0818786 3 0.74320011 

1 30’ 0.00518531 0.05129156 0.53675038 

140°  0.00408911 0.04059845 0.39057056 

150’  0.00201691 0.02002241 0.21530459 

170’  0.00086om o.ooase258 0.08634135 

100’ 0 0 0 

160’  0.00171655  0.01769811  0,17649304 

kr = l o r ,  E = 0.17, kh = 0.001, kh = 0.01, kh = 0.1. 

fields D ,  by  means of the formulas (25) and (26). We have  computed 1964, p. 689. 
fie numerical  values of the diffraction  coefficient  (see [8]) as defined 161 A. D. Rawlins, “Acoustic diffraction by an absorbing semi-infinite 

by half-plane in a moving fluid,” Proc.  Roy. SOC. Edin., vol. 72, pp. 
337-357,  1974. 

c,, = I (27rkr) &iff I = ( k ‘ o ” ) ( 2 k r ) ” 2 ( E ( I Q ’ ) I  (30) [;7 N. G. Khrebet, “Diffraction of  plane electromagnetic waves on the If+(O)llf+(k cos @I edge of a dielectric half-plane,” Radio Enn. Electron. Phvs.. 

for the case of  normal  incidence (eo = 90”) and for different  values 
of kh (=0.001,0.01, and  0.1)  with kr = 10 T, for a  special  value  of 
E(  =0.17), representative  of  mica or porcelain  materials  (cf. [5 ] ) .  
These  values are presented  in  the  form of a  table,  instead  of graphs, in 
order to see  the  variations clearly. 
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Diffraction of a TM Whispering  Gallery Mode by  the 
Edge of a  Nonperfectly  Conducting  Spherically 

Curved  Sheet 

A. HAMIT SERBEST, MEMBER, IEEE 

Abstract-Electromagnetic  Scattering is a function of the  scatterer’s 
material  properties as well  as its geometry. Therefore, it is necessary to 
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