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v. COMPARISON OF ALGORITHMS 

A. Estimation  Error 
The variance of the  estimation  error (2 - a )  for  the  solutions 

(4) and ( 7 )  is found by substituting  (1)  in (4). Defining 
u2 = E { E )  } and u: = E (si2 }, we find  for large N an  estimation 
error  variance of u2/(Nu,2). 

For  the sign decorrelator  (1 5), we  similarly substitute  (1)  in 
(14) and  find 

1 ”  
- ~i sign (si-l) 
n i=1 

$ - a =  
1 n  
- 2 I si-1 I 
n i = l  

For large n ,  the  denominator a p p r o a c h e s m u ,   [ 3 , p .  2581. 
The  numerator variance is 02 /n .  The  estimation  error variance 
is, therefore, l ru2/2nu~.  The sign decorrelator  thus  increases 
the variance by a  factor of ~ 1 2 .  

Computer  simulation  results verify that  the  two  iterative 
algorithms give close resdts  for 2, and  for  the  prediction 
error  power. 

B. Required  Computations 
Table I compares  the  required  computations  for  each of the 

algorithms  described  for  processing  the  sequence {so, sl,  
t S N  1. 
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AktrQCt-AttentiOn is  drawn to some  recent  results of pattern recog 
nition  theory  in  the context of  designing  an automatic  speaker  verifi- 
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base preparation, the number of customers  for  which  the  system  is to 
be  designed,  and  the  number of features to be  used are  discussed. 
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Fig. 1. Expected  error  rates ( S 2  = 1.0)  (after  Foley [6]). 

I. INTRODUCTION 
This  correspondence consid.ers  some  aspects of design of 

automatic  speaker  verification  systems of prescribed  accuracy. 
A recent survey of the field shows that  the feasibility  of  such 
systems  is  definitely  established,  while the  performance claims 
of such  systems  appear  to  show an optimistic bias [ 11.  This 
problem is inherent  in  the design  and  analysis of any  pattern 
recognition  scheme  and  has of late received  some attention in 
the  pattern  recognition  literature [2 ] .  This  optimistic bias in 
performance assessment is due  to  the  problems of dimensional- 
ity and  sample size, and  this  aspect  has largely  passed on un- 
noticed  in  speaker  recognition  literature  until  recently. Was- 
son and  Donaldson [ 3 ] state: “all our  results  showing  percent 
identification  error  may be somewhat  optimistic,  being based 
on  tests  in which the same  samples  were  used both  for  training 
and  testing of the decision  algorithm.”  One of the  reasons  for 
this  apparent neglect of this  problem  appears to  be that  the 
main  emphasis  in  the area is on the search  for new and  better 
features  for  speaker  discrimination.  Only  recently,  there were 
some  efforts  for  evaluating  and  selecting  features  for use in 
automatic  recognition  systems [4] , [ 51 . Wolf [ 41 uses  I;-ratio 
for  feature  evaluation.  Sambur suggests two  alternative ap- 
proaches:  1)  using  an  independent  test sat for  performance 
assessment, or 2)  a  parametric  approach based on estimating 
unknown  multidimensional  distributions using the design data 
set  and  using well-known bounds  on  probability of error [ 51. 
This  correspondence  draws  attention  to several recent  results 
on this  problem  in  statistical  literature  and  their use in the de- 
sign  of automatic  speaker  verification  systems. 

11. DIMENSIONALITY, SAMPLE SIZE, AND  FEATURE  SIZE 

Kana1 [ 21 points  out  that  the  most  important  recent work  in 
the design of pattern classifiers is that  concerned  with  the rela- 
tionship  between  the  number of features,  the  number of de- 
sign samples,  and  the achievable error rates. These  results are 
concerned  with: 1) quantitative  estimation of the bias  in the 
error  estimation based on design-set,  2) whether  performance 
is improved  by  adding  additional  features, 3) how  best to  use  a 
fixed size sample  in  designing  and  testing  a  classification 
scheme,  and 4) comparison of density  estimation  and  nonpara- 
metric  techniques.  Foley  derives  expressions  for  design-set 
error  rates  for  a two-class problem  with  multivariable  normal 
distributions as a  function of sample size for class (N) and 
dimensionality of feature  vector ( L )  [ 61. Fig.  1  shows  Foley’s 
results  and  the  importance of (NIL)  ratio  on  the design- and 
test-set  error rates. Unless (NIL) is large enough,  the design-set 
errror  rate  has  a large optimistic bias. Foley  recommends  that 
(NIL) should at least be greater  than  three.  At  this  stage,  it is 
instructive to observe the  typical (NIL) ratios  considered  in 
speaker  recognition  literature.  Atal [ 71 uses six utterances  per 
speaker  as  design-set  and  a  12-dimensional  feature  vector giving 
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TABLE I 
THE TEST-SET AND DESIGN-SET ERROR RATES FOR A TWO-CLASS 

PROBLEM (AFTER MOROX [lo]) 

A ! a. P 0.3 , A = 1.049 

B1 = B2 P 10 N1 = 8, Nz = 32 

P E -  (aT) E($) EGp) E($) 

1 0.3081 0.2947 0.3059 0.2915 

4 0.3468 0.2480 0.3831 0.2536 

8 0.3723 0.2040 0.4499 0.2158 

16 0.3986 0.1448 0.5382 0.1621 

B: a. = 0.2, A =  1.683 

1 0.2058 0.1939 0.2045 0.1964 

4 0.2304 0.1696 0.2482 0.1701 

8 0.2E44 0.1435 0.2995 0.1486 

16 0.2871 0.1050 0.3843 0.1150 

Note: “0 = optimal  error  ra?; A = the Mahalanobis distance; p = di- 
mension of feature  vector; E ( o l ~ )  = the  expected  value of the test-set 
error rate;E($) = the  expected  value of the design-set  error  rate. 

an (N/L)  ratio of 0.5, which  evidently gives significant  dispari- 
ties  in design-set, test-set,  and Bayes’ optimum  error  rates, as 
seen from Fig. 1.  Foley’s  results thus  are  useful  in  selecting  the 
size of design data  set  for  a given feature size. For  example, if 
pitch  contour of 10 dimensions is used  as  a  feature,  at  least 3 0  
utterances  per  speaker  are necessary. 

At  this  point, it may  be  appropriate  to  mention  the  opti- 
mum  use of a  given data  set  in  the design and  evaluation of a 
classification  scheme.  There  are  at  least  four  methods [ 81 : 1) 
The  R-method  or  the  resubstitution  method,  where  the design- 
set  is also  used  as  test-set  which gives the maximum  optimistic 
bias. 2)  The  H-method  or  the “hold-out’’ method  where  the 
data  set  is  partitioned  into design-set and  test-set.  The  former 
set  is used to  design the classifier, and  the  latter  to  test  the  per- 
formance [ 71 , [ 91 . This  method gives pessimistic estimates of 
error  and  makes  inefficient use of the  data. 3) The U-method 
or  the leave-one-out method, wherein the  data  set is parti- 
tioned  into  (N-1, l),   and  the classifier is designed on  the basis 
of N-1  samples  and  tested on  the basis of the remaining  one 
sample. All possible N combinations  are  tried  and averaged to 
get  performance  estimation.  4)  The  n-method,  a  compromise 
between U- and  H-methods. All these  point  out  the  need  for  a 
much bigger data base and suggest the use of improved  meth- 
ods  for design of the verification  system. 

111. ERROR RATES FOR A SPEAKER  VERIFICATION  SYSTEM 

In  this  section, we present  the  computed  error  rates  for  a 
two-class pattern  recognition  problem  such as  a  speaker veri- 
fication  problem.  Suppose we have  a  system  designed for M 
speakers, the  number of design  samples  being N 1  and N 2  for 
each of the  two classes, and  a  linear  discriminant  function is 
used for classification. I t  is assumed that  the  feature  vector is 
of dimension p and  the  distributions  for  the  two classes  are 
N(p1 ,  E) and N ( p 2 ,  E). The  assumption of multidimensional 
Gaussian  densities is not  unreasonable  for  typical  speech param- 
eters [ 51. The  probability of misallocation is a  function of 

A, the Mahalanobis  distance  between the  two  populations, de- 
fined  by 

In practice, the discriminant  function is calculated from esti- 
mates of parameters of these  distributions, which gives rise to  a 
number of error rates. Moron [ lo ]  has  tabulated  the  test-set, 
design-set, and  optimal-error  rates  for  a  number of cases from 
which the following  ,figures  are  extracted  and  presented  in 
Table  I. 

I t  is interesting to interpret Moron’s results  in  the  context of 
speaker  verification  systems. The  two classes are “ACCEPT” 
and  “REJECT”  in a speaker  verification  system. When N 1  = 
N2 = 10, we have  a  two-speaker  verification  system,  with 10 de- 
sign  samples  per class. When N 1  = 8 and N 2  = 3 2 ,  we may 
interpret  the  corresponding  results  in  Table  I t o  be for a 
speaker  verification  system  with M = 5 and  eight  utterances 
per  speaker  as  design-set.  “ACCEPT” class has 8 design  sam- 
ples, while “REJECT” class, in  this  case,  has 3 2  design  sam- 
ples. When the  optimal  achievable  error  rate  for  this  system  in 
Table IA is 0.3 with A = 1.049,  the  estimated design-set error 
rate  that will be  obtained  with  a  16-dimensional  feature vec- 
tor  is  seen to  be 0.1448  for  the first  case  and  0.1621  for  the 
second  case.  This  clearly  explains the  optimistic bias in  the 
performance  estimates  obtained in literature.  The  test-set 
error  rates  are seen to  be  increasing to  a  fairly  high  value  and 
indicate  the possible  results if an independent  test-set is used. 
Similar  conclusions  may  be  drawn  from  Table IB. 

Moron’s study [ 101 also gives a  good  statistic,  namely,  the 
Mahalanobis  distance for  feature  evaluation.  A  feature  vector 
with larger A is  better,  as it gives smaller  error of classification. 
Sambur [ 51 discusses the disadvantages of F-ratio  as  a  statistic 
for  feature  evaluation  and suggests that  the relative  merit of a 
group of features  should be  based upon  its  performance  in  a 
classifier. In  practice,  the  estimated  Mahalanobis  distance be- 
tween two  populations gives such  a  useful  statistic,  and 
Moron’s study  indicates  that  there is no need to  build  a  system 
to assess the  error  performance if the Gaussian assumption  for 
feature  distribution is satisified  and  a  linear classifier is assumed. 

IV. CONCLUSIONS 
This  study brings out  the  important  factors of the size of the 

data-set  and  the  dimension of feature  vector  on  the  estimates 
of performance of an  automatic  speaker  recognition  system 
and  explains the  optimistic bias in  the  performance assessments 
available in  the  literature.  The  ultimate  factor  for  efficient dis- 
crimination  turns  out  to He the  distance  between  the  popula- 
tions, thus  confirming  the  need  for  a  continuing  search  for  bet- 
ter  features  for  speaker  discrimination. 
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variables. This,  of  course,  is  exactly  the  software version of 
the well-known technique  for  hardware  filters,  simulating 
shift  registers  by  random-access  memories (RAM’S) and a 
counter. 

The main point  of  the  correspondence  dealt  with,  however, 
is the only  difference  between the software  and  hardware 
version-at the highest  address, a jump to the lowest one  has 
to  occur. In hardware  this  means  that  the  counter  is  simply 
reset by  some logical gate,  whereas  in a software  realization, 
the  gate is replaced  by a programmed  check of the addresses 
in  each  calculation  step. 

In  order  to save the  time  needed  for  these  checks,  the 
author suggests doubling  the  length of the state-variable  mem- 
ory  to keep all  variables x ( n )  in two storage  cells  separated  by 
(N - 1) addresses and,  thus,  to  prevent  the  pointer  from “fall- 
ing outside  the  range” without checking  its  actual  position  in 
every step  [see  Fig. l (a)] .  

This  idea saves time  as  intended,  but  it is not  the  only possi- 
ble solution  of  the problem-and it is not  the best one, es- 
pecially in  the linear  phase  case: 

1 )  Obviously, the same  “trick”  may  be  applied to  the  co- 
efficient  memory as well. Doing so avoids the “storing x(n) 
twice”  operation  occurring  in  each  calculation  cycle. 

2)  In both  solutions,  there is a “dummy  memory cell”-in 
the  version of the  paper  considered,  it  contains  the  latest 
sample  and moves through  the  upper  part of the  doubled 
memory, so it is needed to keep  the program  working in  the 
intended  manner. If the  method is applied to  the coefficient 
register,  it  has  always  the  same  address  and  contains the first 
element of the impulse  response;  thus,  this cell may  as well be 
omitted  [see Fig. l(b)l  . 

3) In  the  linear  phase  case,  doubling  the  coefficient  memory 
means  doubling a (roughly) N / 2  storage  array  instead  of  an 

Comments on “A Simplified Computational Algorithm for 
Implementing FIR Digital Filters” 

ULRICH HEUTE 

In  the  above  paper,’ a software  realization of finite-duration 
impulse  response (FIR) filters  with a length N impulse  re- 
sponse  and  general o r  linear  phase was regarded.  It  makes use 
of  a “moving pointer,”  indicating  the  address  of  the  latest 
sample x ( n )  within a dynamic  storage  array  for  the  state 
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Fig. 1. Memory  doubling  saving  index  checking.  (a)  Doubling the state-variable  storage [ 1 J . (b) Doubling the coefficient 
memory  (minus  one  cell). 
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