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Abstract. A unified gauge theory of massless and massive spin-2 fields is of considerable 
current interest. The Poincare gauge theories wkh quadratic Lagrangian are linearized, and 
the conditions on the parameters are found which will lead to viable linear theories with 
massive gauge particles. As well as the 2" massless gravitons coming from the translational 
gauge potential, the rotational gauge potentials, in the linearized limit, give rise to 2 + and 2- 
particles of equal mass, as well as a massive pseudoscalar. 
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1. Introduction 

There  has been cons iderab le  interest  in gauge theories of massless and  massive spin-2 
fields, in the recent past  (Sinha 1984). Here we invest igate the spin- two gauge fields of 

Poincar6 gauge theory  (Hehl 1980). In this theory  the gauge potent ia ls  are a te t rad  ei" 
and an a n h o l o n o m i c  connec t ion  Fi "a = - F~ ~'. The gauge field s trengths are tors ion 

and curvature ,  defined by 

F J  = c~ej ~ - i~jei ~ - eJFj;Y + e f ; F J ,  (1) 

Fo~a = OiFja Is - ? i f - i f  --  F i f F j / ~  + Fj,~-~'Fj.f. (2) 

It is convenient  to define the following con t rac t ions  of the curvature  and torsion:  

F~ = F ~ f ,  F~p = FT~p:', /:  = F~ ~. (3) 

One  can form three invar iants  quadra t i c  in tors ion (i.e. invar iant  under  general  
coord ina te  t r ans lb rmat ions  and space t ime-dependen t  Lorentz  ro ta t ions  of the tetrad): 

J1 = F~tJ~ U't~>', J2 = F~a>F ~>'t~, 

J3 = F ,  I~'~. ) (4) 

One  can form six invar iants  quadra t i c  in curvature:  

It = F,~,aF~a~'a; I2 = F~a;'~F~'°'~' I 

I3 = F~,t~:.aF'¢e~a: 14 = F~aF ~ ,  j (5) 

I s  = F,pF~'P; 16 -- t :2. 
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The most general Lagrangian density leading to Euler Lagrange equations linear in the 
highest (second) order derivatives of the potentials, is 

~"~ = e(atl l  + a212 + a3[3 + a¢I¢ + asl  5 + a6[ 6 

+ bF + ClJ1 + c2J2 + c3J3 + A), (6) 

where the a's, b, the c's and A are constants. 
According to the extended Gauss-Bonnet theorem (Nieh 1980), the combination 

e(I 3 - 414 + I6) (7) 

is a divergence; this fact could be used to eliminate one of the terms in "//, but it is not 
convenient to do so. The theorem implies that a particular version of Poincar6 gauge 
theory is unaltered by changing the parameters according to 

a 3 ~ a 3 + 0c, a¢ --~ a 4 - 4ct, a 6 --. a 6 + ~. (8) 

For simplicity, we shall consider only the theories with vanishing cosmological 
constant, A = 0. 

The purpose of this work is to discover the conditions that the coefficients in (6) must 
satisfy in order that the linearized version of a Poincar6 gauge theory shall have the 
following properties: 

(i) the irreducible parts of the potentials shall, in the linearised limit, describe 
decoupled modes with well-defined spins 

(ii) tachyons shall be absent 
(iii) ghosts shall be absent (condition of positive energy). 

For simplicity we shall consider only the case of vanishing cosmological constant 
(A = 0). When A 4:0 the linearization on a flat background is no longer appropriate 
and one has to consider perturbations on a de Sitter background. It was shown by 
Lord et a! (1974) that the perturbations on a de Sitter background, in the context of 
Einstein's theory, describe a massive spin-2 field and also a massive spin-zero field. 

2. The teleparallelism limit 

The restricted version of the theory, in which curvature vanishes, is referred to as the 
teleparallelism limit. The reference system can in this case be chosen so that the 
anholonomic connection vanishes (Hehl 1980), so that the torsion becomes simply the 
'object of anholonimity' 

F i ~ ' = ? i e j ~ - ~ f i  L (9) 

The teleparallelism limit of Poincar6 gauge theory is expected to describe classical 
gravitation. In particular, the teleparallelism theory given by 

"t  = - (e/412)( -- ½J1 - J2 + 2J3) (10) 

is Einstein's general relativity (Hehl 1980; Cho 1976). 
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The teleparallelism theories can be linearized by considering small perturbations on 
a flat spacetime. That is, we write 

ei" = 6/~ + 4i" (11) 

and retain only first-order terms in the small quantities qSi ". "I'he distinction between 
Latin (holonomic) and Greek (anholonomic) indices vanishes in this approximation, 
and the orthonomality of the tetrad implies 

4',a = 4t~,. (12) 

We have, now, 

F,~r = 0,4,r - 0p4~r, F, = 0,4 - 0a4,,, (13) 

where 4 = 4~. The linearized Euler-Lagrange equations for 4,p are 

d,K'~t~ = 0 (14) 

where 
K ~p~ = (2c 1 + c2)(0~4 pr - 0~4 ~) + c3(Farl p~ - FP~I'~). (15) 

Contracting on/17 gives 

(2c~ + c2 + 3c3)(I-]4 - 0~P4~#) = 0. (16) 

Therefore, provided that 2Cl + Cz + 3C3 :/: 0, 

D4 = 0~%~. (17) 

Substituting this expression back into the field equations gives 

(2cl + c2)(1-14 p~ - 0~P0~4 y)~) + c3(0~0~4 ~ - 0~4) = 0. (18) 

These equations become the equation for a massless spin-2 field provided we require 
them to be invariant under the gauge transformation 

4~a --+ 0 , ~  + 0p~=. (19) 

This requirement is satisfied provided 

2cl + e2 + C3 = 0, (20) 

The Lagrangian density for the full nonlinear teleparallelism theory is then of the form 

e 
~z = - ~ ( -  ½(2 + 1)Jx + (2 - 1)J 2 -t- 2J3), (21) 

where 2 is a free parameter. These theories all have a Schwarzschild solution and 
coincide with Einstein's theory up to the fourth post-Newtonian approximation (Hehl 
1980; Nitsch 1980). Einstein's theory is given by 2 = 0. The theory of Hehl and his 
coworkers has 2 = 1. 

To avert misunderstanding, we remind the reader that, in a Poincar~ gauge theory, 
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the metric and the connection are independent dynamical fields. In the teleparallelism 
limit, the curvature tensor (2), constructed from the connection, vanishes. This tensor 
should not be confused with the Riemann tensor, constructed from the metric and its 
derivatives by way of the Christoffel symbols. 

The appropriateness of linearizing on a (metrically!) flat background depends on the 
vanishing of the cosmological term. If the cosmological constant is not zero, one has to 
consider perturbations on a de Sitter background. It was shown by Lord et al (1974) 
that the perturbations on a de Sitter background in Einstein's theory describe a massive 
spin-2 field and also a massive spin-zero field. 

3. T h e  r o t o n  s e c t o r  

In order to study the roton sector, we consider a different limit. We retain the dynamical 
freedom of the connection, but freeze the tetrad by imposing the constraint 

e i a = ~ i  a. (22) 

We now have a theory of a field F,~a in Minkowski space. Decompose this tensor field 
into its irreducible paris, writing 

2 (23) 

where 

Ar = F'~r, Z,a~ = Fl,a~l, (24) 

and O,a.~ satisfies the following identities: 

O,p, = - ~O,,,B, O~, = 0,'~ (25) 
~,p,  + ¢~ , ,  + ~,,,p = 0. ] 

The dual of ~ ~ "' ¢,ar,~',t~=~ear~,~b~ satisfies the same identities. The trace A,, the 
completely skew-symmetric part X,p~, and the self-dual and anti-self-dual parts of ~/~,a~ = 
- qJ,o~ are the four irreducible parts of the Lorentz tensor F,a~ = - F,r a. 

It is convenient to introduce the dual of the completely skew-symmetric part, which 
is an axial vector defined by 

It satisfies 

Z~t = 6"aO~'~/,. " (26) 

Z ~ = -- ~v~Zpr~ (27) 

(the minus sign enters because of the signature of the Minkowski metric r/,¢). Note that 

Z,~.~ = ~,p~Z ~, Z ~y = - ~B~X~. (28) 

Now rewrite the torsion-squared terms of the Lagrangian in terms of the irreducible 
parts of F,pr. We obtain mass terms for the rotons. To first order in F,ar, 

F,t3 ~ = 2A[~] ~, F~ = A, ,  (29) 
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and hence 

-z A A • ] J1 = ~,p~t b'ar - 24Z,Z" + 3 a , 

J2 = ½'P~aTff ~a~ + 24Z,Z" + ½A~ A" 

J3 = A~AL 

(30) 

The linear invariant 

F = 2 ~ A  ~ + ½~t~rtp ~ + 6Z,Z ~ - ~A~A ~ (31) 

also provides mass terms; the first term, being a divergence, is irrelevant. Therefore, the 
mass term for the rotons, contained in U, is 

where 

m 2 9 2  
2 (~4J 'P~ + 12Z~Z~ --4A~A~) - ~ -;G~' (32) 

m 2 = b - (I/212). (33) 

The choice m 2 =  0 .  J , -  0 avoids tachyons by making all the rotons massless. This 
particular case corresponds to the combination 

e 
4l:-( 2F -½J1 - J2 + 2J3) (34) 

in the Lagrangian density of the full theory. The teleparallelism limit is then Einstein's 
theory. The spin content of the linearized version of this class of Poincar6 gauge 
theories has been analysed in detail by Kuhfuss and Nitsch (1986), who determined the 
conditions to be satisfied by the coefficients in the curvature-squared part of the 
Lagrangian, in order that linearization should lead to a viable theory of massless 
rotons. 

Our aim is to show that non-zero values of m 2 and 2 can still give rise to a viable 
theory, provided that the roton modes with the wrong sign in the mass term (32) are 
made non-propagating by eliminating their kinetic terms. The remaining modes then 
describe rotons with mass. 

For the convenience of the reader who wishes to compare our work with that of 
Kuhfuss and Nitsch, we give here the relations connecting our invariants with theirs: 

e e e 
L1 = ~Jl ,  L2 = ](J1 - 2J2), L3 = ~(Ji -- 2J3), L 4 = eF, 

e e e e 
L 5 = ~(Ia + I5), L 6 = ~(I 5 - •4), L7 = ~(I1 + 13), Ls = ~(I1 - I3). 

4. Kinetic terms for the rotons 

After some rather heavy algebra, we arrive at the following expressions for the 
variations of the six linearized curvature-squared invariants under variation of Fv~a (we 
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throw out divergences): 

611 = 60w~(- 4 []0 v~ + 8~'~,.~(~, "Vp + X "~) + 8c~ ~t?~A~) 

+ cSZ~(- 4 7q0 ~ + 47~.?~(0 "~p + Z"vB)) 

+ ~A~( - ~ A~ - 8~p~,A" + § 0 , ~ v 0 , ~ ) .  

6I z = 6(p.=p([]O "~o + 20.U(0 ~"" - tp~,.o) _ -~ ~.UA p) 

+ 6X~( - 2 [] Z ~p + 6O.O'Z ""~) 

+ 6Aa(~l--]Aa + 8zaz  d .  _ 2z  z ,/,.~a~ 
9 t~ ~ ' l #  a 3 t ' # t ' v " Y  l ,  

6I  3 = 60~¢,0( -- 8~3uOa(Oa.~ + Zau~)) 

+ 6x~,p( - 8,~.c~'(~ ,p"~ + zP"))  

+ 6Aa( 8-(300 A"~ 
- -  3 p 1~ 

(~I, = ~ 0 ~ (  - 2 ~ % ( 0  ~"~ + zP"v)) 

+ 5Xv~p( - 2~(9.(0 p~" + zP"v)) 

+ lAp( -80Pc~ A"~ 
- -  3 # ] ,  

615 = ,~0~p( - 20~0.(0 ~"p + z ""~) + ~0~0~A ~) 

+ 5Z.~a( - 2 ~ 0 . ( 0  ~"~ + Zv"a)) 

+ 6Aa( _ 8 [] A ~ _ ~c?a3.A. + ~c~ c? 0.~t~), 

616 = 6Aa( - 8c?ac?,AU). (35) 

We now determine the conditions that have to be imposed on the constants a~,..., a 6 
in order that the linear equations for 0.~a, )~a and A a shall be decoupled. The 
requirements that X~a and A a shall not appear in the Euler-Lagrange equation for 0.~a 
are equivalent, respectively, to the conditions 

4(a~ - a~) - a4 + a~ = 0, (36) 

4al - a2 + 2a~ = 0. (37) 

We find that (36) is also the condition that 0~a shall not appear in the equation of)~.~a 
and (37) is the condition that 0 shall not occur in the equation of Aa. 

Now when we look for the condition that the Euler-Lagrange equation of 0~a shall 
be a massive spin-2 equation without spin 1 and spin 0 components, and the condition 
that the equation for )~a shall be pure spin-zero, a remarkable 'coincidence' emerges: 
we find just the same two conditions (36) and (37). 

The 0-equation is given by 

50.~,~( - ko [] O ~ - c? .O'(k~ O u~a + k20 #uv) - mZ0 "a) = 0, (38) 
where 

ko = 4a1 - a2, ~ 

kt = 8a~ + 2a~ + 2a5, l (39) 

kz = - 2a, + 8a 3 + 2a4 + 2a~. 
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After picking out the appropriate irreducible part of the second term, we find the Euler- 
Lagrange equation 

ko [] 0 ~'p + (~k, + ½k2)~u(0"0 "~ - c~O u,') 

+ ½kz0u(c~.0au~ _ Oa~p..~) _ ~(k, - ½k2)O.0~O up" 

kl 

Spin-I is eliminated if this equation implies 0~, ~'~ = 0. Taking the divergence, we find 

+ m263,1] /~ = 0. (41) 

The required conditions are therefore ko + ½(kt - lk2) = 0 and k 2 = 0. They are just the 
conditions (36) and (37)! The equation of ~,~,~ is now 

m ~ 
+ ½~oo(~/~hpo~p _ ~/%//o~,) + .__~,,,o = O. (42) 

2a 5 

Define 

0"" = (?oO~'P, (43) 

Then, because of the symmetry properties of 0 ~ ,  and the divergence condition O~0 ~'~ 
= 0, we find that q~'" is symmetric. Because 0 ~'~ is traceless, we find that 0 ~ is traceless 
and divergenceless. The Euler-Lagrange equation (42) implies a Klein-Gordon 
equation on 0 ' '. We then get the standard massive spin-2 free field theory, in the form 

0~ = 0, (44) 

m 2 

[ ]  ~"~ - 3 ~  ~'~ = 0. 

Another traceless symmetric rank two field with opposite parity is obtained from the 
dual of O"P, in the same way that O ~" was obtained from ~"'~. It satisfies the same 
equations. Ghosts and tachyons are avoided provided 

m z>O, a s < 0 .  (45) 

The Euler-Lagrange equation for X~,~ is given by 

~$Z~,~( - -  flo [ ]  Z v'# - -  fl  l c?uc3~Zu~¢ - n 2 z  ~''~) = 0,  (46) 

where 

flo = 4al + 2a2 

fit = 4ax + 6a2 + 8a3 + 2a, - 2a 5, (47) 

and 

n 2 = 12m 2 + (182//2). (48) 
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More explicitly, the Euler-Lagrange equation is 

flo []  ~(w/~ + ½fl16~ (a~(~,v/~ + ~pX~v + t~vZ~lJ~) + n2xV~ = 0. (49) 

The spin-1 component will be absent provided that this equation implies 0,.;( ~a = 0. 
The required condition is fit -- 3flo. But this is just (36)! The equation satisfied by the 
axial vector Z~ turns out to be simply 

fl0~at6~.z'u + n2Z~t = 0. (50) 

The divergence condition on X~  is equivalent to 

t~.Z ~ - t~Z ~ = 0 (51) 

so that X~ = t~.X for some pseudo-scalar ~, satisfying the Klein-Gordon equation 

[ ]  z + (n2//~o)Z = 0. (52) 

Ghosts and tachyons are avoided provided 

n 2>0 ,  fl0 >0.  (53) 

The Euler-Lagrange equation for A. is 

~9(a 1 - a 2 + 3a 3 + 3a 4 + 2a 5 + 9a6)OP3uA" - ~m2A" = 0. (54) 

The mass term has the wrong sign. A tachyon is avoided if we eliminate the kinetic term 
by imposing the condition 

at - a2 + 3(a3 + a4) + 2as + 9a6 = 0. 
That is, 

3a 6 = at -- a 3 -- a4. (55) 

the Euler-Lagrange equation of Au in this linearized free-field limit is then simply 
A u = 0. In the full theory, Au is proportional to the trace of the spin-tensor of matter 
(compare the way that torsion in Einstein-Cartan-Kibble-Sciama theory does not 
propagate but is determined algebraically by the spin-tensor of matter. The ECKS 
theory is the very particular case in which the only non-zero coefficient in (6) is b). 

The physical requirements that we have imposed are by no means sufficient to 
determine a unique theory. Apart from the inequalities, we have found just three 
conditions (36), (37) and (55) on the eight parameters a l ' "a6,b ,2  (the parameter l is 
known: it is the Planck length). Theories connected by the parameter transformation (8) 
are equivalent. So we have obtained a four-fold infinity of theories. Even fixing 2 and 
the masses of the spin 2 and spin zero rotons would still leave one free parameter. The 
theories belonging to such a one-parameter family are not equivalent beyond the 
linearized approximation; they are distinguishable in their predicted interactions 
among rotons. 

5. Conclusions 

We have found a set of conditions that must be satisfied by the coefficients in the 
Lagrangian density of a Poincar6 gauge theory, in order that the linearized theory, 
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interpreted as a theory of fields in a flat background space, shall describe massive 
'rotons' with unique spins without ghosts or tachyon modes. We have arrived at a class 
of theories which all have the following features: as well as the classical graviton which 
is the massless 2 + described by the translational gauge potential, there are also massive 
2 + and 2- rotons (of equal mass), as well as a massive pseudoscalar (0-) roton. 

The existence of massive spin-2 fields in Poincar6 gauge theories is particularly 
interesting in view of the successes of strong gravity theories (Sivaram and Sinha 1979) 
in which the consequences of the hypothesis of a short range strong component of 
gravity are explored. 
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