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Abstract

Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous
materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix
debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used
to analyze the effect of damage growth on the modal frequencies in a qualitative manner.
Phenomenological models of material degradation for homogenous and composite materials are used.
Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-
of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite
materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also
proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally,
since operational data are noisy and also contaminated with outliers, denoising algorithms based on
recursive median filters and radial basis function neural networks and wavelets are studied and compared
with a moving average filter using simulated data for improved health-monitoring application. A novel
recursive median filter is designed using integer programming through genetic algorithm and is found to
have comparable performance to neural networks with much less complexity and is better than wavelet
denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage
indicators.
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1. Introduction and background

Helicopters are susceptible to damage in the main and tail rotor blades and in the transmission
system due to gear spalling. A helicopter main rotor system operates in a severe dynamic and
unsteady aerodynamic environment leading to fatigue damage. Therefore, helicopter rotor blades
require frequent inspection, repair and replacement. The rotor blade in a helicopter is a highly
sensitive part because it is exposed to periodic vibratory and fatigue loads as well as the threat of
ballistic damage. Several researchers have addressed the damage detection and isolation problem
for helicopter blades in recent years using helicopter rotor response and hub loads [1-4]. In
general, these studies were conducted using mathematical models of the damaged rotor in flight.
However, hub loads are difficult to measure in flight. Addressing this issue, Kiddy and Pines [5]
detected damage in rotating composite beams using a constrained minimization of the modal
residuals of the structural response. Cattarius and Inman [6] used beat phenomenon approach to
detect structural damage in helicopter rotor blade. The authors in Ref. [6] also modeled the
damage a mass increase (locally added weight) and mass decrease (drilled holes in the
structure). The beat phenomenon is derived from frequencies but magnifies changes in frequencies
due to damage. Ganguli [7] developed a fuzzy logic-based algorithm based on both non-rotating
and rotating frequencies and showed that damage could be detected using rotor blade modal data.
In general, the damage detection in helicopter blades is based on some health measure of the
system. Typical health measures are changes in blade flap (out-of-plane bending), lag (in-plane
bending) and torsion deflection between damaged and undamaged blades, vibratory hub loads,
fuselage vibration, blade frequencies and mode shapes.

Modal frequencies are often poor indicators of incipient damage because they are the global
properties of the system and exhibit small changes even for large damage levels. However,
according to Cattarius and Inman [6], helicopter blades are designed to take substantial amount
of damage prior to failure. Because helicopter blades are designed to sustain considerable damage
[7], the use of rotating frequencies for online health monitoring appears useful. Larsen et al. [§]
used modal parameters to monitor damage in wind turbines. Larsen et al. [8] note that small
damages do not affect modal properties to a measurable extent. Therefore, the modal damage
indicator acts as a filter which avoids false alarms due to insignificant damage.

Recent studies have looked at online estimation of frequencies [9,10]. Rew et al. [9] investigated
various methods for the real-time estimation of multi-modal frequencies and validated through
numerical results using experimental tests. Brinker et al. [9] introduced a new frequency domain
technique for the modal identification of output-only systems, i.e. in the case where the modal
parameters must be estimated without knowing the input exciting the system. The technique



introduced by Brinker et al. [10] is user friendly and is closely related to the classical approach
where the modal parameters are estimated by simple peak picking.

Selected studies have looked at application of experimental modal testing to rotating structures
[11]. Wilkie et al. [12] conducted a modal analysis of a model helicopter blade in a hover test
facility. Rotating frequency measurements for each mode were made at rotor speeds that ranged
from 150 to 660 rpm at approximately 100 rpm intervals; the non-oscillating collective pitch of the
blades was fixed at 0°. At each rpm considered, the blades were excited by sinusoidally exciting the
collective pitch of the rotor with a hydraulic control system. The collective pitch oscillation
frequency was varied over a 10-20 Hz frequency band in the vicinity of each modal frequency. The
amplitude of the vibrating hub loads caused by swash plate movement together with the small
amount of aerodynamic excitation due to collective pitch oscillation was sufficient to excite all the
modes present. The blade modal frequencies were obtained by processing blade and pitch link
strain gauge signals with an electronic signal analyzer. Output signal from the strain gauges
mounted on the blade were used as a measure of the blade modal deflection. The pitch-link
mounted strain gauge signals were used as a measure of the force input to the structure. A signal
analyzer was then used to generate a frequency response function from these measurements. The
frequency of the excited blade mode was obtained from the amplitude peak of the frequency
response function. A schematic representation of this is given in Fig. 1.

Most rotor health-monitoring work has looked at diagnostics, which involves static indicators,
where as prognostics involves dynamic indicators. Diagnostics indicates whether or not damage
has taken place and provides indication about the severity of damage. Prognosis indicates the rate
at which damage is accumulating and the remaining useful life that could be expected from a
component or system. Some researchers have started looking at prognostics using a dynamical
systems approach [13,14]. These approaches consider a slowly evolving damage process coupled
to a directly observable fast-time dynamical system. These algorithms are not related to any
specific damage physics and are general in nature.

Physically, it is clear that fatigue damage growth is an important aspect of the evolution of
damage in helicopter rotor blades. While the fatigue of homogenous materials is well understood,
the analysis of fatigue in composites is difficult because the material properties of the constituents
of the composite are quite different. For homogenous materials, damage accumulates at a slow
rate in the beginning and a single crack propagates in a direction perpendicular to the cyclic
loading axis. Fatigue damage in homogenous materials increases with applied cycles in a
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Fig. 1. Schematic representation of rotating frequency measurement.



cumulative manner [15]. On the basis of damage curve concept, this damage can be represented by
a power relationship D = (n/N)™, which is the nonlinear load-dependent damage theory [15].
Therefore, damage accumulation in homogenous material as shown in Fig. 2 can be
mathematically modeled using

o=

where D is the normalized accumulated damage, m; is a material-dependant parameter, 7 is the
number of applied loading cycles, and N is the fatigue life at the corresponding applied load level.
However, in composite materials, the fracture behavior is characterized by multiple damage
modes like crazing and cracking of the matrix, fiber/matrix decohesion, fiber fracture, ply
cracking, delamination void growth, and multidimensional cracking. All these modes occur early
in the fatigue life of composites.

The mechanics of crack initiation and crack growth are very complicated in composite
materials. Even for simple tension loading of a unidirectional reinforced composite along the fiber
direction, cracks can initiate at different locations and in different directions. Crack can initiate in
the matrix, perpendicular to the direction of loading. Cracks can also initiate at the interface
between the fiber and the matrix in the direction of the fibers due to debonding. For general
composite laminates, fracture mechanics cannot be used for fatigue analysis of composite
materials.

Fiber reinforced composites are good for fatigue life. However, the same does not apply to the
number of cycles to initial damage or to the evolution of damage. In a recent paper, Degrieck and
Paepegem [16] have classified fatigue models based on these basic categories. The first one
approach does not take into account the actual degradation approaches, but uses S—N curves and
introduces some sort of fatigue failure criterion. These so-called fatigue life models are developed
by extensive experimental work. The second class of models includes the phenomenological
models for residual stiffness and strength. Residual stiffness models account for the degradation
of elastic properties during fatigue. Stiffness can be measured frequently during fatigue
experiments and can be measured without further degrading the materials. Some models are
deterministic and a single-valued stiffness property is predicted. Others are statistical and predict
stiffness distributions. The third class of models describe the deterioration in the composite
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Fig. 2. Damage accumulation with cycle ratio.



material in direct relation to the actual physical damage such as transverse matrix cracks,
delamination size, etc. These models are also called mechanistic models. Mechanistic models are
difficult to apply because fatigue damage growth is complex in terms of evolution and geometry.
Some mechanistic models consider as many as seven difficult damage mechanisms. However, the
application of such models is a cumbersome task and needs finite element analysis of the
individual matrix and stresses.

The modulus decay due to fatigue in composite material can be divided into three stages [16].
Stage I undergoes a rapid stiffness reduction. This reduction is mostly due to the development of
transverse matrix cracks. Stage II damage growth occurs in an almost linear fashion with respect
to cycles and accounts for the high fatigue life of composites. This stage is dominated by edge
delamination and additional longitudinal cracks along the 0° fibers. Stage I1I shows rapid stiffness
degradation purely due to local damage progression and the initial fiber fractures leading to
strand failures.

The stiffness-based models can be defined in terms of a damage variable D where D = 1 — E/E,.
Here D is the accumulated fatigue damage, E is the Young’s modulus of the undamaged material,
and E'is the Young’s modulus of the damaged material. The extent of damage is thus quantified by
measuring the Young’s modulus of the material. Early damage models included a linear damage
accumulation model by Nicholas and Russ [17]. Other nonlinear damage accumulation functions
here have also been used [18,19]. These early models could not effectively capture all the three
damage stages. For example, the model proposed by Subramanian [18] explains the fast damage
growth during the early loading cycles in stage I but does not properly describe the rapid damage
growth in stage III. Halverson et al. [19] models the stage 111 quite well but not the stage I. Mao
and Mahadevan [20] have recently proposed a mathematical model that accurately describes all
three stages of the damaged process. They proposed a function of the form

D n\ " 1 n\ nm 2
_q<N> +( Q)(N> ' )
Here D is the normalized accumulated damage, ¢g, m; and m, are parameters, n is the number of
applied cycles, NV is the fatigue life at the corresponding applied load level. The first term in the
above equation with m| <1 captures the rapid damage accumulation during stage I. The second
term shows the fast damage growth at the end of the fatigue life with that at the end of the fatigue
life with m; > 1. The parameters ¢, m; and m, are obtained from fatigue experiments. The nature of
the damage curves for homogenous and composite materials is shown in Fig. 2.

It is possible to measure the stiffness degradation directly in test specimens. However, in
realistic structures it is easier to measure or track another variable which is tied to the stiffness.
Moon et al. [21] propose the use of natural frequencies of composite laminates as a global damage
variable. The fatigue damage state of the structure can then be measured using the so-called
‘residual natural frequency’ which could be measured from vibration tests. The authors
demonstrate experimentally that enough frequency degradation can be obtained to monitor the
condition of composite laminates.

Badewi and Kung [22] also studied the effect of fatigue on the modal properties of composite
structures. They correlated their results in changes in modal properties to select graphite epoxy
composite specimen. They mention that the idea of using modal properties can be used as a real
time indicator of damage in structures. The authors also mention that nondestructive methods



such as those based on C-scan, thermography, acoustic emission and others have been
demonstrated to various extents for detecting internal damage in composites. A shortcoming of
these approaches is the need for sophisticated equipment and highly skilled operators. Further,
the interpretation of the output from these devices is not straightforward.

Older helicopter rotors were often made of aluminum, while newer rotors are fabricated using
composite materials. Composite materials are widely used in numerous aerospace applications
because of their high specific stiffness to weight ratio and strength. Fatigue is the main failure
mechanism for structures under cyclic loading. Helicopter rotors are subject to 1/rev loads as the
primary source of fatigue. This fatigue mechanism is due to the time-varying velocity experienced
by the blade section in forward flight, which leads to time-varying aerodynamic forces. In this
study, we investigate the behavior of typical rotor system damage indicators such as blade-
rotating frequencies of the damaged blade. The results are qualitative as we are concerned about
the functional nature of evolution of rotor system parameters with fatigue damage growth, and
not with their exact values, which can be changed for different structures because of the nature of
loading, characteristic of the composite laminate and inherently stochastic nature of damage
growth. The results in this study provide insight into how the values of the rotor system modal
parameters evolve with time and compare the difference between rotors made of composite
materials with those made of homogenous materials. The results also show if fatigue damage
causes enough changes in the rotating frequencies to be measurable, given the considerable
stiffening effect of rotation. Further, the simulated data generated using the finite element
simulations are used to study signal-processing algorithms for use in improved health monitoring.
Because operational rotor data are noisy and have outliers, signal processing prior to the use of
data for diagnostic and prognostics is very useful. A powerful recursive median filter and radial
basis neural network and wavelet-based approach are developed and compared for denoising the
rotor frequency signals.

2. Finite element model of helicopter rotor blade

The helicopter blade is modeled as an elastic beam undergoing flap (transverse) bending, lag (in-
plane) bending, elastic twist and axial deflections [23]. Governing equations for free vibration of a
rotor blade are derived using Hamilton’s principle over a time period of rotor revolution (y = 0—27x):

2n
oIl = (0U —90T)dy =0, 3)
0
where 6U and o8T are virtual variations of strain energy and kinetic energy respectively and oI1
represents the total potential of the system. The dU and 67T are based on the Hodges and Dowell [23]
approach and are given in Ref. [24].
Finite element methodology is used to discretize the governing equations of motion. After
discretization, the Hamilton’s principle can be written as

2n N
/0 > (8U; = 6T dy =0. (4)
i=1



The blade is discretized into N finite beam elements of equal length. Each beam element
consists of 15 degrees of freedom as shown in Fig. 3 with N=20. These degrees of
freedom correspond to cubic variations in axial elastic and (flap and lag) bending deflections
and quadratic variation in elastic torsion (Nomenclature). Element connectivity is established
by continuity of slope and displacement for transverse and inplane bending deflections,
whereas for elastic twist and axial deflection it is established by continuity of displace-
ments. Such an element ensures linear variations of bending and torsion moments and
quadratic variation of axial force within the elements. These degrees of freedom are
distributed over five element nodes (two boundary and three interior nodes). There are
six degrees of freedom at each element boundary node. These six degrees of freedom correspond
to ue,v,v',w,w and ¢. There are two internal nodes for axial deflection u,, and one internal
node for elastic twist ¢. Between elements there is continuity of displacement and slope for
flap and lag bending deflections, and continuity of displacement for elastic twist and axial
deflections. The two internal nodes are needed for the axial degree of freedom to accurately
represent the distribution of centrifugal force over the element. With two internal nodes, the
distribution of u, over the element is cubic. Hence, the axial force distribution is quadratic and of
the same order as the centrifugal force. The internal node for the torsional deflection assumes that
the torque approximation over the element is of the same order as the flap and lag bending
moment [25].

Using interpolation polynomials, the distribution of deflection over a beam element is expressed
in terms of the elemental nodal displacements ¢;. For the ith beam element, one would obtain the
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Fig. 3. Rotor blade finite element model and locations of simulated structural damage (20 elements of equal length).



blade deflections as

u(s) H, 0 0 O
u(s) 0O H O 0 5
u(s) - W(S) —_ O O H O qia ( )
H(s) 0 0 0 H
where the elemental nodal displacement vector is defined as
O =lw w wz wg v Vv v ow oW owa wh by ¢y sl (6)

For frequency analysis, the elemental mass and stiffness matrices are derived and then assembled to
form the global mass and stiffness matrix. The cantilever boundary conditions are then applied to the
global mass and stiffness matrix. The rotating frequencies of the helicopter blade are then calculated.

3. Damage modeling

Damage is modeled using the concept of effective stress. Thus, for undamaged material e = o/E
and for damaged material ¢ = g/E(1 — D). The elasticity modulus of the damaged material is
defined as [26]

E@ = EW(1 — D), (7

where the superscripts # and d represent the undamaged and the damaged state of the structure.
With this model, D =0 corresponds to no damage and D =1 to complete damage. The
experimental results for composite materials show that the measured Young’s modulus or
stiffness just before complete failure of the specimen is not zero. The final accumulated damage is
1 — E;/E™ instead of unity when the material fails, where E is the Young’s modulus when the
material fails. Therefore, for composite materials, a new damage parameter can be defined with
the final Young’s modulus Ey as

EW _ g

= ——. 8
T E, ®)

We can calculate the damage of the material using either of the parameters described with Egs. (7)
or (8) depending on whether the material is homogenous or heterogencous. Because here we are
doing a qualitative study of the effect of the damage growth on rotor system parameters, we
assume Ey = 0, so for our convenience we use the damage parameter described with Eq. (7).
The plots in Fig. 2 are taken from Ref. [20] and are used to model the evolution of damage in the
material. We assume a constant applied load in this study.

4. Background on signal processing

We show later in the paper that modal frequencies can be used to monitor the growth of
damage. However, operational data from a helicopter rotor are noisy and contaminated with



outliers. Linear filters are not good at removing outliers. Therefore, we study three nonlinear
filters: (1) weighted recursive median filter (WRM), (2) radial basis function (RBF) neural
networks and (3) wavelets to denoise the simulated signals and compare the results with a linear
finite impulse response (FIR) moving average filter. The application of the WRM Filter in damage
detection is new in this study.

4.1. Weighted recursive median filter

Recursive median (RM) filters are an important class of nonlinear filters. Recursive median
filters possess superior noise attenuation capability than their non-recursive counterparts [27]. A
RM filter uses some previous output values, instead of the input values for arriving at the next
output i.e. for a RM filter

Y = median(¥y,_ i, Vuii1s s Xns - « s Xnk— 1> Xk )s )

where N = 2k + 1 is the window length of the filter. Recursive median filters also have a higher
immunity to impulsive noise or outliers in the data than median filters. With the same number of
operations, recursive filters achieve more noise reduction than non-recursive filters.

A modified version of the recursive median filters is the WRM filter [28]. The weights allow the
filter to be tuned to particular types of signals.

Vn = median(Wn_k O Vi Wn—ke+1 O Vy—fe15-+ s Wn O Xy o o« s Wi ke—1 O Xppk—15 Witk O x,1+k), (10)

where N = 2k + 1 is the window length of the filter and o stands for duplication. While weights
can take on real values, it has been proved that integer values are adequate for a weighted median
filter. Filters with positive integer weights are limited to low-pass capabilities. In our damage
detection applications, we are looking at a ‘low-pass’ application where a health residual is
contaminated with high-frequency Gaussian noise and outliers. Hence we shall only consider
positive integer weights. The weights can be chosen to be symmetric, w, ; = w, ;i =
0,1,2,..., k to avoid bias effects [29]. Problems where an infinite number of iterations are
needed by a weighted median filter can often be synthesized by a single pass of a properly designed
recursive weighted median filter. WRM filter can achieve the effects of non-recursive WM filter
of much longer window sizes. The calculation of proper weights is important for such filters
and allows their tuning for specific type of signals. This weight selection is considered later in
this study.

4.2. RBF neural network

Multilayer perceptron neural networks trained using back propagation have been used in
denoising signals [30,31]. However, these networks are very time consuming for training. An
alternative approach using the radial basis function network (RBFN) is used in this study. The
RBFN model consists of three layers: an input layer, a hidden (kernel) layer and an output layer.
The nodes within each layer are fully connected to the previous layer. The input variables are each
assigned to a node in an input layer and pass directly to the hidden layer without weights. The
hidden nodes or units contain the RBF, also called transfer functions. An RBF is symmetrical
about a given mean or center point in a multidimensional space. In the RBFN, a number of



hidden nodes with RBF activation functions are connected in a feed-forward parallel architecture.
The parameters associated with the RBFs are optimized during training. The K-means clustering
approach [32] is used to train the RBFN. Details of this approach are given by Leonard [32] and
by Reddy and Ganguli [24].

4.3. Wavelet

Wavelets can also be used for denoising signals. The wavelet transform (WT) was developed as
a method to obtain simultaneous, high-resolution time and frequency information about a signal
by using a variable-sized window region (the wavelet) instead of a constant window size. Because
the wavelet may be dilated or compressed, different features of the signal are extracted. A narrow
wavelet picks up on the lower frequency components of the signal. The mathematical description
of the continuous wavelet transform (CWT) is described by

CWTY(¢,5) = P/(1,x) = ¢1|?| / x(z)lp*(t - f) d. (11)

N

The scale, s, of the wavelet may conceptually be considered as the inverse of frequency. The
wavelet is compressed if the scale is low and dilated if the scale is high. The CWT reveals more
details about a signal, but because all scales are used to compute the WT, the computation time
required can be enormous. Therefore, the discrete wavelet transform (DWT) is normally used.
The DWT calculates the wavelet coefficients at discrete intervals of time and scale, instead of at all
scales. The DWT requires much less computation than the CWT without much loss in detail.
With the DWT, a fast algorithm is possible which possesses the same accuracy as other methods.
The algorithm makes use of the fact that if scales and positions are chosen based on powers of two
(dyadic scales and positions) the analysis is very efficient. More details about wavelets are
available from Ref. [33].

5. Numerical simulations

We consider a uniform equivalent to a Eurocopter BO105 hingeless helicopter rotor blade and
add damage in the blade at different locations of the blade. Rotor properties are shown in Table 1
and are taken from Ref. [34]. The blade is divided into 20 finite elements of equal length. The
frequencies of the baseline rotor are shown in Table 2, where they are non-dimensionalized using
rotor speed. The locations of damage are at the root, an inboard element which is at 30% of blade
radius from the rotor and an outboard element that is 60% from the root. The frequencies
considered are the first four flap and lag frequencies and the first two torsional frequencies. Using
the damage curves shown in Fig. 2, least-square method can be used to optimize the values of the
parameters of Egs. (1) and (2). The damage growth curve for homogenous material shown in
Fig. 2 is obtained from Ref. [20]. We have obtained the value of the parameter m;, with RMS
error =0.0043 using the steepest gradient optimization method [35] to solve the least-square
problem for the damage model given in Eq. (1). The value is: m; = 4.0065. Similarly, we have
obtained the optimized values of the parameters ¢, m;, and m; RMS error=0.00018 for
composites using the damage model given in Eq. (2). The values are: ¢ = 0.6982, m; = 0.3399,



Table 1
Rotor properties

Number of blades 4

Radius (m) 4.94

Hover tip speed (m/s) 198.13

my, kg/m 6.46

EI,/myQ*R* 0.021

EIZ/mOQ2R4 0.0201

GJ /myQ*R* 0.007688

Table 2

Baseline frequencies for first 11 modes

Mode no. Mode Frequency/Q Frequency (Hz)
1 First lag 0.74 4.72
2 First flap 1.14 7.28
3 Second flap 3.51 22.41
4 Second lag 4.44 28.34
5 First elastic twist 4.55 29.05
6 Third flap 7.99 51.01
7 First axial 11.05 70.54
8 Third lag 11.30 72.14
9 Second elastic twist 13.48 86.06

10 Fourth flap 14.42 92.06

11 Fourth lag 21.46 137.0

my = 9.99. Therefore, for homogenous material, the model is

71\ 4.0065
p=(y) (12)
and for composite materials
7 0.3399 7 999
D= 0.6982<N) +(1—0.6982) <N) . (13)

5.1. Frequency variation

Fig. 4 shows the change in frequency with cycle ratio for homogenous material. We see in Fig. 4
that for homogenous material the change in frequencies with cycle ratio is very less for at least half
the total number of cycles (n/N ~ 0.5). In the next stage, there is a gradual decrease in frequency
with cycle ratio. Finally, we see a rapid decrease in frequencies with time for the rest of the life of
the blade. In Fig. 5 we can see that, for composite material, the frequencies decrease rapidly for



the first few cycles. In the next stage, the frequencies decrease slowly and steadily with time.
Finally, the frequencies decrease rapidly during the last stage before the failure occurs.

5.2. Frequency delta model

By using a linear transformation of variables, a mathematical model can be developed for the
behavior of rotating frequency with time. The difference between the frequency of the damaged
and undamaged blade is used as the system indicator for damage and is referred to as a “‘health
residual” and is positive for structural damage because the reduction in stiffness for a damaged
blade decreases the frequency. Here, the A is defined as Ad = 0@ — w® and is measured in
Hertz. The measurement delta is expressed as a percentage change

0@ _ @

According to Gertler [36], a key task in fault detection is residual generation. Residuals are
quantities which are nominally zero. However, they become nonzero due to faults (and also due to
disturbances, noise and modeling error). Residuals are generated from the monitored plant. Using
frequencies, A@ or Aw can be used as residual generators. A schematic representation of the
residual generator is given in Fig. 6. Gertler [36] mentions that because of the presence of noise
and modeling errors, residuals need to be threshold tested. Such a threshold can be obtained
experimentally or through numerical simulators. Any threshold involves a trade-off between false
alarms and missed detections. A scalar residual can be threshold tested as follows:

if r(t)<T then no faults
>T then fault.

A good strategy is to declare a fault based on results at several discrete time points. A similar test
for a vector residual can be performed using ||r(?)||.

Figs. 7 and 8 illustrate the frequency delta variation with time. The variation in frequency delta
pattern is almost similar to the damage growth rate pattern that we can see from Fig. 2. Thus, by
the transformation in Eq. (14), the frequency delta variations can be expressed as curves that are
similar to Fig. 2. Towards the region of high damage, the frequencies show change of about
10-30%. According to Friswell [37], frequency measurements have a resolution of about 0.1%.
Therefore, from Figs. 7 and 8 there is substantial change in frequencies at high damage levels and
we can use the evolution of modal frequency as a useful damage indicator. The first lag and
torsion mode frequencies show significant change with the lag mode being sensitive to location of
damage. At 90% life point, the percent frequency change for the homogenous material is shown in
Table 3 and for composite material in Table 4. These frequency changes can be used to define
thresholds beyond which it is dangerous to operate the rotor. In general, it is recommended
practice to either threshold individual components of the damage indicator Aw; or a norm ||Aw||.
For the homogenous material in Table 3, the 4th lag and flap and the first torsion mode show
measurable changes for all three damage locations. Thus a rule could be defined as

IF Aw(4th lag)>4.13% AND Aw(4th flap) > 3.66% AND Aw(lst torsion) > 3.81%,
THEN DAMAGE APPROACHES LIFE LIMIT.
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Fig. 4. Frequency variation for homogenous material with cycle ratio.
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Fig. 5. Frequency variation for composite material with cycle ratio.

1.0

Here we have used the minimum change in frequencies to establish a threshold. Such a selection
may lead to some false alarms. If we select the maximum change in the frequencies to establish a
threshold, more missed alarms will occur. In general, threshold selection involves a tradeoff
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Fig. 6. Schematic representation of residual generator.

between false alarms and missed alarms [36]. The selection of the minimum for thresholding is a
conservative choice and minimizes missed alarms. For composite material, the 4th flap, lag and
2nd torsion show change for all the damage locations considered. A rule for damage in this case
could be given as

IF Aw(4th lag)>6.76% AND Aw(4th flap)>7.39% AND Aw(2nd torsion)>7.99%,
THEN DAMAGE APPROACHES LIFE LIMIT.

In addition, it is possible to define a diagnostic chart using these results. Let us replace the
numerical values of A@ using the following linguistic definition: 0<Aw<2.5%, small(S);
2.5<Aw < 5%, Medium (M); 5<Aw<7.5%, Medium High (MH); 7.5 <Aw<10%, High (H); and
Aw>7.5%, Very High (VH). Then Tables 3 and 4 can be expressed as Tables 5 and 6, which
represent a knowledge base for an expert system and is a diagnostic chart.

From Figs. 7 and 8, it is clear that the frequency delta variations follow a form that is similar to
the damage growth models in Fig. 2. As an example, we consider the curve for 3rd lag mode
frequency delta for inboard damage and fit the expressions in Eq. (1) for homogenous material
and Eq. (2) for composite material.

For the 3rd lag Aw, using the curves shown in Figs. 9 and 10, we have obtained the optimized
value of the parameter for homogenous material m; = 5.1483 and for composite material ¢ =
0.3349, m; =0.4341, mp = 11.0069, with RMS error=0.00052 and RMS error=0.0046,
respectively, for homogenous and composite material by using the steepest gradient and DFP
method [35] to solve the least-square problem for best curve fit. For homogenous material, the
model is

_ 71 5.1483
Ad = (N) (15)
and for composite material
) 7\ 0.4341 7\ 11.0069
A = 0.3349 (N) + (1 = 0.3349) <N) . (16)

The above results show that there exists a clear relationship between accumulation of damage in
the rotor blade and rotating frequencies. Therefore, if we can find out the frequencies at a certain
time with the help of some permanently installed sensors on the rotor blade, we can calculate the
damage at that particular time and we can know the condition of the helicopter blade and its
remaining life at that instant of time. This could be done by tests of the type described in Ref. [13]
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Fig. 7. Frequency delta variation for homogenous material with cycle ratio.

and Fig. 1. after certain specified time intervals. So the rotating frequencies can be considered as
virtual sensors of damage. A virtual sensor uses model-based information to ‘measure’ a difficult-
to-measure variable. For example, the damage D is difficult to measure directly but can be found
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Table 3

Frequency delta for homogenous material of n/N = 0.9 at different damage levels

Modes Root Inboard Outboard
First lag 13.50 2.97 0.28
Second lag 6.11 0.45 6.06
Third lag 5.60 4.87 1.79
Fourth lag 4.76 4.39 4.13
First flap 3.10 0.26 0.01
Second flap 4.19 0.31 3.49
Third flap 4.60 3.51 1.21
Fourth flap 4.22 3.66 3.75
First elastic twist 5.70 7.80 3.82
Second elastic 5.59 1.06 7.34
Table 4

Frequency delta for composite material of n/N = 0.9 at different damage levels

Modes Root Inboard Outboard
First lag 24.93 5.16 0.51
Second lag 9.71 0.79 10.69
Third lag 8.39 8.20 3.00
Fourth lag 6.79 6.81 6.76
First flap 4.99 0.43 0.02
Second flap 6.52 0.53 5.94
Third flap 6.88 5.82 2.04
Fourth flap 10.91 14.66 7.39
First elastic twist 10.16 1.89 13.32
Second elastic 11.81 15.89 7.99
Table 5

Frequency delta signature for homogenous material of n/N = 0.9 at different damage levels

Modes Root Inboard Outboard
First lag VH M S
Second lag MH S MH
Third lag MH M S
Fourth lag M M M
First flap M S S
Second flap M S M
Third flap M M S
Fourth flap M M M
First elastic twist MH H M
Second elastic MH S MH




Table 6
Frequency delta signature for composite material of n/N = 0.9 at different damage levels

Modes Root Inboard Outboard
First lag VH MH S
Second lag H S VH
Third lag H H M
Fourth lag MH MH MH
First flap M S S
Second flap MH S MH
Third flap MH MH S
Fourth flap VH VH MH
First elastic twist VH S VH
Second elastic VH VH H

using Egs. (12),(13) and (15),(16) once Aw is known. Similarly, the used-up life (n/N) of the
structures can be found from Egs. (15) and (16) if Aw is known.

6. Signal processing

A key issue in the design of virtual sensors is their sensitivity to modeling errors and noise [38].
A good strategy to improve detection is by filtering the residuals, usually by low-pass algorithm,
to reduce the effect of noise while keeping the features representing the fault. A schematic
representation of the filter proposed in Ref. [36] is shown in Fig. 11. The low-pass filter is applied
individually to each element of the residual vector. Typically, linear low-pass filters are used. In
general, filtering greatly improves fault detection performance. However, long window filters
which are more effective in noise removal can result in detection delay because of excessive
smoothing [36]. In operational deployment, noise is always present in sensor measurements.
Helicopters are also highly noisy and one problem with using higher modes for health monitoring
is that they can have relatively higher levels of noise than the lower modes. Another problem is
that, besides Gaussian noise, outliers can be present in the measurements. While linear filters
which are mostly used for denoising residuals are optimal for Gaussian noise removal, they are
not good at removing outliers and also tend to smooth out the sharp changes in the signal which
occur before failure. The nature of the signal prior to failure is critical and needs to be preserved
while removing noise and outliers. The weighted recursive median filter is a good tool for such
signals (given in Eq. (10)). This WRM filter was discussed before. The procedure for proper
weight selection of the WRM filter is discussed below. To the best of the author’s knowledge, such
an optimal WRM filter is developed for the first time.

6.1. Filter weight selection

We consider the 3rd lag mode frequency as our test signal, and use a nine-point weighted
symmetric recursive median filter for our study. For symmetric weights, this WRM filter can be
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Fig. 10. Noisy test signal for the composite material and the effect of WRM, RBF, wavelet and FIR filters on the noisy

signal.
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written as
¥, = median(w; 0 y,_4, W2 0 Y, _3, W3 0 X2, W4 O Xy—1, W5 O Xpp, W4 O Xy 1,
W3 0 Xp42, W2 O X3, W1 O Xpad). 17)

The above filter needs nine points: the current points, four forward points and four backward
points. Because it needs four forward points, it has a four-point time delay. To obtain a
quantitative idea of the noise reduction, we look at the root mean square error in the signal, which
is a measure of the difference between the noisy or filtered and the ideal signal and is given as

1 & o2
RMS = ﬁ;(Azi—Azi). (18)

The RMS is a measure of noise in the signal. Using the RMS definition, we can create a measure
for noise reduction for a noisy signal after filtering as

RMS(noisy) _ RMS(filtered)
: . (19)
RMs(nolsy)

For finding the optimal weights for the nine-point filter, 200 samples of noisy data are used.
Gaussian noise is added to the signals with standard deviation ranging from ¢ = 0.05 to 0.3.
Because the values of the ideal signals range between 0 and 1, this range of standard deviations
considered above covers values of signal-to-noise ratios normally found in damage detection
applications. For a given standard deviation o, the filter design problem can be posed as an
optimization problem and written as follows:

Ngr =100

Maximize N g(wy, wa, w3)

max
i >

subject to W?‘in <w;<w
where the design variables or weights take on integer values. Reasonable values for the weights
can be found in the lower integers, so we select the minimum and maximum weights to be 1 and 7,
respectively. The problem then becomes a nonlinear integer programming problem (a nonlinear
optimization problem with integer design variable), which we solve using genetic algorithms.
Genetic algorithms are stochastic optimization methods, which are especially suited for problems
with discrete and integer design variables, and global and local minima. For the genetic algorithm
[39], we select each weight to be represented by a three-bit binary string. The minimum weight is



thus binary 001, which corresponds to integer 1. The maximum weight is binary 111, which
corresponds to integer 7. The three weights therefore form a nine-bit string. We use a starting
population of 20 points, crossover probability of 0.80 and mutation probability of 0.20. The
maximum number of generations used is 200. The results are selected for the best points obtained
in 200 generations. For each case, there are three global minima that give three sets of weights
with the same level of RMS-based noise reduction. These minima are (wy,ws, w3, wyg, Ws) =
(1,1,1,1,2), (2,2,2,2,4) and (4,4,4,4,6), respectively. The lowest weights are selected for these cases
since that creates the recursive median with the least complexity. Note that finding the median
involves sorting the signal, so low weights lead to smaller arrays to sort and lower computer time.

The results show that the best weights for the nine-point recursive median filter for the test
signal are: wy =1, wy =1, w3 =1 and wy =1 and ws = 2. The nine-point optimal filter can
therefore be written as

YV, =median(y,_4,¥,_3> Xn—25 Xn—15 2 © Xp» Xpt 15 Xt 2> X35 Xt ) (20)

In the above problem, though we started with filters of odd length (9), we have obtained a filter of
even length using the GA. Thus, the nine-point filter with weights (1, 1, 1, 1, 2) has length
(1+1+1+1+2+1+1+1+1=10). Most applications of median filters are odd in length because
the median of an odd sequence of numbers is defined as the middle value after sorting. For

example, the median of five numbers x%, x!, x2, x3 and x*, where x*>x*>x?>>x! >0 is given as

% = x*. For an even sequence, x°, x!, x> and x3, where x*>x>>x!>x?, the four-point median
filter is defined as, X = %(x1 + x?). The performance of this averaging operation means that the
output of even-length filters is not limited to one of the input samples, which is the case with odd-
length filter. Havlicek [40] et al. has presented examples where even-length median filters offer
improved results compared to odd length filters. They suggested that even-length filters should be

considered for filter design.

6.2. Neural network training

We also use the RBF neural network for denoising the test signal. For determining the RBF
unit centers, we have used a ‘K-means’ clustering algorithm. The ‘K-means’ clustering algorithm
finds a set of clusters, each with centers from the given training data. The cluster centers become
the centers of the RBF units. The number of clusters, H = 20, is a design parameter and
determines the number of RBF units, i.e. nodes, in the hidden layer. When the RBF centers have
been established, the widths of each RBF can be calculated. The width of any RBF distance to the
nearest p = 5 RBF units, where p is a design parameter for the RBFN, for unit 7 is given by

;= Eiz (xlg—xl;]\.)zl, 1)

j=1 k=1

where x and X are the kth entries of the centers of the ith and jth hidden units. This section of
the algorithm generates the necessary centers and widths for the RBFs. When the centers and
widths of the RBF units have been chosen, then the N = 200 training samples are processed
through the hidden nodes to generate an H x N matrix, called 4. Let T be the M x N desired
output matrix for the training patterns and M = 200 be the number of output nodes. The



objective is to find the weights that minimize the error between the actual output and the desired
output of the network. Essentially, we are trying to minimize the objective (cost) function

1T — WA, (22)

where Wis the M x H matrix of weights on the connections between the hidden and output nodes
of the network. We train the RBF network with added Gaussian noise ¢ = 0.05—0.1.

6.3. Wavelet thresholding

Most noise removal methods actually require knowledge of the noise content in the time
series. With wavelet denoising, it is not necessary to know which part of the signal is white
noise. The WT is applied to the signal and all coefficients below a certain size are discarded [33].
This technique makes use of the fact that some of the decomposed wavelet coefficients
correspond to signal averages and others are associated with details on the original signal. If the
smaller details are eliminated from the signal decomposition, the original signal can be extracted
from the remaining coefficients and the main signal characteristic will remain intact because an
orthogonal wavelet transform compresses the ‘energy’ of the signal into a few large components.
The white noise is very disordered and hence it is scattered throughout the transform in small
coefficients.

6.4. Signal processing results

Figs. 9 and 10 show results for the 3rd lag mode A for the nine-point WRM filter discussed
above and the RBF and nine-point FIR filter for homogenous and composite material,
respectively. In these signals, Gaussian noise in added with ¢ = 0.1 Hz and outliers are added to
simulate a real rotor signal. Outliers can be mistaken for a trend shift by diagnostic algorithm and
their removal is useful before performing fault detection and isolation functions. It is clear from
Figs. 9 and 10 that using WRM and RBF filter, visual quality of the signal is considerably
improved and there is considerable noise reduction as compared to linear filters. The linear filter
used here is the nine-point FIR moving average filter. The improvement in the visual quality of
the signal is a feature that has been observed using nonlinear filtering algorithms. Alliney [41]
notes that the resulting signals after nonlinear filtering appear satisfactory from the visual point of
view and mentions that this may be due to the nonlinear filtering behavior of the human visual
system.

The results in Figs. 9 and 10 show the visual effect of applying the filters on noisy signals. To
obtain quantitative values of noise reduction, 200 samples of noisy data are taken with ¢ =
0.05—0.1 and the noise reduction calculated using Eq. (19). Tables 7 and 8 show noise reduction
obtained using the 9-point WRM filter. We observe from Table 7 that, using this nine-point
WRM filter, we obtain a considerable noise reduction in the 3rd lag mode (inboard) Ad signal
ranging from 70% to 77% in the presence of outlier and 60% to 64% in the absence outliers in the
signal for homogenous materials is obtained. For composite material, a noise reduction of
70-75% in the presence of outliers and 55-63% in the absence of outliers in the signal is obtained
as shown in Table 8.



Table 7
Noise reduction for test signal with optimal nine-point WRM filter for homogenous material

Noise level, o Noise reduction (%) in the Noise reduction (%) in the
absence of outlier presence of outlier

0.05 59.79 76.81

0.06 61.00 74.71

0.08 62.76 71.86

0.10 64.04 70.24

Average 61.89 73.41

Table 8

Noise reduction for test signal with optimal nine-point WRM filter for composite material

Noise level, o Noise reduction (%) in the Noise reduction (%) in the
absence of outlier presence of outlier

0.05 55.05 74.51

0.06 57.22 72.68

0.08 60.36 70.43

0.10 62.50 69.30

Average 58.58 71.73

Once the neural network has been trained, it is tested with the simulated signals for
different noise levels, ¢ = 0.05—0.1. Tables 9 and 10 show the noise reduction obtained using the
RBFN: considerable noise reduction of 36-69% for homogenous material and 32-68% for
composite material in the absence of outlier in the signal at different noise levels. When the
outliers are present in the signal, we get a noise reduction of 64-74% for homogenous material
and 58-74% for composite material at different noise levels.

Several wavelets were used for signal denoising. While no one wavelet seemed TO
consistently give better results than the other, there are some recommendations that can be
made, the Daubechis 5, 6, 8 wavelets seemed to produce slightly better results in terms of
noise removal. The lower order wavelet did not perform as well as their higher order counterparts
due to their properties such as support length, regularity, and number of vanishing moments.
The important fact to note here is that wavelets are not very good for discarding the outliers
present in the signal. Krim and Schick [42] mention in their work that wavelet denoising is
sensitive to outliers, 1.e., to noise distributions whose tails are heavier than the Gaussian
distribution. Therefore, the presence of outlier in the signal deteriorates the denoising efficiency.
The Wavelet filter results in Tables 11 and 12 show better noise reduction than the WRM and the
RBF filter in the absence of outliers, but lower noise reduction than WRM and RBF in
the presence of outliers in the signal. We can see the performance of the wavelet filter visually in
Figs. 9 and 10.



Table 9
Noise reduction for test signal with RBF for homogenous material

Noise level, o Noise reduction (%) in the Noise reduction (%) in the
absence of outlier presence of outlier

0.05 36.07 64.25

0.06 47.37 66.89

0.08 60.51 69.56

0.10 69.07 73.73

Average 53.25 68.61

Table 10

Noise reduction for test signal with RBF for composite material

Noise level, o Noise reduction (%) in the absence Noise reduction (%) in the
of outlier presence of outlier

0.05 31.99 30.62

0.06 44.52 33.65

0.08 60.03 39.47

0.10 67.96 73.68

Average 51.13 66.04

From Tables 8-10, it is clear that the WRM filter performs better than the RBF at lower noise
levels (o = 0.05, 0.06 and 0.08), but the RBF performs better at ¢ = 0.10. The FIR results in
Tables 13 and 14 show lower noise reduction than the WRM and the RBF filter. Finally,
Tables 1518 give the noise reduction obtained by the 3rd lag frequency for noise level ¢ = 0.10.
In these tables, all the three damage locations are considered. Again, it is clear that the WRM and
RBF filters result in considerable noise reduction. For homogenous material, the noise reductions
using WRM, RBF, wavelet and FIR filters are about 70%, 74%, 56% and 54%, respectively. For
the composite material, the average noise reductions using WRM, RBF, wavelet and FIR filters
are 76%, 75%, 56% and 59%, respectively. Therefore, we can conclude that the WRM and RBF
filters are competitive filters for denoising of damage indicator time series containing sharp trend
shifts and noise. The WRM filter is relatively simple to design and use and is recommended for
health-monitoring operations.

Finally, we note several assumptions made in this study. Biased noise which can result from
variability in the dynamic characteristic of the rotor and vehicle due to environmental conditions
is not considered. The study considers a constant load where actual loads have non-stationary
components which can cause unusual damage growth due to changes in the distribution of
residual stresses around the cracked zone. Nonlinear plastic deformations which can be important
for both homogenous and heterogeneous materials especially prior to failure are not considered.
These issues are subjects of future work.



Table 11
Noise reduction for test signal with Wavelet filter homogenous material

Noise level, o Noise reduction (%) in the Noise reduction (%) in the
absence of outlier presence of outlier

0.05 74.21 32.77

0.06 74.95 37.89

0.08 75.58 47.58

0.10 76.16 55.46

Average 74.97 43.42

Table 12

Noise reduction for test signal with Wavelet filter composite material

Noise level, o Noise reduction (%) in the Noise reduction (%) in the
absence of outlier presence of outlier

0.05 64.41 31.96

0.06 66.02 37.10

0.08 69.94 46.75

0.10 72.11 54.68

Average 68.12 42.62

Table 13

Noise reduction for test signal with FIR filter homogenous material

Noise level, o Noise reduction (%) in the Noise reduction (%) in the
absence of outlier presence of outlier

0.05 15.17 46.53

0.06 25.71 47.82

0.08 38.26 50.30

0.10 45.29 52.47

Average 31.16 49.28

Table 14

Noise reduction for test signal with FIR filter composite material

Noise level, o Noise reduction (%) in the Noise reduction (%) in the
absence of outlier presence of outlier

0.05 25.02 52.33

0.06 3391 53.28

0.08 44.34 55.10

0.10 50.06 56.64

Average 38.33 54.34




Table 15
Percent noise reduction in RMS error for test signals for WRM filter in the presence of outliers in the signal and at a
noise level of ¢ = 0.1

Frequency delta Aw Noise reduction (%) for Noise reduction (%) for
homogenous material with composite material
outlier

3rd lag root 70.24 69.30

3rd lag inboard 71.18 78.63

3rd lag outboard 73.22 81.03

Average 71.54 76.32

Table 16

Percent noise reduction in RMS error for test signals for optimal RBF filter in the presence of outliers in the signal and
at a noise level of ¢ = 0.1

Frequency delta Aw Noise reduction (%) for Noise reduction (%) for
homogenous material with composite material
outlier

3rd lag root 73.73 73.68

3rd lag inboard 73.31 73.46

3rd lag outboard 75.49 78.59

Average 74.18 75.20

Table 17

Percent noise reduction in RMS error for test signals for wavelet filter in the presence of outliers in the signal and at a
noise level of ¢ = 0.1

Frequency delta Aw Noise reduction (%) for Noise reduction (%) for
homogenous material with composite material
outlier

3rd lag root 55.46 54.68

3rd lag inboard 56.73 55.92

3rd lag outboard 56.11 56.25

Average 56.10 55.61

7. Conclusions

A qualitative study of the effect of damage growth on rotor system modal frequencies and
evaluation of their feasibility for monitoring of fatigue damage and blade life is done in this study.
The following conclusions are made:

1. By using change of frequency between the damaged and undamaged blade as a damage
indicator, it is found that the damage indicator shows an evolution with cycles that can be
modeled using functional relationships identical to those used to model the damage.



Table 18
Percent noise reduction in RMS error for test signals for FIR filter in the presence of outliers in the signal and at a noise
level of ¢ = 0.1

Frequency delta Aw Noise reduction (%) for Noise reduction (%) for
homogenous material with composite material
outlier

3rd lag root 52.47 56.64

3rd lag inboard 51.20 58.89

3rd lag outboard 59.60 60.61

Average 54.42 58.71

2. There is sufficient change in the frequencies to identify the presence of damage in the blade.
There is a clear relationship between rotating frequencies and cycles that can be used as a
virtual sensor indicating the amount of cumulative damage growth in the structure and the
remaining life. Thresholding methods for fault detection are discussed and diagnostic charts for
use by knowledge-based systems are proposed.

3. The rotation effect acts to reduce the sensitivity of frequencies to small damage, thereby
preventing spurious alarms. This reduction in sensitivity of frequencies of small damage is an
advantage since helicopter blades are routinely built to take large quantity of damage.

4. Because actual online data are contaminated with noise and outliers, a powerful signal-
processing approach based on an optimally weighted recursive median filter and radial basis
function neural network and wavelets is developed in this study. The WRM and RBF filters
perform better than the wavelet and FIR moving average filter and can be used to clean data
prior to fault detection and isolation. Wavelets are not good at removing outliers from data.

5. The optimum WRM and RBF filters improve the visual quality of the signals by removing
outliers and random noise. Thus, they can be used as a preprocessing smoother before
displaying condition and health-monitoring data for improved visualization, and result in
better human-based diagnostics.
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