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Abstract. Mandelstam's argument that PCAC follows from assigning Lorentz quan- 
tum number M = I  to the massless pion is examined in the context of multiparticle 
dual resonance model. We construct a faetorisable dual model for pions which 
is formulated operatorially on the harmonic oscillator Fock space along the lines 
of Neveu-Schwarz model. The model has both m~ and mp as arbitrary parameters 
unconstrained by the duality requirement. Adler self-consistency condition is 
satisfied if and only if the condition rnp t --m, ~ =½ is imposed, in which case the 
model reduces to the chiral dual pion model of Neveu and Thorn, and Schwarz, 
The Lorentz quantum number of the pion in the dual model is shown to be M=0. 
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pion model; Adler zeros. 

1. Introduction 

The hypothesis o f  partially conserved axial-vector current  (PCAC) and current  
algebra lead to  strong restrictions on  the hadron scattering amplitudes involving 
pions, usually expressed in the form of  low energy theorems. Notable  among 
them is the well-known Adler self-consistency condition which essentially states 
that  hadron scattering amplitudes involving soft pions should vanish. I t  is o f  
considerable interest to investigate whether these soft-pion theorems can be derived in 
the S-matrix theory without introducing weak interaction currents. Mandelstam 
(1968) made the first a t tempt  in this direction and made a significant advance by 
showing that  the Adler self-consistency condition alone is sufficient to obtain most  
o f  the consequences o f  current  algebra and PCAC hypothesis for  the hadron scatter- 
ing amplitudes. In other  words, if  one can construct arguments within the S-matrix 
f ramework to derive the Adler self-consistency condition, then most  of  the restric- 
tions which current  algebra placed on hadron scattering amplitudes ought  to follow. 

Mandelstam (1968) argued that constraints on the couplings at zero four  mom- 
entum could follow from the conspiracy theory of Regge trajectories and residues. 
In particular vanishing o f  the soft pion amplitude follows as a mathematical  conse- 
quence o f  the assignment o f  the Lorentz  quantum number  (Toiler 1965, 1968; 
Sciarrino and Toiler 1967) M = 1 to the pion trajectory. However,  as noted by 
himself and discussed in detail by Arbab and Jackson (1968) for  the M = 1 pion 
factorisation implies the smallness o f  both  soft pion and hard pion amplitudes. In 
fact, in the discussion of  two-body processes there have been many  arguments 
against assigning M -~ 1 to the pion but  favouring the assignment M -~ 0 (see, e.g. 
Capella 1970; Mueller 1969; Sawyer 1968; Wang and Wang 1970). 
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In the dual resonance model (DRM), the zrzr scattering amplitude of Lovelace 
(1968) and Shapiro (1969) (LS amplitude) has Adler zeros when the leading p-tra- 
jectory is constrained to lie half a unit above the rr trajectory, that is by imposing 
the condition* 

a , - - ~ n = ½  or mp 2 - r e x  2 = 1 / 2 A  (1) 

where a' g I(GeV) -2 is the universal slope of the Regge trajectories. This trajectory 
splitting condition, eq. (1) occurs naturally as a requirement of duality in the operator 
formulation of the chiral invariant dual multipion model of Neveu and Thorn (1971) 
and Schwarz (1972). In this model the Adler condition is satisfied by a mechanism 
originally discovered by Brower (1971); that is, when the four momentum of one of 
the pions tends to zero, the N point function can be shown to contain a vanishing 
beta-function (Neveu and Thorn 1971 ; Schwarz 1972). 

In this paper we investigate whether there is a connection between PCAC and the 
Lorentz quantum number of the pion in the dual resonance model. (We use the 
term PCAC to mean existence of Adler zeros in the amplitude). The material of 
this paper is organised as follows. In section 2 we construct a factorizable dual 
pion model along the lines of Neveu and Schwarz (1971), Neveu and Thorn (1971) 
and Halpern and Thorn (197I) which is formulated using boson and fermion oscilla- 
tors. The model has masses of both p and rr arbitrary, but still satisfies the require- 
ment of duality unlike the hitherto existing dual pion models. It is shown that Adler 
self-consistency condition is satisfied if and only if the trajectory splitting condition 
mp ~ --  m~ ~ - :  1/2a' is imposed. In section 3 we consider the pion pole in the six 
point function and using Mandelstam's (1968) argument and Arbab and Jackson's 
(1968) result on the factorisation of Regge residue we show that the pion pole belongs 
to the class with Lorentz quantum number M = 0 .  In section 4 we state our con- 
clusions. 

2. PCAC in dual pion model and Lorentz quantum number of the pion 

2.1. General remarks 

The dual pion model of Neveu and Thorn (1971) and Schwarz (1972) (NTS model) 
is known to possess Adler zeros and reduce (Schwarz and Wallace 1972) to the non- 
linear ~-model in the zero-slope limit, that is in the limit A ~ 0. Let us consider the 
six-point function in this model, A e (Pl, P2, P3, P4, Ps, Ps) and look at the residue of the 
pion-pole in a three pion channel, say at (plq-pz+pa)~=m/. We shall assume 
m~=0. In the limit of the four-momentum Q=pl-kp~-kp3--> O, following Mandels- 
tam's argument (which uses only the properties of the groups O (3, 1) and O (2, I)) 
the residue of the pion pole will vanish if the pion belongs to the class with Lorentz 
quantum number M = 1. On the other hand by the property of factorisation, in 
dual resonance model, the residue is a product of two four-pion amplitudes and will 

*As pointed out by Brower (1971) the Adler condition may also be satisfied by imposing a 
condition different from eq. (1). However there has been no operator for mulation of Brower's 
model so far; so it lacks fundamental significance. 
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again vanish in the above limit ( Q ~  0) if the amplitude possesses Adler zeros due to 
condition like eq.(1). This situation tends to mask the difference, if any, between 
the two hypotheses. Any possible difference between the two is however likely to 
emerge more distinctly in a situation where one of them is made to hold only appro- 
ximately. Since the PCAC hypothesis is of an approximate nature it Jis instructive 
to investigate the Lorentz quantum number of the pion in a model in which there is 
a small departure from the Adler self-consistency condition but the departure can be 
made arbitrarily small. To this end we construct a dual pion model which has a 
continuously variable parameter, in a certain limit of which, the model satisfies the 
Adler self-consistency condition. In the model which we describe below such a 
parameter turns out to be d a = (1/2~') 4- m, a -- mpL The Adler zeros appear only 
in the limit d ~ -~ 0. 

2.2. Dual pion model with two mass variables 

Fubini and Veneziano (1971) (FV) pointed out that in the conventional dual reso- 
nance model, the trajectory intercepts in different channels can be varied by introduc- 
ing an extra space-like component, the so-called ' fifth component ', of the momenta 
and a corresponding set of oscillators without destroying duality properties and still 
preserving the full gauge group. Adopting the same procedure for the dual pion 
model of Neveu and Schwarz (1971) (NS model) Halpern and Thorn (1971) (HT) 
shifted the pion mass by an arbitrary amount (to make m~ a >/0) from its value m~a= 
--½ in the original NS model. However, to preserve duality p was still massless 
as in the original NS model. Neveu and Thorn (1971) (NT) adopted this technique 
of introducing extra components to the momenta and oscillators, to obtain another 
variation of the original NS model. In their model all masses are shifted equally 
from their values in the NS model. This also allows us to vary only one mass, say 
m, a, and masses of all other particles are constrained in relation to this variable. 
For example the mass of the p is still constrained by m~ 2 --  m~ a = ½, a trajectory 
splitting condition which endows Adler zeros to the model. The ~rrr-~rTr amplitude 
in this model is the well-known Lovelace-Shapiro amplitude. Schwartz (1972) used 
a slightly different operator formulation to obtain the same model as Neveu and 
Thorn. 

A useful distinction exists between the FV or HT way of introducing extra compo- 
nents and the NT way. The fifth component of FV and HT is introduced indepen- 
dent of the number of external particles N and hence the preservation of the factorisa- 
tion property is obvious. In the NT way the number of extra dimensions depends 
on N, yet the extra components of  momenta are assigned in such a way that there is 
only nearest neighbour coupling of the extra components, so that only one set of 
oscillators contribute at any pole (Neveu and Thorn 1971). This mechanism of 
nearest neighbour coupling preserves the factorisation property and is closely related 
to the implementation of Adler's self consistency condition. The introduction of a 
fifth component along the lines of HT results in shifting only the masses in the odd-G 
channels, that too by an equal amount from their values in the original NS model, 
whereas Neveu-Thorn's method of introducing extra components results in shifting 
all masses equally. 

It is easy to combine the NTS model and HT model to construct yet another modi- 
fication of the NS model in which both m~ a and m~ a can be varied independently. 

p.--6 
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Introducing the fifth component of momenta as in the Halpern-Thorn (1971) model 
as well as the N extra space-like components as in the Neveu-Thorn (1971) model we 
write 

k~ - -  (k.  --d, ~/v'~, --~/x/~, O, 0 .. . .  O, O) 

k"~ ~ (k 2, q-d, O, clx/~2, --clv'~2, 0 . . . .  O, O) 

k, = (k,, (--1)' d, 0 . . . .  e ly'S,  - - c l V ~ ,  0 . . . .  O, O) 

k N - 1  : -  (kN-1,  --d, O, 0 ... O, c/v'~2, - -c /v '2)  

kAN = (kN, +d, --c/x~2, 0 .. . .  O, c/V'~2) (2) 

where k I, k 2, . . . ,  k N are the four-momenta of  the particles 1, 2, 3 . . . . .  N respect- 
ively. The model can now be easily written down by replacing the momenta and 
oscillators in the original Neveu-Schwarz model by the above (N:5)-dimensional 
momenta and the corresponding (N %- 5)-dimensional set of operators. We briefly 
describe below the construction of the N-point function. The (N+5)-analogues 
of the usual harmonic oscillator operators satisfy the algebra 

[̂ t~an ' am^V] = _ n g ~ V  S. ' - , .  (3) 

^t~ ~:1 --glOVe,.,_. { b m, : (4) 

m, = 0 (5) 

where the indices/~ and v run over the (iV÷ 5) components. In addition we also 

have the momentum operator a~ = ~¢/2. p~' and its canonical conjugate (position) 

operator ~v satisfying 

[ a~, ~¢v] _~_ __.v'~ig.v. (6) 

In analogy with the standard procedure (Neveu and Schwarz 1971; Schwarz 1973) 
the vertex operator is given by 

= # ,o(k3 (7) 

where 

^ 

x cxp ( - ¢ ~ . k  • ~:oo.=~ a.l.) (8) 



P C A C  in S - m a t r i x  theory  541 

and 

~rt~ = ~"~ b~ n:=[=~-, d=~, (9) /_.,n~--oo ?f "" 

In addition we define 

Lo = - - ] l a ° "  % - -  nffil - - a . .  a . - -  n b _ n ' b  u. (I0) n=½ 

In terms of these operators, the N-point function (in the original Fl-space formula- 
tion of NS model (Neveu and Schwarz 1971)) is given by 

A ^ ^ ^ ^ ^ ^ / ~  

A N : ~0,  - - k l [  k 1 • bl/2 V(k~) (Lo--l) -1 V(ka)  . . . .  

^ ^ ^ ^ A ^ 

. . . .  (L0--1) -1 V(kN) k N " b_H2 [0, kN). (11) 

The extra components of momenta are constrained by the requirement of conformal 
^ 

symmetry k~ 2 = --½, that is 

m~ ~ - -  c 2 - -  d z = -- ~. (12) 

The trajectory functions in the even and odd G-parity channels are 

~p (s)  = 1 q-  ( s - - c  ~) for even-G channels (13a) 

and 

~ (s)  = ½ q- ( s - - c ~ - - d  2) for odd-G channels (13b) 

from which it follows that 

mp2 ~_~ ¢2; rap2 _ m 2  = ½ __ d 2. (14) 

The amplitude given by eq. (11) has the properties of duality, factorisations and in- 
corporates the tachyon killing mechanism of the Neveu-Schwarz model. The latter 
is apparent when we rewrite eq. (11) in the F¢-formulation (Neveu et  al  1971) a s  

^ ^ ^ ^ / , ,  / ~  ^ 

A N == (O,--k^ll V(k3)(L0--1~)-I V ( k  3) .... ( L o - - ~ )  -1 V (~¢N_.I) [ 0, kN>. (15) 

Using the standard technique of writing the propagator as 

^ l d x x  - w  ( L ° -  ½)-1 = o 

we have the following integral representation of the N-point function 

f l  tiN--2 dxi  x i - P * * - i  × II (l--xiXi+l...Xf1-2~* "~J A N =  j 0 i=2 
2<i<]<N--I 

^ ~ ^ ^ ^ ^ ^ ^ 

× (ol k2.  I(1)ks'H(xs) H(x x.x4... ..)l 0) 06) 
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where 

P, : (kz--}-k~,+...+k,); n ( z )  = ,V,n bn z -~ 

Adler zeros: I f  we now set d : 0 the above model  reduces to the NTS model,  
which is known to possess Adler zeros. In d -=: 0 case it can be easily shown (Neveu 
and Thorn  1971) from eq. (16) that for example when k 2 ~ 0 

A N -->. [ f ~  dx2 X; l+c' (l__xt) -1-c2] 

The first factor in eq. (17) is 

f l  0 dx~ x ;  l+c" (l--x,) - 1 - c '  = B(c ' , - -c  ~) = O. (18) 

This is the Brower mechanism (Brower 1971) for implementing the Adler self-consis- 
tency condition. This depends crucially on the fact that when d = 0 in eq. (16) the 

^ /N 
p r o d u c t k ~ k j  = kck j  except for the nearest neighbours, so that  as the four vector 

k~ ~ O, k~'ks-~ 0 for  j ~ 1,3. For  d # 0 the latter circumstance does not hold so that  
the amplitude given by eq. (16) does not reduce to  the form given by eq. (17) when 
ks-~ 0. Therefore the factorisable dual model constructed by us [eq. (11) or eq. (15) 
or  eq. (16)] does not  possess Adler zeros in general unless d ~ 0. 

3. The pion pole and its Lorentz quantum number 

Let us now look at the pion pole in the six-point funct ion o f  the present model. 
Following standard procedure we obtain from eq. (11) the six-point function with 
external momenta  ordered cyclically, 

dul, dui3 du , 
• 0 (1~U12 U13 ) (I--ula U14 ) 

- . p  (s~2) -~ , ( s18) -1  -ap(sl0  -=p  (s~8) - (s=~) 
U 12 u13 U14 U23 u25 aa 

- ~ .  (su)-  1 - (s,,) - (s3J--1 ^ 
U24 U34" u35 °~ Z (k, u) (19) 

where st~ : (k~ + k~+ t + ... + kj) ~ and u t / s  are the usual Chan variables, and 
t% 

Z (k, u) is given by 

A A A /N F, /k ,~ 
Z ( k ,  U) : ( [ ( k  1 " k 2 k 3 " k 4 k 5 " k 6) (U12 /434 /ALl) -1  ~-  Pc (1)] 

+ [ (k~' k 2 k 3 • k e k 4 • k 5) u u (ut2 u4~) -1 + P c  (2)1 
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A A A A A - - 1  

- -  [ (kx" k2 ks' k5 k4" Ice) uu u12 + P ,  (5)1 

A A A A A A 

q- [ (k t • k 4 k~" k. k s • k s ula Uu "1" P~ (2)1 

- -  (k t • k ,  k ," k s k a • k, ula u ~  uas) } (20) 

where the symbol PC(n) means one must add the n independent terms obtained by 
cyclic permutation of the preceding expression. Computing the residue of  Ae 
(kx,k2,ks,k4,ks,ke) at the pion pole corresponding to a.(sla):-0 we get the pion pole 
residue in the factorised form 

[(2k~. Q+2d ~) B ( I - - ~ ,  1- -~)]  [(--2k6- Q+2d ~) B (l--a1,, 1--a~)] 

= A~ (k 1, kz, ka, - -  Q) A 4 (Q, k4, ks, k6) (21) 

where Q = k t + k ~ ÷ k  3 and B(x, y) is the Euler beta-function and A 4 is the four-point 
function, 

A,(ki, tq, k3, - Q )  = ( 2 k 2 .  fl +2d *) S (1--a12, 1 - - ~ )  

= (1- -a l~- -a23)  B (1--axz,  1 - -am) (22) 

which is the canonical Lovelace-Shapiro four-point function. It is evident from 
eq. (22) that our dual model has Adler zeros if and only if dZ=0. 
The M quantum number: Returning to the six point function given by eq. (19) one 
can perform an O(3,1) analysis (Toiler 1965, 1968) corresponding to Qv=(kx+ka+ks) 
= --(k4+ks+ks)v ~ 0  to find the M quantum number of pion. However without 
going through the mathematics we can show that pion belongs to M =0  representa- 
tion as follows. We can vary the parameters c and d without destroying duality 
and factorisation so that we can choose 

d # 0  but m. ~ = - ½ + c  z + d  ~ = 0 .  

We have seen that when d ~ 0 our model does not possess an Adler zero and must 
belong to M = 0  representation as otherwise there will be a contradiction with Mandel- 
stam's argument that if [ M I >7 1, Adler zeros are present. Although by continuity, 
we expect that as we vary the parameter d in our model the pion will continue to 
have M = 0 ,  it remains to be checked that the M value does not abruptly change, for 
example to M = 1 as d becomes zero. This latter fact can be established, using the 
results of Arbab and Jackson 0968) who showed that if pion has M = l ,  then by 
factorization even the hard pion amplitudes should vanish linearly as x / p ,  Qv 

being the pion four momentum. Returning to eq. (21) and setting d=0 ,  we see that 
the pion residue does not vanish even if Q~=0 unless the four momentum Qlt also 
vanishes. 

P.--7 
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4. Discussion 

We are thus led to conclude that for all values of  d 8 in our model, the pion has the 
Lorentz quantum number M : 0 .  The Adler self consistency conditon is satisfied 
if and only if the trajectory splitting condition eq. (1) is satisfied. Our model does 
not suffer from the defect of  requiring that hard pion amplitudes also vanish if 
Q 2 : 0  (but Q~#0) ,  which would be the case if pion had M = I .  Since our model 
satisfies the requirement of duality and factorisation for all values of m, ~ and m, 2, 
many other interesting questions like the spectrum of  physical states, the field theory 
corresponding to the zero slope limit of the model, should be investigated. 
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