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Abstract. Splittings of a free group correspond to embedded spheres in the 3-manifold
M = �kS

2 ×S1. These can be represented in a normal form due to Hatcher. In this paper,
we determine the normal form in terms of crossings of partitions of ends corresponding
to normal spheres, using a graph of trees representation for normal forms. In particular,
we give a constructive proof of a criterion determining when a conjugacy class in π2(M)
can be represented by an embedded sphere.
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1. Introduction

Topological and geometric methods have played a major role in the study of infinite groups.
In particular, free (non-abelian) groups Fn of rank n and the groups Out(Fn) of their
outer automorphisms have been extensively studied in analogy with fundamental groups
of surfaces and the mapping class groups of surfaces. These groups have also been studied
via a one-dimensional model which arises from regarding Fn as the fundamental group of
a graph, for instance, see [1–4].

The 3-manifold M = �nS
2 × S1 whose fundamental group is a free group of rank n, is

used as a model for studying the free group and its automorphisms, in particular the group
of outer automorphisms of free groups.

Embedded spheres in M correspond to splittings of the free group. Our goal in this paper
is to study the relation between such embedded spheres and partitions of the set of ends
of the universal cover M̃ of M . Embedded spheres in M can be represented in a normal
form due to Hatcher. We show that such a sphere in normal form can be represented by a
graph of trees, and show how the graph of trees is determined by crossings of partitions
of the ends of M̃ . As an application, we give a constructive proof of a criterion from [9]
determining when a conjugacy class in π2(M) can be represented by an embedded sphere.
In a sequel, we shall use the methods of this paper to construct the analogue of the space
of geodesic laminations for surfaces and prove a compactness result for this space.

Our results here and in the sequel are motivated by the analogy between the group of
outer automorphisms of the free group and the mapping class group of a surface, and
consequently between the curve complex of a surface and the sphere complex of M . The
curve complex of a surface � is the simplicial complex with vertices, the isotopy classes
of simple closed curves on � and simplices corresponding to families of disjoint simple
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closed curves on �. Analogously, the sphere complex of M is the simplicial complex
whose vertices are the isotopy classes of embedded spheres in M , with isotopy classes of
embedded spheres in M deemed to span a simplex if they can be realized disjointly in M .
The sphere complex is the splitting complex of the free group, with vertices corresponding
to splittings and simplices to compatible splittings.

There have been two kinds of applications of the curve complex. On the one hand, the
topological properties of the curve complex have been used to study the stable homology
of the mapping class group in the work of Harer, Penner and others, [12], [13]. On the other
hand, geometric properties of the curve complex have been used to study and construct
various objects like mapping class groups, Teichmüller spaces and Thurston’s compactifi-
cation of Teichmüller space, for example [5], [26], [29], [30]. The geometric applications
can be viewed in terms of the intersection number of curves on a surface.

For the case of the sphere complex, the analogues of the topological properties for the
sphere complex have been proved and used by many, [14, 16–23]. Our goal is to develop
the analogues of the geometric techniques used for the curve complex, based on the the
algebraic intersection number of Scott and Swarup [31].

Specifically, in the sequel to this paper, we construct the analogue of the space of
geodesic laminations and show that this space is compact. Many of the methods are parallel
to those of this paper. In particular, we show in this paper that normal spheres correspond
to finite subtrees of a specific tree together with some additional data. Further such a
description is determined by data on crossing of spheres. Dropping the finiteness condition
and modifying the notion of crossing leads to our generalization of spheres to geospheres,
which is analogous to the passage from closed geodesics to all geodesics. Disjoint unions
of such geospheres give laminations. We remark that an alternative approach based on the
methods here, namely replacing graphs of trees by graphs of R-trees, may also be fruitful.

We remark that a different geometric model, namely outer space, has been used exten-
sively in the context of the free group (see, for instance, [6], [7]). In the case of sur-
faces, simple curves are both dimension one and co-dimension one objects, but this is not
the case for free groups. Most of the geometric constructions for free groups in the litera-
ture are the 1-dimensional analogues of the construction for surfaces, but the constructions
here are instead co-dimension 1 analogues.

We now outline the paper. The results in §§2–4 are well-known in the field and are
included for the sake of completeness. In §2, we see a description of M and the notion of
ends of M̃ . In §3, we see that homology classes of embedded spheres in M̃ are completely
determined by the partition of ends of M̃ associated to the spheres. In §4, we recall the
notion of crossings of partitions of ends and make some simple observations.

In §5, given a partition A of the set of ends of M̃ , we construct a corresponding embedded
sphere in M̃ which is in normal form in the sense of Hatcher, in terms of crossings of
spheres, or equivalently of crossings of partitions of the set of ends of M̃ . In §6, we recall
some basic facts about the intersection number c · A between proper paths and homology
classes and give a criterion for a class to be represented by an embedded sphere in M̃ .

In §7, we show that a normal sphere can be described by a graph of trees, an analogue of
the well-studied graph of groups. Finally, in §8, we give a constructive proof of the main
result of [9], giving a criterion for a conjugacy class in π2(M) to be represented by an
embedded sphere. The proof is constructive in the sense that a graph of trees structure is
described in terms of crossing data for a conjugacy class in π2(M) satisfying the appropriate
criteria, and is shown to correspond to a normal sphere representing the given class.
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2. Preliminaries

2.1 The model 3-manifold

Consider the 3-manifold M = �kS
2 × S1, i.e., the connected sum of k copies of S2 × S1.

A description of M can be given as follows: Consider the 3-sphere S3 and let Ai, Bi, 1 ≤
i ≤ k, be a collection of 2k disjoint embedded balls in S3. Let P be the complement of
the union of the interiors of these balls and let Si (respectively, Ti) denote the boundary of
Ai (respectively, Bi). Then, M is obtained from P by gluing together Si and Ti with an
orientation reversing diffeomorphism ϕi for each i, 1 ≤ i ≤ k. The image of Si (hence Ti)
in M will be denoted �′

i . The fundamental group π1(M) of M , which is a free group of
rank k, acts freely on the universal cover M̃ of M by deck transformations.

DEFINITION 2.1

A smooth, embedded 2-sphere in M is said to be essential if it does not bound a 3-ball in M .

DEFINITION 2.2

A system of 2-spheres in M is defined to be a finite collection of disjointly embedded
smooth essential 2-spheres Si ⊂ M such that no two spheres in this collection are isotopic.

Let � = ∪j�j be a maximal system of 2-sphere in M . Let M∗ be obtained by splitting
M along �, i.e., M∗ is obtained from M −� by completing with respect to the restriction
of a Riemannian metric on M . Then, M∗ is a finite collection of 3-punctured 3-spheres Pk ,
whose boundary components correspond to the spheres �i . Here, a 3-punctured 3-sphere
is the complement of the interiors of three disjointly embedded 3-balls in a 3-sphere. Let
M̃∗ be obtained similarly by splitting M̃ along standard spheres. Then M̃∗ is the disjoint
union of lifts P̃k of the components Pk of M∗.

There are natural inclusion maps M∗ → M and M̃∗ → M̃ . These maps are one-to-one
on the union of the interiors of (the components of) M∗ and on each boundary component.
Two boundary components are identified in pairs under these maps. Further, the map from
M̃∗ → M is injective on each component; we identify each component of M̃∗ with its
image in M̃ .

2.2 Graphs and trees

A graph can be described combinatorially as follows.

DEFINITION 2.3

A graph � consists of two sets E(�) and V (�), called the edges and vertices of �, a mapping
from E(�) to E(�) denoted e �→ ē, for which e 	= ē and ¯̄e = e, and a mapping from E(�)

to V (�)×V (�), denoted e �→ (o(e), t (e)), such that ē �→ (t (e), o(e)) for every e ∈ E(�).

As is well-known we can associate to a graph a topological space. Geometrically, the
set E(�) is the set of oriented edges, with the pair of edges e and ē corresponding to a
geometric edge (i.e., the homeomorphic image of an interval) with opposite orientations.

A tree is a graph so that the underlying topological space is contractible, or equivalently
connected and simply connected. We shall use the following well-known characterization
of trees.
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PROPOSITION 2.4

A graph � is a tree if and only if it is connected and, for each edge e of �, the complement
of the interior of e is not connected.

2.3 Construction of the tree T

We recall some constructions from [14].
We associate a tree T to M̃ corresponding to the decomposition of M by �. Let �̃ be

the pre-image of � in M̃ . The vertices of the tree T are of two types, with one vertex
corresponding to each component of M̃∗ and one vertex for each component of �̃. An edge
of T joins a pair of vertices if one of the vertices corresponds to a component X of M̃∗
and the other vertex corresponds to a component of �̃ that is in the image of the boundary
of X. Thus, we have a Y -shaped subtree corresponding to each component of M̃∗. The
end points of different Y ’s that correspond to the same sphere in �̃ are identified. We pick
an embedding of T in M̃ respecting the correspondences. The tree T has bivalent and
trivalent vertices with bivalent vertices corresponding to components of �̃.

2.4 The space Kτ

Let τ be a finite subtree of T such that all the terminal vertices of τ are bivalent in T . Let
Kτ be the union of the images of components ˜Pk which correspond to the vertices of τ

which are trivalent in T . It is easy to see that Kτ is a compact,connected, simply-connected
3-manifold homeomorphic to a space of the form S3 − ∪n

j=1int(Dj ), with Dj disjoint

embedded balls in S3. The closure Wi of each complementary component of K = Kτ is
non-compact. As M̃ is simply-connected and K is connected, Ni = ∂Wi is connected for
each Wi . The boundary components Ni , and hence the complementary components Wi ,
correspond to the (finitely many) terminal vertices of τ .

The space M̃ is the union of the spaces Kτ , with τ a finite subtree of T . Henceforth,
whenever we consider such a subtree τ of T , K = Kτ , Wi , Ni are as defined above.

2.5 Ends of M̃

We recall the notion of ends of a topological space. An end of a topological space is a
point of the so called Freudenthal compactification of the space. It can be viewed as a way
to approach infinity within the space.

Namely, let X be a topological space. For a compact set K ⊂ X, let C(K) denote
the set of components of X − K . For L compact with K ⊂ L, we have a natural map
C(L) → C(K). Thus, as compact subsets of X define a directed system under inclusion,
we can define the set of ends E(X) as the inverse limit of the sets C(K). Further, we can
compute the inverse limit with respect to any exhaustion by compact sets.

It is easy to see that a proper map f : X → Y induces a map E(f ): E(X) → E(Y )

and that if f : X → Y and g: Y → Z are proper maps, then E(g ◦ f ) = E(g) ◦ E(f ).
In particular, the real line R has two ends which can be regarded as ∞ and −∞. Hence,
a proper map c: R → X gives a pair of ends c− and c+ of X.

The space M̃ is non-compact and it has infinitely many ends. We denote the set of ends
of M̃ by E(M̃).
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2.6 Topology on the set of ends of M̃

We define a topology on E(M̃). If K is any compact subset of M̃ , then M̃ −K has finitely
many components and all the components are non-compact. Consider the collection of sets

U = {E(W): W a component of M − K for a compact set K}.

It is easy to see that U forms a basis for a topology on E(M̃). The set E(M̃) is homeo-
morphic to a Cantor set, in particular, compact. Note that the set E(T ) of ends of T can
be identified with the set E(M̃).

3. Embedded spheres in M̃̃M̃M and partitions of ends of M̃̃M̃M

Fix an orientation of M , and hence of M̃ . We observe that, by the Hurewicz theorem [17],
π2(M) = π2(M̃) = H2(M̃). So a class in π2(M) can be considered as a class in π2(M̃)

as well as a class in H2(M̃). We shall implicitly use this identification throughout.
Given an oriented essential embedded sphere S ⊂ M̃ , we get a partition of the set E(M̃)

of M̃ . Namely, as H1(M̃) is trivial, it follows by Alexander duality that M̃ − S has two
components, say V + and V −, with V + on the positive side of S according to the given
orientations on S and M̃ . The sets E±(S) are the sets of ends E(V ±) of these components.

PROPOSITION 3.1

The sets E±(S) are open in E(M̃).

Proof. As the sets Kτ form an exhaustion, there is a finite subtree τ of T with all of its
terminal vertices bivalent in T such that S is contained in K = Kτ . Note that the set E(M̃)

of ends of M̃ is partitioned into the sets E(Wi), with Wi the components of M̃ − Kτ . The
sphere S separates K and gives a partition of the collection {Ni} of boundary spheres of K .
Note that interior of each Wi is completely contained either in V + or V − and hence each
set E(Wi) lies entirely either inside E+ or inside E−. Thus, both E+ and E− are unions
of basic open sets, hence are open. �

As the sets E± = E±(S) give a partition of E(M̃), both E+ and E− are closed subsets
of E(M̃). As E(M̃) is compact, both E+ and E− are compact subsets of E(M̃).

Now, we shall see that the partition {E+, E−} of the set E(M̃) into open sets is com-
pletely determined by the homology class of S in M̃ . As K is homeomorphic to the com-
plement of the interiors of balls in S3, by elementary algebraic topology the following
holds.

Lemma 3.2. Orienting the boundary components of K using induced orientations from
K, the second homology group H2(K) of K is generated by the homology classes [Ni] of
the boundary spheres Ni with the relation

∑

i[Ni] = 0.

Let S and S′ be embedded spheres in M̃ . There exists a finite subtree τ of T with all
of its terminal vertices bivalent in T , such that both S and S′ are contained in K = Kτ .
We shall require the following lemma:

Lemma 3.3. The homology classes of an oriented spheres in K are in bijective correspon-
dence with partitions of the collection of boundary spheres Ni .
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Proof. An embedded sphere S separates K into two components, K+ and K−, with K−
on the negative side of S. The homology class of S can then be expressed as

[S] =
∑

i: Ni⊂∂K−
[Ni].

Thus, the class is determined by the corresponding partition. Conversely, by Lemma 3.2,
classes corresponding to different non-trivial partitions are different. �

Now, we have the following proposition:

PROPOSITION 3.4

If S′ is homologous to S in M̃, then both S and S′ give the same partition of the set of ends
of M̃ .

Proof. If S and S′ are homologous in M̃ , then as homology has compact support, we can
choose a finite subtree τ of T with all of its terminal vertices bivalent in T such that they are
homologous in K = Kτ . So, by Lemma 3.3, they give the same partition of the collection
of boundary spheres Ni of K . Therefore, they give the same partition of the collection
{E(Wi)} and hence, give the same partition of the set E(M̃). �

Conversely, we have the following.

PROPOSITION 3.5

If S and S ′ give the same partition (E+, E−) of the set E(M̃) of ends of M̃, then S and S ′
are homologous in M̃ .

Proof. There exist a finite subtree τ of T , with all of its terminal vertices bivalent in T , such
that both S and S′ are contained in K = Kτ . The sphere S separates K and gives a partition
of the boundary spheres Ni of K into two sets, which are determined by whether E(Wi)

lies (entirely) inside E+ or E−. As the partition of the boundary components induced by S′
is determined in the same fashion, S and S′ give the same partition of the boundary spheres
of K . Hence, by Lemma 3.3, S and S′ are homologous in K and therefore, homologous
in M̃ . �

Now, we see that partitions of E(M̃) into two open sets correspond to embedded spheres
in M̃ . We require the following lemma.

Lemma 3.6. Given a partition of the set E(M̃) into two infinite closed (hence open) sets
E+ and E−, there exists a subtree τ ⊂ T , with all the terminal vertices of τ bivalent in
T , such that each E(Wi) lies entirely either in E+ or E−.

Proof. The sets E+ and E− are both open and closed. As the set E(M̃) is compact, both
E+ and E− are compact. Let e ∈ E+. As E+ is open, we can choose a finite tree τe ⊂ T

with all the terminal vertices bivalent in T such that e is an element of the set Ue of the
ends of a component of M̃ − Kτ and Ue ⊂ E+. The sets Ue for e ∈ E+ form an open
cover of E+. As E+ is compact, there exists finitely many basic open sets U1, . . . , Un

which correspond to finite subtrees τi , such that E+ = ∪n
i=1Ui .

Let τ be a finite tree containing all the trees τi , and let K = Kτ and Wi be as before.
We claim that τ is as required. For, if for some component Wi , E(Wi) is not a subset of E−,
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let e ∈ E(Wi) ∩ E+. Then e ∈ Uj ⊂ E+ for some j , 1 ≤ j ≤ n. As τi ⊂ τ and
Uj ∩ Wi 	= φ (as e ∈ E(Uj ∩ E(Wj )), it follows that Wi ⊂ Uj (as Kτi

⊂ Kτ ). This
implies that E(Wi) ⊂ E(Uj ) ⊂ E+.

Thus, E(Wi) must be a subset of either E− or E+, as required. �

We now see the following:

PROPOSITION 3.7

Given a partition of the set E(M̃) into two infinite closed (hence open) sets E+ and E−,

there exist an embedded sphere S in M̃, which gives this partition of E(M̃).

Proof. Suppose that E+ and E− are two disjoint infinite closed subsets of E(M̃), which
give a partition of E(M̃). By Lemma 3.6, we choose a subtree τ ⊂ T with all the terminal
vertices of τ bivalent in T such that each E(Wi) lies entirely either in E+ or E−. We can
assign signs to Ni , + or − depending upon whether E(Wi) lies inside E+ or E−. Then,
we can choose a sphere S in K which separates all positive signed Ni from all negative
signed Ni , as K is homeomorphic to the complement in S3 of the interior of finitely many
3-balls with boundary spheres Ni . It is easy to see that S gives the partition of E(M̃) into
the sets E+ and E−. �

4. Crossings of spheres in M̃̃M̃M

We next discuss the notion of crossings of embedded spheres in M̃ in terms of their
associated partitions of ends of M̃ .

Let A and B be two homology classes in H2(M̃) represented by embedded spheres in
M̃ . We have seen that a homology class A of an embedded sphere S in M̃ is completely
determined by a partition of E(M̃) into two open subsets of E(M̃). If S gives partition of
E(M̃) into two open subsets E+(S) and E−(S) of E(M̃), then we can write E+(A) =
E+(S) and E−(A) = E−(S).

DEFINITION 4.1

We say that A and B cross if, for each of the four pairs of signs ε and η in {+, −},
Eε(A) ∩ Eη(B) 	= φ.

Suppose A and B do not cross, then for some choice of sign Eε(A) ⊃ Eη(B). It follows
that Eε̄(A) ⊂ Eη̄(B), where ε̄ and η̄ denote the opposite signs. Further, if A 	= B, then
the inequalities are strict.

DEFINITION 4.2

We say that B is on the positive side of A if E+(A) ⊃ Eη(B) for some sign η. Otherwise,
we say that B is on the negative side of A. In general, we say that B is on the ε-side of A

for the appropriate sign ε.

We shall need the following elementary observation.

Lemma 4.3. If B is on the ε-side of A and C is on the ε̄-side, then B and C do not cross.

Proof. For appropriate signs η and ξ , Eη(B) ⊂ Eε(A) and Eξ(C) ⊂ Eε̄(A). Hence,
Eη(B) ∩ Eξ(C) = φ, which shows that B and C do not cross. �
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If B is on the ε-side of A and C is on the ε̄-side, then we say that A is between B and C.

PROPOSITION 4.4

Let A and B be two homology classes in H2(M̃) represented by embedded spheres in M̃ .
Then, A and B are represented by disjoint embedded spheres in M̃ if and only if A and B

do not cross.

Proof. Suppose A and B are represented by embedded spheres S and S′ respectively.
Denote the closures of the components of the complement of S (respectively, S′) by X1 and
X2 (respectively, Y1 and Y2) so that E(X1) = E+(A) = E+(S) and E(X2) = E−(A) =
E−(S), and similarly E(Y1) = E+(B) = E+(S′) and E(Y2) = E−(B) = E−(S′).

Suppose S and S′ are disjoint embedded spheres in M̃ . Without loss of generality,
suppose S′ is contained in the interior of X1. Then, the component Yi which does not
intersect S is completely contained inside X1. Without loss of generality, let this component
be Y1. Then, E+(B) = E(Y1) ⊆ E(X1) = E+(A). This implies E+(B) ∩ E−(A) = φ.
Similarly, we can see in all other cases at least one of the four sets Eε(A) ∩ Eη(B), for ε

and η obtained by choosing signs ε and η in {+, −}, is empty.
Conversely, suppose A and B do not cross. We shall show that A and B can be represented

by disjoint embedded spheres in M̃ . Let τ be a finite subtree of T with all of its terminal
vertices bivalent in T , such that both A and B are supported in K = Kτ . Each set E(Wi) is
completely contained either in E+(A) or E−(A). Similarly, each set E(Wi) is completely
contained either in E+(B) or E−(B). We can assign signs +A or −A to each component
Ni of ∂K depending on whether E(Wi) lies inside E+(A) or E−(A). Similarly, we can
assign signs +B or −B to Ni , depending upon whether E(Wi) lies inside E+(B) or
E−(B). Thus, the collection of boundary spheres Ni of K get partitioned into two sets U+

A

and U−
A containing +A signed and −A signed boundary spheres, respectively. Similarly,

the collection of boundary spheres Ni of K get partitioned into two sets U+
B and U−

B

containing +B signed and −B signed boundary spheres, respectively. As A and B do not
cross, for some choice of sign, Eε(A) ⊃ Eη(B). Suppose E+(A) ⊂ E+(B). This implies
U+

A ⊂ U+
B . It also follows that U−

B ⊂ U−
A .

Let S be a sphere separating U+
A from U−

A . Then a complementary component V of S

has boundary components S and the boundary spheres in U−
A . We take S′ to be the sphere

in V separating U−
B ⊂ U−

A from (U+
B − U+

A ) ∪ S. Then S′ is disjoint from S and induces
the partition corresponding to B.

Thus, we get two disjointly embedded spheres S and S′ representing the homology
classes A and B. The other cases are similar. �

5. Partition of ends and normal forms

This section is devoted to associating to a partition A = (E+(A), E−(A)) of the space
E(M̃) of ends of M̃ into non-empty open sets, an embedded sphere S in M̃ which is in
normal form in the sense of Hatcher, so that E±(S) = E±(A). Along the way, we see
what data determines a sphere in normal form in M̃ and the relation between this data,
partitions of ends and crossings. Specifically, we prove the following:

Theorem 5.1. Given a partition A = (E+(A), E−(A)) of the set E(M̃) of ends of M̃

into two non-empty open sets, there is a normal sphere S in M̃ so that A is the partition
given by the ends of the components of M̃ − S.
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This result can be seen by taking an embedded sphere corresponding to the partition
and making this in normal form using Hatcher’s results. Our purpose in this section is to
show how one can directly construct the sphere using the data of crossings.

We have seen that embedded spheres correspond to partitions of ends. So, we can talk
about crossing of a partition A of E(M̃) and sphere S. We now turn to the construction of
the normal sphere representing the partition A.

We recall the notion of normal sphere systems from [14]. Let � = ∪j�j be a maximal
system of 2-spheres in M . We recall that the manifold M∗ obtained by splitting M along �

is a finite union of disjoint 3-punctured 3-spheres Pk , whose interiors int(Pk) are embedded
in M . Suppose S is a surface in M which is transversal to the spheres �i . Then the closure
Fk in Pk of int(Pk)∩S is a properly embedded, not necessarily connected surface. We call
the components of Fk the pieces of S in Pk .

DEFINITION 5.2

A system of 2-spheres S = ∪iSi in M is said to be in normal form with respect to � if
each Si either coincides with a sphere �j or meets � transversely such that the following
two conditions hold in each Pk:

(1) Each piece in Pk meets each component of ∂Pk in at most one circle.
(2) No piece in Pk is a disk which is isotopic, fixing its boundary, to a disk in ∂Pk .

Thus, each piece is a disk, a cylinder or a pair of pants. A disk piece has its boundary on
one component of ∂Pk and separates the other two components of ∂PK . A cylinder piece
joins two boundary components of ∂Pk and a pants piece joins all three boundary spheres
of Pk .

Similarly, we can define sphere systems in normal form with respect to the pre-image
�̃ of � in M̃ . We call the spheres �i standard spheres in M and their lifts ˜�i standard
spheres in M̃ .

Recall the following result from [14].

PROPOSITION 5.3 (Hatcher)

Every system S ⊂ M can be isotoped to be in normal form with respect to �. In particular,
every embedded sphere S which does not bound a ball in M can be isotoped to be in
normal form with respect to �.

Given a sphere S in normal form with respect to � in M and a lift S̃ of S to M̃ ,
we associate a tree T (S̃) corresponding to the decomposition of S̃ into pieces. The tree
T (S̃) has two kinds of vertices, one for each piece P ⊂ ˜Pk and one for each component
C of S̃ ∩ ˜�i for standard spheres �̃i . Edges join vertices corresponding to components P

to those corresponding to C ⊂ ∂P . Here we identify P with its image in M̃ .
In [14], it is shown that T (S̃) is a tree. Moreover, the inclusion S̃ ↪→ M̃ induces a

natural inclusion map T (S̃) ↪→ T , in particular each ˜Pk contains at the most one piece of
S̃. So, we can view T (S̃) as a subtree of T . It is easy to see that, as with Hatcher’s result
mentioned above, if S′ is a normal sphere in M̃ , then the map T (S′) → T is injective and,
in particular, each ˜Pk contains at most one piece of S′. If S is a standard sphere (or can
be isotoped to the standard sphere), then the associated tree T (S̃) is the single vertex in T

corresponding to that standard vertex.
Our construction is motivated by the following lemma from [10].
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Lemma 5.4. Let S be a normal sphere in M̃ and let �̃i be a standard sphere.

(1) The spheres S and �̃i intersect if and only if they cross.
(2) If S and �̃i intersect, they intersect transversely in a circle S1.

Thus, if A is represented by a normal sphere S in M̃ , we can determine the intersection
of S with each standard sphere in M̃ , in terms of crossings. The standard spheres in M̃

correspond to the bivalent vertices of the tree T , which we call standard vertices. Now,
we associate a subgraph τ of T to A as follows: If A crosses the standard sphere ˜�i , then
τ contains the bivalent vertex vi corresponding to ˜�i and the edges ei

1 and ei
2 containing

that vertex vi . The other vertex vi
j of each edge ei

j , j = 1, 2 is a trivalent vertex in T

which corresponds to a component of M̃∗. Each vi
j may be univalent (terminal), bivalent

or trivalent in τ . Note that each terminal vertex of τ is trivalent in T .
IfAdoes not cross some standard sphere in M̃ , then τ does not contain the standard vertex

corresponding to this standard sphere and hence does not contain the edges containing this
standard vertex. Note that any edge e in T contains a unique standard (bivalent) vertex of T .

We first consider the degenerate case where A does not cross any standard sphere.

Lemma 5.5. Suppose A = (E+, E−) is a partition of E(M̃) into two open sets such that
E+ 	= φ 	= E−. Suppose no standard sphere crosses A. Then, there exists a standard
sphere �0 such that E± = E±(�0).

Proof. By hypothesis, if v is a standard bivalent vertex of T , the standard sphere �(v)

corresponding to v does not cross A. Hence, after choosing orientations appropriately,
either E+(�(v)) ⊂ E+ or E−(�(v)) ⊂ E−. If �(v) = �0 satisfies both the conditions,
then E± = E±(�0).

Suppose no �(v) satisfies both the above conditions, we get a partition of bivalent
vertices of T as

V + = {v: E+(�(v)) ⊂ E+}
and

V − = {v: E−(�(v)) ⊂ E−}.
Let X± be the union of all the edges e in T such that the bivalent vertex of e lies in V ±.

Then the sets X± are closed and T = X+ ∪ X−. Hence, X+ ∩ X− 	= φ. By construction,
X+ ∩ X− consists of trivalent vertices of T . Let w ∈ X+ ∩ X− and let v1, v2 and v3 be
bivalent vertices adjacent to w. Note that at least one vi ∈ V + and at least one vj ∈ V −.
Without loss of generality, suppose v1, v2 ∈ V + and v3 ∈ V −.

Let N(w) denote the set of all the points in T with distance at most 1 from w. Then,
T − N(w) has three components V1, V2 and V3 whose closures contain the vertices v1, v2
and v3, respectively. It is easy to see that E(V1) ⊂ E+, E(V2) ⊂ E+ and E(V3) ⊂ E−.
It follows that E+(�(v3)) = E+(�(v1)) ∪ E+(�(v2)). This implies E+(�(v3)) ⊂ E+.
As v3 ∈ V −, E−(�(v3)) ⊂ E−. But then, v3 ∈ V + ∩ V −. This is a contradiction as V +
and V − are disjoint. Hence, there must exist a standard sphere �0 such that E± = E±(�0).

�

Thus, if A does not cross any standard sphere, the tree τ associated to A is a standard
vertex corresponding to the standard sphere representing A.
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A normal sphere S in M̃ has connected intersection with each set ˜Pk . The piece of S

in ˜Pk is a disc D, an annulus (which we call a tube) A or a thrice punctured 2-sphere Y

(which we call a Y -piece or pant piece) according as the number of edges in τ(S) adjoining
v corresponding to ˜Pk is 1, 2 or 3. We first make some observations about these cases.

Firstly, suppose v is a vertex of τ adjacent to a single edge e0 ∈ τ , i.e., v is a terminal
vertex of τ (hence trivalent in T ). Let v0 ∈ τ be the other vertex of e0 and �0 be the
standard sphere in M̃ corresponding to v0. Then, A crosses �0. Let the other edges adjacent
to v in T be e1 and e2 with bivalent vertices v1 and v2, respectively. Consider the standard
spheres �̃i = �̃(vi) corresponding to the vertices vi , with orientations chosen so that for
i = 1, 2, the set E+(�̃i) is the set of ends of the component of M̃ − �̃i that does not
contain �̃0. We can orient �̃0 so that E+(�̃0) = E+(�̃1) ∪ E+(�̃2).

Lemma 5.6. For some sign ε, Eε(A) ⊃ E+(�̃1) and Eε̄(A) ⊃ E+(�̃2).

Proof. First note that for any choice of sign η ∈ {−, +}, E+(�̃i) 	⊃ Eη(A), for i =
1, 2, as if E+(�̃i) ⊃ Eη(A), then E+(�̃0) ⊃ Eη(A), contradicting the hypothesis that
A crosses [�̃0]. Hence, as A does not cross the spheres �̃i , for appropriate signs εi ,
Eεi (A) ⊃ E+(�̃i) for i = 1, 2. Finally, if ε1 = ε2 = ε, then Eε(A) ⊃ E+(�̃0) as
E+(�̃0) = E+(�̃1) ∪ E+(�̃2), contradicting the hypothesis that A crosses �̃0. �

Thus, one of the spheres �̃1 and �̃2 is on the positive side of A and the other on the
negative side.

Consider next the case of a vertex v of valence 2 of τ which is trivalent in T . Then there
is an edge ev of T adjacent to v which is not in τ . The standard sphere �̃(ev) corresponding
to the other end vertex of the edge ev is either on the positive side of A or on the negative
side (as it does not cross A).

We shall see that τ is a tree and the partition A is determined by τ together with data of
the above form at terminal and non-standard bivalent vertices of τ . The standard bivalent
vertices of τ are standard (bivalent) vertices of T . We begin by showing that τ is a tree.
As this is a subgraph of a tree T , it suffices to show that τ is connected.

Lemma 5.7. The subgraph τ ⊂ T is connected, hence a tree.

Proof. Suppose τ is not connected. As τ is a subgraph of T , there is a standard vertex
v /∈ τ such that both components X1 and X2 of T − v intersect τ . Let τi = τ ∩ Xi , for
i = 1, 2. Let �̃0 = �̃(v).

As v /∈ τ , A does not cross �̃0. Hence, we can orient �̃0 so that for some sign ε,
E+(�̃0) ⊂ Eε(A). Without loss of generality, E+(�̃0) is the set of ends of X1.

Let τ ′ be the convex hull of the vertex v and τ1. As τ is a finite graph, τ ′ is a finite tree.
Let w be a terminal vertex of τ ′ distinct from v. Then, w is a terminal vertex of τ . Hence,
by Lemma 5.6, there is an adjacent edge e′ /∈ τ with its other end vertex v′ such that
E+(�̃(v′)) ⊂ Eε̄(A), with the orientation chosen so that E+(�̃(v′)) is the set of ends of the
component of M̃ − �̃(v′) that does not intersect τ . It follows that E+(�̃(v′)) ⊂ E+(�̃0),
and hence, E+(�̃0) ∩ Eε̄(A) 	= φ, a contradiction. �

We next see that τ is a finite tree.

Lemma 5.8. The tree τ is compact, hence finite.

Proof. If τ is not compact, then some end P ∈ E(M̃) = E(T ) is an end of τ . Without
loss of generality P ∈ E+(A). As E+(A) is open in the space of ends of T , there is a finite
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connected tree κ ⊂ T and a component V of T −κ so that P ∈ E(V ) ⊂ E+(A). We shall
show that no edge of V is contained in τ , contradicting the assumption that P is an end of τ .

Let e be an edge of T contained in V = T −κ . Then, as κ is connected, some component
W of T − e is disjoint from κ , and hence contained in V . Suppose v is the vertex of e such
that v is a standard bivalent vertex in T . If �(v) is the standard sphere corresponding to v,
then it follows that for some sign ε, Eε(�(v)) ⊂ E(V ) ⊂ E+(A), and hence, �(v) does
not cross A. This implies v is not in τ . It follows that e is not in τ . Thus, no edge of V is
in τ , as required. �

Thus, we have a finite tree τ associated to the partition A, with the terminal vertices of
τ trivalent in T . We shall next show that the partition A is determined by the tree together
with additional data for vertices adjoining the tree.

Let U(τ) and B(τ) denote the univalent (terminal) and non-standard bivalent vertices of
τ , respectively. Let N(τ) be the subgraph of T consisting of points with distance at most 1
from τ . Then, N(τ) is a tree, which is the union of τ with the following two kinds of edges:

(1) For each univalent vertex v ∈ U(τ) of τ , we have a pair of edges e1(v) /∈ τ and
e2(v) /∈ τ withv as a vertex. Letv1 andv2 be the other vertices of e1 and e2, respectively.

(2) For each non-standard bivalent vertex w ∈ B(τ) of τ , we have an edge e(w) /∈ τ with
w as an end-vertex. Let w1 be its other end vertex.

By Lemma 5.6, for a terminal vertex v, the sphere corresponding to exactly one of v1
and v2 is on the positive side of τ (positive side of A). The vertices v1 and v2 are end
vertices of e1 and e2 respectively. So, we can assign positive or negative signs to these
edges accordingly. We denote the positive edge by e+(v) and denote the other edge (which
is on the negative side) by e−(v). We denote the standard spheres corresponding to v1 and
v2 by �̃(v1) = �̃(e1) and �̃(v2) = �̃(e2), respectively. For a non-standard bivalent vertex
w of τ , we can associate a sign ε(w) so that �̃(w1) = �̃(e(w)) is on the ε(w)-side of A.

We show that the tree τ together with the additional data determines a partition of the
ends, which coincides with the given partition.

Lemma 5.9. The partition A is determined by τ together with the functions e+(v), v ∈
U(τ) and ε(w), w ∈ B(τ).

Proof. The spheres �̃(e±(v)) for terminal vertices of τ together with �̃(e(w)) for non-
standard bivalent vertices of τ separate M̃ into a compact component corresponding to τ

and one non-compact component for each such sphere �̃. We can orient the spheres �̃

so that the compact component is on the negative side of �̃. Then, the set of ends of the
non-compact component is E+(�̃). Hence, we have a partition

E(M̃) =
[

⋃

v∈B(τ)

(E+(�̃(e+(v))) ∪ E+(�̃(e−(v))))

]

∪
[

⋃

w∈U(τ)

E+(�̃(e(w)))

]

.

By construction, E+(�̃(e+(v))) ⊂ E+(A) and E+(�̃(e−(v)))∩E+(A) = φ, for each
terminal vertex v of τ . For each non-standard bivalent vertex w of τ , E+(�̃(e(w))) ⊂
E+(A) if ε(w) = + and E−(�̃(e(w))) ∩ E+(A) = φ otherwise. Hence,

E+(A) =
⋃

v∈B(τ)

E+(�̃(e+(v))) ∪
⋃

{w∈U(τ): ε(w)=+}
E+(�̃(e(w))).

This is determined by the given data. Hence, the partition A is determined by the given
data. �
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It is now easy to construct a normal sphere S in M̃ representing the partition A. Note
that a normal sphere S represents the partition A if and only if E±(S) = E±(A).

We can associate to an oriented normal sphere S ⊂ M̃ data very similar to that associated
to the partition A. Firstly, the sphere S has support which is a subtree τ . A terminal vertex
v of τ corresponds to a disc piece in a thrice-punctured 3-sphere P(v), which separates
the two other boundary components of P(v). Exactly one of these lies on the positive side.
Thus, as the boundary components correspond to vertices of T adjacent to v, we get a pair
of edges e±(v). A non-standard bivalent vertex w of τ corresponds to an annulus piece
(cylinder piece) in P(w). The boundary component of P(w) not intersecting the annulus
is on either the positive or the negative side of S, giving a sign ε(w). A trivalent vertex w′
corresponds to a pants piece in the 3-punctured 3-sphere P(w′).

Lemma 5.10. Given a finite tree τ, associated data e+(v) and ε(w), and an oriented circle
on the sphere �̃(V ′) for each non-terminal vertex v′ of τ, there is an oriented normal
sphere S ⊂ M̃ with corresponding data τ, e+ and ε and whose restriction to each thrice-
punctured 3-sphere has boundary the corresponding oriented circles. Further, the partition
corresponding to S is the one corresponding to the data τ, e+ and ε.

Proof. To each standard bivalent vertex of the tree τ , we associate a circle in the corres-
ponding standard sphere which we co-orient according to the given partition. For each
trivalent vertex v of τ , we associate a pants piece with boundary the circles in the standard
sphere that have been constructed.

Next, if v is a non-standard bivalent vertex of τ , the two adjacent standard vertices
correspond to circles on two standard spheres. We join them by an annulus so that
the other standard sphere bounding the 3-holed sphere corresponding to v is on the side
of the annulus given by ε(v). Similarly, for a terminal vertex of τ we consider a disc so
that the standard spheres corresponding to adjacent vertices of T that are not in τ is on the
positive side of the disc and the one corresponding to the other adjacent vertex is on the
negative side. �

6. Embedding classes, intersection number of a proper path and homology classes

In this section, we recall and sketch a proof of a theorem of [9] characterizing when a
conjugacy class in π2(M) can be represented by an embedded sphere in M̃ .

6.1 Intersection number of a proper path and homology classes

Consider a proper map c: R → M̃ . As M̃ is a union of the simply-connected compact sets
Kτ , where τ is a finite subtree of T , the following lemma is straightforward.

Lemma 6.1. There is a one-to-one correspondence between proper homotopy classes of
maps c: R → M̃ and pairs (c−, c+) ∈ E(M̃) × E(M̃).

Let A ∈ H2(M̃) = π2(M̃). Represent A by a (not necessarily connected) surface in M̃

(also denoted A). Given a proper map c: R → M̃ which is transversal to A. We consider
the algebraic intersection number c · A. This depends only on the homology class of A

and the proper homotopy class of c. The proper map c: R → M̃ gives a pair of ends
c− and c+ of M̃ . We shall refer to c as a proper path from c− to c+ or as a proper path
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joining c− and c+. We denote such a path c by (c−, c+). The path (c−, c+) is unique up to
proper homotopy. In particular, for a homology class A ∈ H2(M̃), the intersection number
(c−, c+) · A is well-defined and can be computed using any proper path joining c− and
c+. For details, see [9].

As H1(M̃) = 0, a homology class A is determined by the intersection numbers c · A,
where c: R → M̃ is a proper path. The following result of [9] characterizes which classes
in H2(M̃) can be represented by embedded spheres in M̃ .

Theorem 6.2. The class A ∈ H2(M̃) can be represented by an embedded sphere in M̃ if
and only if, for each proper map c: R → M̃, c · A ∈ {0, 1, −1}.

We have seen that an embedded sphere S in M̃ , partitions M̃ into two components with
closure of each component non-compact, giving a partition of the ends of M̃ into E±(S).
It is easy to see that if c: R → M̃ is a proper path, then

• if c− ∈ E−(S) and c+ ∈ E+(S), then c · S = 1,
• if c− ∈ E+(S) and c+ ∈ E−(S), then c · S = −1,
• if c− ∈ E−(S) and c+ ∈ E−(S), then c · S = 0,
• if c− ∈ E+(S) and c+ ∈ E+(S), then c · S = 0.

In particular, c · S ∈ {0, 1, −1}.
Conversely, let A be a homology class satisfying the hypothesis of the theorem. We shall

construct a normal sphere in M̃ that represents A.
The first step is the following elementary lemma, whose proof is in [9].

Lemma 6.3. There is a partition E±(A) of the set E(M̃) of ends M̃ so that

• if c− ∈ E−(A) and c+ ∈ E+(A), then c · A = 1,

• if c− ∈ E+(A) and c+ ∈ E−(A), then c · A = −1,

• if c− ∈ E−(A) and c+ ∈ E−(A), then c · A = 0,

• if c− ∈ E+(A) and c+ ∈ E+(A), then c · A = 0.

Thus, we have a partition of the ends just as in the case of embedded spheres. By Theo-
rem 5.1, this corresponds to the partition given by a normal sphere S in M̃ . As homology
classes are determined by their associated partitions, the sphere S represents the homology
class A ∈ H2(M̃) and Theorem 6.2 follows.

7. Graphs of trees and surfaces in normal form

In this section, we give a description of a sphere in normal form in M . In the well studied
case of normal surfaces in three-manifolds, a normal surface is described by normal coordi-
nates, which are just the number of pieces of each form. However normal spheres are more
complicated. We give a description of these in terms of the so-called graph of trees, which
is analogous to a graph of groups.

7.1 Graphs of trees

Let � be the dual graph to the decomposition of M by standard spheres, with pairs e and ē

of edges of � corresponding to standard spheres �i and vertices to components Pk of M∗.
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More precisely, there is a vertex vk corresponding to each component Pk of M∗. For each
sphere �i and component Pk with �i a boundary component of Pk , there is an edge
e with initial vertex o(e) = v and terminal vertex t (e) the vertex corresponding to the
other component containing �i (which may also be Pk), as well as another edge ē with
(o(ē), t (ē)) = (t (e), o(e)). Note that each vertex of � is trivalent.

Recall that a graph of groups for such a decomposition consists of groups G(v), G(e)

associated to vertices and edges of � respectively, together with isomorphisms G(e) →
G(ē) and for each edge e ∈ E(�) an injective homomorphism from G(e) to G(o(e)).
By taking compositions, we also get an inclusion map from G(e) to G(t(e)).

A graph of trees is analogous. More precisely, a graph of trees associated to � consists
of a non-empty, finite, oriented tree t (e) associated to each edge e ∈ E(�), a non-empty,
oriented, finite tree t (v) associated to each vertex v ∈ V (�), and for each edge e of � an
isomorphism from t (e) to t (ē) and an injective orientation preserving simplicial map from
t (e) to t (o(e)).

We shall use more intuitive terminology for graphs and trees, and refer to the pair of
oriented edges e, ē as a single edge of the graph with adjoining vertices o(e) and t (e).
By taking compositions if necessary, we have maps from the tree t (e) to the tree t (v) for
v a vertex of e.

If Pk is the component corresponding to a vertex v of �, we shall generally refer to t (v)

as t (Pk). We similarly refer to the tree t (e) as t (�i) if �i is the corresponding standard
sphere.

7.2 Normal spheres and graphs of trees

Let S be a normal sphere with a fixed co-orientation. We associate to S a graph of trees
structure. We remark that the construction applies to any surface in M transversal to the
standard sphere whose intersection with each component Pk is of the standard form of a
normal sphere. We shall call such a surface a normal surface. We shall assume that normal
surfaces have fixed co-orientations.

7.2.1 Trees associated to the edges of �. Let �i be a standard sphere. Then, S ∩ �i is a
collection of disjoint circles. Consider the graph t (�i) whose edges e correspond to the
circles of intersection and vertices v to complementary components, with v a vertex of e

if the boundary of the component corresponding to v contains the circle corresponding to
e. The co-orientation of S induces co-orientations for each of the circles of intersection.
This gives an orientation for the edges of the graph t (�i).

Note that this construction associates a graph t (C) to any collection C of disjoint
co-oriented circles in the sphere. Further, that there is an embedding of t (C) in the sphere
that makes it dual to the decomposition of the sphere by the given circles.

Lemma 7.1. The graph t (C) associated to a collection of disjoint co-oriented circles C in
the sphere is a non-empty finite oriented tree. Conversely, any non-empty finite oriented tree
t is isomorphic to t (C) for some collection of disjoint circles C in the sphere. Furthermore,
the collection associated to a given tree is unique up to isotopy.

Proof. First, we shall prove that the graph t = t (C) is a tree. If t is not connected, then we
associate to each component t ′ of t the union of the circles corresponding to the edges in
t ′ and the complementary components corresponding to the vertices in t ′. By construction
this is an open subset of the sphere, for, if an edge (which corresponds to a circle) lies in t ′ so
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do its adjoining vertices (which correspond to the components containing the circle). Thus,
we get a non-trivial partition of the sphere into open sets corresponding to components
of t , which is impossible as the sphere is connected. Hence t has only one component.

Further, given an edge e of t , the corresponding circle C separates the sphere S into two
components. It is easy to see that t − int(e) also consists of two components, corresponding
to the components of S − C. Thus, every edge in t separates. As t is connected, it follows
that t is a tree. The tree t is non-empty as there is at least one component in the complement
of C.

We prove the converse by induction on the number of vertices of t . The tree consisting
of a single vertex corresponds to the empty collection of circles. Let t be a finite tree and
assume that the result holds for all trees with fewer vertices. Let v be a terminal vertex of
t and e the adjoining edge. Consider the subtree t ′ = t\(v ∪ int(e)) of t . Let v′ ∈ t ′ be the
vertex of e distinct from v.

By the induction hypothesis, there is a collection C′ of co-oriented circles whose asso-
ciated tree is t ′. The vertex v′ corresponds to some component V ′ of the complement of
the circles C. Let C be obtained from C′ by adding a circle which is the boundary of a disc
in V ′. It is easy to see that, on choosing the appropriate co-orientation for this circle, the
associated tree is t .

Uniqueness follows similarly by induction. Namely, we can assume that the circles in
the collection C′ are unique up to isotopy. As v is a terminal vertex, the circle in C\C′ must
bound a disc in V ′. As any two discs in a connected surface are isotopic, it follows that C
is unique up to isotopy. �

We associate oriented trees to the edges of � by taking the oriented trees associated to
the corresponding standard spheres �i .

7.2.2 Trees associated to vertices of �. Let v be a vertex of � corresponding to the
component Pk of M∗. Let P be a collection of pieces in Pk , i.e., a disjoint collection of
pairs of pants, cylinders and discs satisfying the conditions for normal spheres.

Let e1, e2 and e3 be the edges adjoining v and let �i be the corresponding boundary
components. Then, Ci = �i ∩ P is a collection of disjoint circles in �i , to which we
can associate a tree ti = t (ei) as in Lemma 7.1. We shall construct a tree t = t (P) and
inclusion maps from the trees ti to t (v).

The pieces P form a collection of co-oriented co-dimension 1 proper submanifolds in
the simply-connected manifold Pk . Let t = t (P) be the dual graph to this decomposition –
namely, we take an edge for each piece and a vertex in each complementary component,
with the edges intersecting the pieces transversally in a single point.

Lemma 7.2. The graph t is a tree.

Proof. The proof is essentially the same as the first part of Lemma 7.1.
Firstly, we can associate to each component t ′ of t an open set consisting of the union

of the pieces corresponding to edges of t ′ and complementary components consisting of
vertices of t ′. This gives a decomposition of Pk as a union of open sets. As Pk is connected,
it follows that t is connected.

Next, an edge e of t corresponds to a piece in Pk . As Pk is simply-connected, the piece
partitions Pk into two components. This gives a corresponding decomposition of t − int(e)
into two components. Thus, each edge of t separates, showing that t is a tree. �
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We have natural inclusion maps from ti to t – namely, each component of �i − Ci is
contained in a unique component of Pk − P giving a natural map of vertices. Similarly,
each component of Ci is contained in a unique component of P , giving a map of edges. It is
clear that these maps give an injective simplicial map. If S ∩ Pk = φ, then t (v) contains
only one vertex and no edges and we have natural inclusion maps.

The next step in our construction is to show that trees ti and t satisfying certain condi-
tions are associated to collections of pieces. We fix a vertex v of � corresponding to the
component Pk . Let �i , i = 1, 2, 3 be the corresponding boundary components of Pk and
let ti be the corresponding trees.

Lemma 7.3. Let T and Tj , 1 ≤ j ≤ 3 be non-empty finite trees. Let ij : Tj → T be
injective homomorphisms satisfying the following conditions.

(1) The union of the images of the maps ij is T.
(2) If an edge e ⊂ T is in the image of only one inclusion map ij , say i1, then the images

of i2 and i3 are contained in opposite components of T − int(e).

Then, there is a collection of pieces P so that the associated trees and inclusion maps are
the given ones.

Remark 7.4. The conditions correspond to P having no closed components and to discs
in P separating the two boundary spheres of the component Pk that they do not intersect.
It is thus easy to see that trees associated to a normal surface satisfy these conditions.

DEFINITION 7.5

We say that a graph of trees is regular if it satisfies conditions 1 and 2 of Lemma 7.3 for
each vertex of �.

Proof of Lemma 7.3. We proceed by induction on the number of vertices in T. The base
case, where the tree T consists of a single vertex (and hence so do the trees Tj ) corresponds
to the empty collection of pieces.

Assume that the result holds for all trees with fewer vertices than T. Let v be a terminal
vertex of T and let e be the unique adjoining edge. Let v′ be the other vertex of e.

We first construct trees tj and t with fewer vertices satisfying the hypothesis. The tree
t is obtained from T by deleting the vertex v and the interior of the edge e. If the edge e

is in the image of ij , the tree tj is obtained from Tj by deleting the interior of i−1
j (e) and

the vertex i−1
j (v). Otherwise tj = Tj . More intuitively, we delete an innermost piece and

all its boundary components.
It is easy to see that the trees t and tj , j = 1, 2, 3, satisfy the hypothesis of the lemma,

except that one or two of the trees tj may be empty, which happens if and only if the
corresponding tree Tj consists of a single vertex mapping to v. In this case, we replace
the empty tree tj by a single vertex, which we map to v′ under the inclusion map ij .

By the induction hypothesis, we can construct a collection of pieces Q with t and tj
as the corresponding trees with the given inclusion maps. We shall add a single piece,
corresponding to e, to obtain the required collection of pieces P .

Note that by condition 1, the edge e is the image of edges in 1, 2 or 3 trees Tj . We shall
add a disc, annulus or a pair of pants according to the number of such trees.

First, consider the case when e lies in the image of only one tree, say T1. By condition 2,
it follows that the image of one of the other trees Tj , say T2, consists of the single
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vertex v. It follows that the sphere �2 is disjoint from the collection Q. Further, by the
above construction, the tree t2 is a single vertex mapping to v′, hence the sphere �2 is
in the component corresponding to v′. As v′ is also in the image of T1, the component
corresponding to v′ intersects �1. Hence there is an embedded arc γ disjoint from Q
joining �2 to �1.

We consider the disc D that is the boundary of a regular neighbourhood of γ ∪ �2.
By construction this is disjoint from Q. It is easy to see that the collection P consisting of
Q together with the disc D corresponds to the trees T and Tj .

We now turn to the other two cases. Firstly, if e is in the image of two trees, say T1 and
T2, then v′ is in the image of both these trees. Hence the component V ′ corresponding to
v′ intersects both �1 and �2. Hence there is an embedded arc in V ′ joining γ1 to γ2. The
boundary of a regular neighbourhood of this arc gives an annulus A disjoint from Q. The
union of Q with the annulus A gives the required collection P .

The case when e is in the image of all three trees Tj , and hence the component V ′
corresponding to v′ intersects each �j , is similar. We take a point in the interior of V ′ and
join it by disjoint embedded arcs to the spheres �j , giving an embedding of a tripod τ .
A regular neighbourhood of τ gives a pair of pants. The union of Q with this pair of pants
gives the required collection P of pieces. �

We now see that we can construct a surface in normal form corresponding to the given
graph of trees. This is obtained by gluing together the pieces.

Lemma 7.6. A regular graph of trees is the graph of trees associated to a surface in normal
form.

Proof. We consider first the manifold M̂ obtained from M by deleting regular neighbour-
hoods of the surfaces �i . The components of M̂ can be identified with the components Pk

of M∗. We assume that such identifications have been made.
By Lemma 7.3, there are pieces in each such component Pk which correspond to the

given graph of trees. The normal surface we construct is the union of these pieces with
annuli in the neighbourhoods �i × [−1, 1] of the surfaces �i .

Consider the neighbourhood �i × [−1, 1] of such a surface �i . The boundary of the
pieces in the components Pk give a collection of circles in the components �i × {−1, 1}
of the boundary of M̂ , which can be identified with �i .

These collections of circles correspond, under Lemma 7.1, with the tree associated
with �i . By the uniqueness statement of Lemma 7.1, these collections of circles are iso-
topic. It follows that there is a family of disjoint annuli in �i × [−1, 1] with boundaries
the given families of disjoint circles in �i × {−1, 1}.

The union of the pieces in the components of M̂ together with the annuli in the neigh-
bourhoods of the surfaces �i is thus a (not necessarily connected) surface. It is clear that
this corresponds to the given graph of trees. �

8. Embedding classes in MMM

We now give a constructive proof of the main result of [9] giving a criterion for a class
A ∈ π2(M) = H2(M̃) to be representable by an embedded sphere in M .

Theorem 8.1. The class A ∈ π2(M) can be represented by an embedded sphere in M if
and only if A can be represented by an embedded sphere in M̃ and, for all deck transfor-
mations, g ∈ π1(M), A and gA do not cross.
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If A can be represented by an embedded sphere S in M , then one can easily see that a
lift S̃ and all of its translates in M̃ are disjoint. Therefore, A and gA can be represented by
disjoint embedded spheres in M̃ , for all g ∈ π1(M), which implies A and gA do not cross.

The rest of this section is devoted to a constructive proof of the converse. Let A be a
class in π2(M) that satisfies the hypothesis. We shall associate to the class A a regular
graph of trees, hence a surface in normal form. We then show that this normal surface in
A is the homeomorphic image under the restriction of the covering map of a sphere in
M̃ representing the class A. It follows that the normal surface constructed is a sphere and
represents the class A.

8.1 Trees and Dunwoody’s construction

We construct the trees associated to vertices and edges of � using the characterization of
trees in terms of their edges with an ordering due to Dunwoody. We recall some definitions
and results from [8] and give a simple extension that we need.

We shall require precise combinatorial descriptions of graphs and associated objects.
We recall these below.

DEFINITION 8.2 (see Definition 2.3)

A graph T consists of two sets E(T) and V (T), called the edges and vertices of T, a mapping
from E(T) to E(T) denoted e �→ ē, for which e 	= ē and ¯̄e = e, and a mapping from
E(T) to V (T) × V (T), denoted e �→ (o(e), t (e)), such that ē �→ (t (e), o(e)) for every
e ∈ E(T).

DEFINITION 8.3

An edge path in T is a sequence e1, e2, . . . , en of edges, such that t (ei) = o(ei+1),
ei 	= ēi+1, for i = 1, 2, . . . , n − 1.

If e, f ∈ E(T), we write e ≤ f if there is an edge path e1, e2, . . . , en for which e1 = e

and en = f . If T is a tree, then ≤ determines a partial ordering on E(T). In addition the
following conditions are satisfied:

(1) if e ≤ f , then f̄ ≤ ē;
(2) if e ≤ f , there are only finitely many g for which e ≤ g ≤ f ;
(3) for any pair e, f , at least one of e ≤ f , e ≤ f̄ , ē ≤ f , ē ≤ f̄ holds;
(4) for no pair e, f is e ≤ f and e ≤ f̄ ;
(5) for no pair e, f is e ≤ f and ē ≤ f .

Theorem 8.4 (Dunwoody). Let (E, ≤) be a partially ordered set with a mapping E → E,

e → ē, for which e = ¯̄e, and suppose the above conditions (1)–(5) are satisfied. Then,
there exists a tree T with E = E(T), where E(T) is the set of edges of T and the order
relation on E is precisely that determined by edge paths in T as above.

Remark 8.5. The vertices of the tree in the above theorem correspond to equivalence
classes of edges, with two edges e and f equivalent if e and f̄ are adjacent with e ≤ f̄ .
Here, we say edges e1 and e2, with e1 ≤ e2, are adjacent if whenever e1 ≤ g ≤ e2, then
g = e1 or g = e2.
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Intuitively, the equivalence relation in the above construction corresponds to the terminal
vertices of edges being the same. There is an exceptional case, when the set of edges is
empty. In this case the tree consists of a single vertex (even though there are no equivalence
classes).

DEFINITION 8.6

We say that an edge f is on the positive side of e if either e ≤ f or e ≤ f̄ . Otherwise we
say that f is on the negative side of e.

The following is immediate from Dunwoody’s conditions.

Lemma 8.7. The edge f is on the negative side of e if and only if f is on the positive side
of ē.

As a simple extension to Dunwoody’s result, we obtain the following.

Lemma 8.8. Let B1, . . . , Bn be homology classes in H2(M̃) so that no pair crosses and
Bi 	= ±Bj for 1 ≤ i < j ≤ n. Then, there is an associated oriented tree with edges ei

corresponding to classes Bi so that ej is on the positive side of ei if and only if Bj is on
the positive side of Bi .

Proof. We define the set E of edges to be {B1, . . . , Bn, −B1, . . . ,−Bn}. We define Bi ≤
Bj if E+(Bj ) ⊂ E+(Bi). We can easily check ‘≤’ turns out be a partial order relation
satisfying the hypothesis of Theorem 8.4. The result follows. �

8.2 Graph of trees structure associated to the homology class A

We now associate a regular graph of trees to a class A satisfying the hypothesis of
Theorem 8.1, and hence construct a corresponding normal sphere S in M representing the
class A. Our construction is motivated by the observations in [10] (see Lemma 5.4) that,
for an embedded sphere S in M in normal form and a standard sphere �i in M , the compo-
nents of S ∩ �i are in bijective correspondence with translates of a lift of S that cross a
lift �̃i of �i .

As we have seen, the homology class A of a sphere S in M̃ determines the corresponding
partition of ends of M̃ , and hence crossing. Further, the order on edges obtained as in
Lemma 8.8 correspond to on which side of a translate gA of A another translate hA

lies. This is, by definition, determined by the partition corresponding to A, and hence the
homology class of the sphere S.

Consider now a homology class satisfying the hypothesis of Theorem 8.1 and its asso-
ciated partition. We shall associate a graph of trees to A.

Observe that, as A is disjoint from all its translates, any finite collection of translates
of A satisfies the hypothesis of Lemma 8.8. This follows from the remarks following
Definition 4.1. We shall use this observation repeatedly.

8.2.1 Tree associated to edges of �. Let �i be a standard sphere corresponding to an
edge e ∈ E(�). We consider the set of pairs (�̃i , gA) with �̃i a lift of �i so that gA

crosses �̃i . On the set of such pairs, we introduce the equivalence relation given by

(�̃i , gA) ∼ (h�̃i, hgA), h ∈ π1(M)

with h ∈ π1(M) acting as a deck transformation.
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Let E(�i) be the set of equivalence classes under this equivalence relation. As two lifts
are related by a deck transformation, for each fixed lift �̃0

i , there is a unique representative
in each equivalence class of the form (�̃0

i , gA). By proper discontinuity of the action by
deck transformations, as homology classes are compactly supported, there are only finitely
many equivalence classes in E(�i). We also observe that each equivalence class has a
unique representative of the form (�̃i , A).

Fix a lift �̃0
i of �i . Then, as above, the equivalence classes correspond to the finitely

many homology classes gA so that gA crosses �̃0
i . We let t (e) = t (�i) be a tree obtained

using Lemma 8.8 corresponding to the homology classes gA that cross �̃i . Thus, the
unoriented edges of t (�i) correspond to equivalence classes of pairs (�̃i , gA) which cross,
i.e., elements of E(�i).

We observe that if h�̃0
i is another lift, then the order obtained from this lift is the same

as that obtained from �̃0
i , as the homology classes crossing h�̃0

i are obtained from those
crossing �̃0

i by applying the deck transformation h, which preserves the order. We associate
the tree t (�i) to the edge e of � corresponding to �i .

8.2.2 Tree associated to vertices of �. Similarly, for a component Pk of M∗ correspond-
ing to a vertex v ∈ �, we consider a lift P̃k ⊂ M̃∗ of Pk , which we recall is homeomorphic
to a 3-sphere with the interiors of three balls deleted. We say that gA crosses P̃k if and
only if it crosses one of the boundary components (which are standard spheres) of P̃k .

We once more consider pairs (P̃k, gA) so that gA crosses P̃k , under the equivalence
relation (P̃k, gA) ∼ (hP̃k, hgA) with h ∈ π1(M). As in the case of the trees t (�i),
we obtain a tree t (v) = t (Pk) with the set of unoriented edges the set E(Pk) of such
equivalence classes using Lemma 8.8. Note that we once more obtain a unique equivalence
class on fixing either a lift P̃ 0

k of Pk or by considering pairs of the form (P̃k, A).

8.2.3 The inclusion maps. For a component Pk of M∗ and a boundary component �i

of Pk , we choose and fix lifts P̃ 0
k and �̃0

i so that �̃0
i is a boundary component of P̃ 0

k .
As we have observed, each edge in the tree t (�i) has a unique representative of the form

(�̃0
i , gA). We map this edge of t (�i) to the edge corresponding to (P̃ 0

k , gA) in t (Pk).
Observe that by definition gA crosses P̃ 0

k , so this map on edges makes sense.
We now extend the map to vertices. In Dunwoody’s construction (see Remark 8.5),

vertices correspond to equivalence classes of edges. We see, using the following lemma,
that ij gives a well-defined (injective) map on vertices.

Lemma 8.9. Let Ai, Aj and Ak be translates of A such that Ai ≤ Aj ≤ Ak . If Ai and Ak

cross the homology class of the boundary sphere �̃i of P̃k, so does Aj .

Proof. As Aj ≤ Ak, E+(Ak) ⊂ E+(Aj ). As Ak crosses the homology class [�̃i] of
the boundary sphere �̃i, we have E±([�i]) ∩ E+(Ak) 	= φ. This implies E±([�i]) ∩
E+(Aj ) 	= φ.

As Ai ≤ Aj , E+(Aj ) ⊂ E+(Ai) and hence, E−(Ai) ⊂ E−(Aj ). As Ai crosses the
homology class [�̃i] of the boundary sphere �̃i, we have E±([�i]) ∩ E−(Ai) 	= φ. This
implies E±([�i]) ∩ E−(Aj ) 	= φ.

Thus, all the four intersections E±([�i]) ∩ E±(Aj ) are non-empty. Hence, Aj crosses
the homology class of the boundary sphere ˜�i of ˜Pk . �
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COROLLARY 8.10

If e and f are adjacent edges in t (�j ), then their images are adjacent edges in t (Pk).

Proof. Suppose e and f correspond to the homology classes Ai and Ak , oriented so that
Ai < Ak . If their images are not adjacent in t (Pk), then there is a class Aj with Ai < Aj <

Ak corresponding to an edge in between the images of e and f . But, by Lemma 8.9, Aj

crosses �j , and hence gives an edge of t (�j ) between e and f , contradicting the hypothesis
that e and f are adjacent. Hence, the images of e and f in t (Pk) must be adjacent. �

Thus, if edges e and f are equivalent in t (�j ), their images are also equivalent in t (Pk).
It follows that, if the set of edges of t (�i) is non-empty, we have well-defined maps on
vertices, giving simplicial inclusions ij from t (�j ) to t (Pk).

We finally turn to the case when the set of edges of t (�j ) is empty. In this case t (�j )

consists of a single vertex and �j does not cross any translate of the class A. We can thus
apply Lemma 8.8 to the union of the translates of A that cross P̃k with the class represented
by the lift �̃j of �j in the boundary of P̃k to obtain a tree t ′ which is the union of t (Pk)

and a single edge e corresponding to �̃j .

Lemma 8.11. At least one of the vertices of e is a terminal vertex of t ′.

Proof. Suppose not. Then, there are translates g1A and g2A of A on opposite sides of the
sphere �̃j . If �̃i is another boundary sphere of P̃k , then by Lemma 4.3, g1A and g2A cannot
both cross �̃i . Thus, the translates g1A and g2A cross the other two boundary components
of P̃k . By Lemma 4.3, it follows that the other two boundary components of P̃k must be on
opposite sides of �j , which is clearly not the case. This gives the required contradiction.

�

If both vertices of e are terminal vertices, then t (Pk) is a tree containing only one vertex
and no edges, so there is only one possible map from t (�j ). Otherwise, let v be the terminal
vertex of e and v′ the other vertex. As t ′ is connected, it is easy to see that v′ ∈ t . We define
the inclusion map as mapping t (�j ), which is a single vertex, to v′.

Lemma 8.12. The graph of trees associated to the class A is regular.

Proof. Let v be a vertex of � corresponding to the component Pk of M∗. Let e1, e2 and
e3 be the edges adjoining v and let �i be the corresponding boundary components of Pk .
We can easily see that the union of the images of the maps ij : t (�i) → t (Pk) is t (Pk).

Now suppose that there is an edge e in t (Pk) such that e is in the image of only one
inclusion map ij , say i1. Let �̃1 be a lift of �1 and P̃k of Pk such that �̃1 is boundary
sphere of P̃k . Let �̃2 and �̃3 be the other boundary spheres of P̃k which are lifts of �2
and �3 respectively. Then, corresponding to the edge e of t (Pk), there is a translate gA of
A such that gA crosses �̃1. Note that gA does not cross �̃2 and �̃3. By Lemma 5.6, one
of the spheres �̃1 and �̃2 is on the positive side of gA and the other on the negative side.
Suppose that the sphere �̃2 is on the positive side and �̃3 is on the negative side of gA.
By Lemma 4.3, any translate of A which crosses �̃2 is on the positive side of gA and any
translate of A which crosses �̃3 is on the negative side of gA. This shows that image of
every edge of t (�2) under the inclusion map i2 (hence, the subtree i2(t (�2)) of t (Pk)) lies
on the positive side of the edge e and image of every edge of t (�3) under the inclusion
map i3 (hence, the subtree i3(t (�3)) of the tree t (Pk)) lies on the negative side of e. If the
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tree t (�2) is a tree containing only one vertex and no edges, the inclusion map i2 maps
this vertex to a vertex in t (Pk) on the positive side of e as �̃2 is on the positive side of gA.
Similarly, if the tree t (�3) is a tree containing only one vertex and no edges, the inclusion
map i3 maps this vertex to a vertex in t (Pk) on the negative side of e. Thus, the images
of i2 and i3 are contained in opposite components of t (Pk) − int(e). This shows that the
graph of trees associated to the class A is regular. �

8.2.4 Lift to the universal cover. We have associated to the homology class A a regular
graph of trees, and hence a surface S in normal form by Lemma 7.6. We shall show that S

is a sphere and represents the class A. This follows from the following lemma.

Lemma 8.13. There is a sphere S̃ ⊂ M̃ which represents the class A and which maps
homeomorphically to S under the restriction of the covering map.

Proof. As in Lemma 5.9, we can associate a finite tree τ ⊂ T to A with additional data
that determines the class A. In Lemma 5.10, we showed that there is a normal sphere S̃ in
M̃ that can be associated to the data, which is in the class of A. We shall see that S̃ can be
chosen so that its image in M is S and the covering map is injective on S̃.

Consider a standard vertex v of τ (i.e., v a vertex that is bivalent in T ). The vertex v

corresponds to a standard sphere �̃i in M̃ , which crosses A as v is in τ . Consider the
image �i of �̃i . The tree t (�i) associated to �i contains a unique edge corresponding to
pair (�̃i, A), and hence �i contains a circle C corresponding to this pair. We can choose
S̃ ∩ �̃i , which is a single circle, to be the lift C̃ of C ⊂ �i to �̃i .

Similarly, for each non-standard vertex v of τ (i.e., v a vertex that is trivalent in T ),
we have a corresponding component P̃k ⊂ M̃ with image a component Pk in M . By defi-
nition, A crosses P̃k , so there is a piece P in Pk corresponding to the pair (P̃k, A). We con-
sider the lift P̃ of this piece to P̃k .

Suppose �i is a boundary component of Pk , with the lift �̃i of �i contained in the lift P̃k

of Pk . Then, under the inclusion map of the graph of trees, the edge corresponding to the
pair (�̃i , A) maps to the edge corresponding to the pair (P̃k, A). Hence, the corresponding
circle C̃ ⊂ �̃i is a component of the boundary of the piece P̃ .

It follows that the piece P̃ in each component P̃j containing a standard sphere �̃i

intersects �̃i in the circle C̃. Hence the union of the pieces constructed above give a surface.
Next, we see that the disc and cylinder pieces P̃ of S̃ correspond to the data determining

A. This data is equivalent to specifying on which side of P̃ a boundary sphere �̃i of P̃k lies.
Without loss of generality, assume that the sphere �̃i lies on the positive side of A.

We shall show that �̃i also lies on the positive side of S̃. We have two cases, depending
on whether or not another piece P ′ in Pk has boundary on �i .

If no such piece has boundary on �i , then the tree associated to �i is a single ver-
tex, which maps to a vertex in the tree t (Pk) associated to Pk . Recall that this is the
vertex v′ that is a vertex of the new edge obtained by extending the tree t (Pk) by adding
the class [�̃i] to the translates of A. By construction, this lies on the positive side of
the edge corresponding to the pair (P̃k, A) in t (Pk) as �̃i lies on the positive side of A.
As the surface S is constructed using Lemma 7.3, the piece P is thus embedded so that
the sphere �̃i is on the positive side of S̃.

Suppose some piece P ′, corresponding to the crossing of gA with P̃k has boundary
on �i . Observe that gA and �̃i are on the same side of A, hence both on the positive side,
otherwise we get a contradiction to Lemma 4.3. By construction of S, P ′ is on the positive
side of P in Pk , and hence �̃i is on the positive side of S̃, as required.
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Thus, by Lemma 5.9, the sphere S̃, represents the class A. As the pieces and circles in
S̃ are lifts of those in S, and there is a one-to one correspondence between these, S is the
homeomorphic image of S̃ under the restriction of the covering. �

As S̃ is a sphere representing the class A, so is S. This completes the proof of
Theorem 8.1. �
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