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Abstract—Variability reduction and business-process syn-
chronization are acknowledged as keys to achieving sharp and
timely deliveries in supply-chain networks. In this paper, we
introduce a new notion, which we call six sigma supply chains
to describe and quantify supply chains with sharp and timely
deliveries, and develop an innovative approach for designing such
networks. The approach developed in this paper is founded on
an intriguing connection between mechanical design tolerancing
and supply-chain lead-time compression. We show that the design
of six sigma supply chains can be formulated as a mathematical
programming problem, opening up a rich new framework for
studying supply-chain design optimization problems. To show
the efficacy of the notion and the design methodology, we focus
on a design optimization problem, which we call the inventory
optimization (IOPT) problem. Given a multistage supply-chain
network, the IOPT problem seeks to find optimal allocation of
lead time variabilities and inventories to individual stages, so as to
achieve required levels of delivery performance in a cost-effective
way. We formulate and solve the IOPT problem for a four-stage
make-to-order liquid petroleum gas supply chain. The solution
of the problem offers rich insights into inventory-service level
tradeoffs in supply-chain networks and proves the potential of the
new approach presented in this paper.

Note to Practitioners—This paper builds a bridge between
mechanical design tolerancing and supply-chain management.
In particular, the paper explores the use of statistical toler-
ancing techniques in achieving outstanding delivery performance
through variability reduction. Informally, a six sigma supply
chain is that which delivers products within a customer specified
delivery window, with at most 3.4 missed deliveries per million.
The innovations in this paper are the following: 1) to define two
performance metrics delivery probability and delivery sharpness
to describe the precision and accuracy of deliveries, in terms of
process capability indexes C,,,Cpr, and Cp,,,; 2) to formulate
the supply-chain design optimization problem using the process
capability indices; 3) to suggest an efficient solution procedure
for the design optimization problem. The paper presents the
case study of a two-echelon distribution network and using the
framework developed in the paper shows the role of inventory in
controlling lead time variability and achieving six sigma levels of
delivery performance.

Index Terms—Cycle time compression, delivery probability
(DP), delivery sharpness (DS), Motorola six sigma (MSS) quality,
process capability indexes (PCIs), process synchronization, six
sigma supply chains, supply-chain lead time, variability reduction.
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1. INTRODUCTION

UPPLY chains provide the backbone for manufacturing,
S service, and E-business companies. The supply-chain
process is a complex, composite business process comprising
a hierarchy of different levels of value-delivering business
processes. Achieving superior delivery performance is the
primary objective of any industry supply chain. Quick and
timely deliveries entail high levels of synchronization among all
business processes from sourcing to delivery. This in turn calls
for variability reduction all along the supply chain. Variability
reduction and business-process synchronization are therefore
acknowledged as key to achieving superior levels of delivery
performance in supply-chain networks.

A. Motivation

Lead times of individual business processes and the variabil-
ities in the lead times are key determinants of end-to-end de-
livery performance in supply-chain networks. When the number
of resources, operations, and organizations in a supply-chain
increases, variability destroys synchronization among the indi-
vidual processes, leading to poor delivery performance. On the
other hand, by reducing variability all along the supply chain
in an intelligent way, proper synchronization can be achieved
among the constituent processes. This motivates us to explore
variability reduction as a means to achieving outstanding de-
livery performance. We approach this problem in an innovative
way by looking at a striking analogy from mechanical design
tolerancing.

Variability reduction is a key idea in the statistical tolerancing
approaches that are widely used in mechanical-design toler-
ancing [1]. A complex supply-chain network is much like a
complex electromechanical assembly. Each individual business
process in a given supply-chain process is analogous to an indi-
vidual subassembly. Minimizing defective or out-of-date deliv-
eries in supply chains can therefore be viewed as minimizing tol-
erancing defects in electromechanical assemblies. This analogy
provides the motivation and foundation for this paper.

In statistical-design tolerancing, process capability indexes
(PCIs) such as C,, Cpi, and Cj,, [2], [3] provide an elegant
framework for describing the effects of variability. Best prac-
tices such as the Motorola six sigma (MSS) program [4] and
Taguchi methods [5] have been extensively used in design toler-
ancing problem solving. In this paper, we use these popular ap-
proaches in a unifying way to address variability reduction, syn-
chronization, and delivery performance improvement in supply-
chain networks.

B. Contributions

The contribution of this paper is two fold. First, we recog-
nize the key role of variability reduction and synchronization
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in achieving superior delivery performance in supply-chain
networks and explore intriguing connections between statis-
tical-design tolerancing and supply-chain lead time compres-
sion. Using this analogy, we introduce the notion of six sigma
supply chains. We show that the design of six sigma supply
chains can be expressed in a natural way as a mathematical
programming problem. This provides an appealing framework
for studying a rich variety of design optimization and tactical
decision making problems in the supply-chain context.

The second part of the paper proves the potential of the
proposed methodology by focusing on a specific design op-
timization problem which we call the inventory optimization
(IOPT) problem. We investigate this problem with the specific
objective of tying up design of six sigma supply chains with
supply-chain IOPT. Given a multistage supply-chain network,
the IOPT problem seeks to find optimal allocation of lead
time variabilities and inventories to individual stages, so as to
achieve required levels of delivery performance in a cost-ef-
fective way. The study uses a representative liquid petroleum
gas (LPG) supply-chain network, with four stages: supplier,
inbound logistics, manufacturer, and outbound logistics. The
results obtained are extremely useful for a supply-chain asset
manager to quantitatively assess inventory-service level trade
offs. For example, a supply-chain manager for the LPG supply
chain will be able to determine the optimal number of LPG
trucks to keep at the regional depot (RD) and the optimal
way of choosing logistics providers, so as to ensure six sigma
delivery of LPG trucks to destinations.

The supply chains for which the methodology discussed in
this paper can be categorized as “discrete event dynamical sys-
tems.” That is, the dynamics of the system is driven by occur-
rence of discrete events such as arrival of a customer order,
arrival of a truck at a logistics hub, dispatch of a truck from
a distribution center (DC), etc. All supply chains, regardless of
whether they are dealing with discrete parts or continuous pro-
cesses can be modeled as a discrete event dynamical system.
The modeling, analysis, design, and optimization studies de-
pend only on this “discrete event dynamics” of the system. The
continuous processes that may constitute individual subsystems
are modeled at an aggregate level, by representing their state
only at discrete epochs of time and through a stochastic repre-
sentation of the lead time of the process. What is created here is
a “lead time model” which does not need to model the exact dy-
namics of the underlying production process. We only need to
model the starting epoch and completion epoch of the activities.

In our view, the concepts and approach developed in this
paper provide a framework in which a rich variety of supply-
chain design and tactical decision problems can be addressed.

C. Relevant Work

The subject matter of this paper falls in the intersection of
several topical areas of research. These include: 1) variability
reduction and lead time compression techniques for business
processes; 2) statistical-design tolerancing, and, in particular,
the MSS program; 3) IOPT in supply chains.

Cycle-time compression in business processes using vari-
ability reduction is the subject matter of a large number of
papers in the last decade. See, for example, the paper by
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Narahari et al. [6], where variability reduction is applied to
subsystems to achieve lead time reduction of product devel-
opment projects. Hopp and Spearman, in their book [7], have
brought out different ways in which variability reduction can
be used in compressing lead times of machining and other
business processes. Lead time compression in supply chains
(using variability reduction techniques) is the subject of several
recent papers, see, for example, Narahari et al. [8].

Statistical-design tolerancing is a mature subject in the de-
sign community. The key ideas in statistical-design tolerancing
which provide the core inputs to this paper are: 1) theory of
PClIs [2], [3], [9]; 2) tolerance analysis and tolerance synthesis
techniques [10], [11]; 3) the MSS program [4], [12]; 4) Taguchi
methods [5]; 5) design for tolerancing [1], [13].

IOPT in supply chains is the topic of numerous papers in the
pastdecade. Important ones of relevance here are those on multi-
echelon supply chains [14]-[16]. Variability reduction is a cen-
tral theme in many of these papers. Recent work by Schwartz
and Weng [17] is particularly relevant here. This paper discusses
the joint effect of lead-time variability and demand uncertainty,
as well as the effect of “fair-shares™ allocation, on safety stocks
in a four-link just-in-time (JIT) supply chain. Masters [14] de-
velops an optimization model to determine near optimal stock
levels for multiechelon distribution inventories. His formula-
tion is similar to what we have discussed as the IOPT model
in this paper, although his decision variables are different from
those identified here. Ettl et al. [15] develop an inventory-queue
model of a multiechelon supply chain with base stock policy fol-
lowed at each store. Given the bill of materials, the nominal lead
times, the demand data, and the cost data, their model generates
the base stock level at each store that minimizes the overall in-
ventory capital in the network and guarantees the customer ser-
vice requirements. in several ways. The volume edited by Tayur
et al. [16] also contains several IOPT models in the supply-chain
context.

The salient feature of our model which makes it attractive
and distinguishes it from all the above discussed models, is the
notion of six sigma quality for the end-to-end delivery process.
Existing models in the literature consider either the availability
of the product to the customer as a criterion for customer service
level or probability of delivering the product to the customer
within a window as a measure of customer’s service level. Away
from these classical measurements of customer-service levels in
the IOPT problem, we propose a novel approach for customer
service level, namely accurate and precise deliveries, which is
the primary objective of any modern electronic supply chain.

The paper by Garg et al. [18] contains some of the core ideas
of this current paper and can be considered as a preliminary
version of the current paper. Another companion paper by the
authors [19] looks at a particular design-optimization problem
called the variance-pool allocation problem in a detailed way. In
contrast to [19], this current paper explores an IOPT problem in
multistage supply chains, after proposing a new notion, namely
six sigma supply chains.

D. Outline of the Paper

The paper is organized in following way. In Section II, we
review our work on supply-chain PCIs [18]—-[21]. This review
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Fig. 1. Process variability and customer delivery window.

is provided for the sake of self-sufficiency of this paper. In this
review, we first define PCIs Cp, Cp, and Cp,y,, and show their
relevance for modeling the delivery performance of the supply-
chain process. Next, we present the relationships among these
indexes. We define a new performance metric for delivery per-
formance, namely delivery sharpness (DS), to supplement the
commonly used metric, delivery probability (DP). Finally, we
present an extension of the the MSS quality notion in order to
include DS. This prepares the ground for Section III.

In Section III, we first define the notion of six sigma supply
chains. Next, we show how the design of a six sigma supply
chain can be described in a natural way as a mathematical pro-
gramming problem. We present several interesting design opti-
mization and tactical decision making studies that can be carried
out using this framework.

Section IV is targeted to show the potential of the new ap-
proach developed in this paper. We consider a representative
four-stage supply-chain network for LPG distribution and for-
mulate a design optimization problem, the IOPT problem, for
this network. Given required levels of DP and DS to be achieved,
the IOPT problem prescribes the optimal inventory level to be
maintained at a designated stage and the optimal way to dis-
tribute a pool of variance among lead times of individual stages.
Also, we describe a solution procedure for the IOPT problem
and present details of the solution approach for a realistic case
of the LPG supply chain. Finally, we touch upon numerical re-
sults and insights obtained.

Section V provides a summary of contributions of this
research and looks at several directions for future work in this
important area.
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TABLE 1
NOTATION USED IN DEFINITIONS OF PCIs
X  Lead time or any general quality characteristic X
I Mean of X
o Standard deviation of X
L  Lower specification limit of customer delivery window
U  Upper specification limit of customer delivery window
T Target value for X, specified by customer
T  Tolerance for X, specified by customer
b Bias |7 — py
d  min(|U — pl|,|p — L)

II. SuppLY-CHAIN PClIs

As already stated, this section is a review of earlier work in
[18]-[20].

A. Introduction

The PCIs C,,, Cpk, and Cpy,, [2] are popular in the areas of
design tolerancing and statistical process control. Let us con-
sider the situation depicted by Fig. 1 in order to describe the
idea of how capability of a process, where variability is an in-
herent effect, can be measured. The notation used in Fig. 1 is
listed in Table I. In Fig. 1, variability of the process is charac-
terized by the probability density curve of the quality charac-
teristic X produced by the process, and customer specifications
are characterized by a delivery window which consists of toler-
ance 7' and target value 7. Normal distribution is a popular and
common choice for X because of its fundamental role in the
theory of PCIs. The target value 7 can be any value between L
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Fig. 2. Process characterization.

and U but we have assumed it as the mid point of two limits for
the sake of convenience.

Fig. 2 explains three possible geometries of the probability
density curve and customer delivery window when superim-
posed on each other. This curve is the crux behind the idea of
measuring the capability of a process.

B. Indexes C,,, Cpy, and Cp,y,
1) Index C,: The PCI C,, is defined as

U-L
C,=——.
P 60
As assumed here, the target value 7 is the mid point of U, and
L, C,, can be expressed in the following equivalent form:

T
P 30

where T = tolerance = (U — L/2). C,, measures only the
potential of a process to produce acceptable products. It does
not bother about actual yield of the process where potential and
actual yield of any process are defined in the following manner.

Actual Yield: The probability of producing a part within
specification limits.

Potential: The probability of producing a part within spec-
ification limits, if process distribution is centered at the target
value i.e., up = 7.

Itis easy to see [21] that the potential of the process is equal to
the area under the probability density curve taken from X = L
to X = U when . = 7 and it can be expressed by the following
relation:

ey

Potential = 29(3C,) — 1 2)

. Tl T D ]
e g ed -t
L p=t U L ut U

QC(X) —» QC.(X) —»

where @( -) is the cumulative distribution function of standard
normal distribution.

2) Index Cpr: Index C, does not reflect the impact that
shifting the process mean or target value has on a process’s
ability to produce a product within specification [9]. For this
reason, the C);, index was developed. Cpy, is defined as follows:

min(U —p,p—L) ([ d

3o B <£) '
Here, C,, alone is not enough to measure actual yield of the
process. However, when used with C),, it can measure the actual

yield of the process. The formula for actual yield can be given
as below. A proof for this is provided in [21]

Actual Yield = ®(3C,;,) + ®(6C, — 3C,;) — 1.

Cpr =

3

“

3) Index Cpy,: Actual yield of the process is related to the
fraction of the total number of units produced by the process
which are defective, called as fraction defective. The fraction
defective is an indicator of process precision and it does not take
into account the accuracy of the process. In order to include the
notion of accuracy along with precision, we can use the index
Cpm [9] as follows:

o _U-L _ T

P 6E(L) 3o+ b2
The term FE(L) = o2 + b? is known as the expected Taguchi
loss [3].

)

C. Relationship and Dependencies Among C,,, Cpy, and Cpp,

The following relations can be derived among C,,, Cpr, Cpr,
[21]:

> (6)

Cp>Coe>0 Cp>Chp >0
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b TABLE II
Cpr = Cp(1 = k) where k = 7 BOUNDS ON PCIs FOR Actual Yield = a
2
! — 1 +(1- Cpre ) 8) Bound Formula
9C2, 902 Cp
| . o (et (%2))
PCIs C,,, Cp, and Cp,,, have a tight coupling, in addition to the =
mutual relationship (6), (7), and (8), with process yield. It is easy ca 1 ( B-1( ))
to show [21] that for a given value of actual yield « (say), one _pk 3 @
can define lower and upper bounds for the values of both C), and _ L (re1 (14a
Cpr. We denote these lower and upper bounds by C;,", C’;}k, C’]‘;‘, Cpk 3 (q) (T) )
and C_;]k, respectively. A crisp idea behind the intent of these oo .
P

bounds is as follows:

* If the process’ Cp,(Chpy) is less than C(Cpy), then, its
actual yield cannot be equal to o, no matter how large
Cpk(Cp) is. o

* If the process’ Cpy, is greater than or equal to C'y, then,
its actual yield cannot be less than «, no matter how small
C, is.

* The case with C’_]‘;‘ is a little different. For any value of C),
between C'r and C, it is possible to find a corresponding
Cpr such that the actual yield of the process is a.

Table II summarizes such bounds on C), and Cpy.
Fig. 3 shows a typical variation of C,;, with respect to C),
when the actual yield « is constant.
Fig. 3 immediately leads to the following observations.
1) For a given pair (C}, Cpr), the value of actual yield is
fixed.
2) However, for a given actual yield value, there exist infinite
such (Cp, Cpy,) pairs.

D. DP and DS

For every business process which is a part of a supply-chain
process, delivery time of product or service is an important
quality characteristic. Variability in lead time is inherent to
almost all the business processes, therefore, it will be apt to
apply the notion of PCIs to measure the delivery capability
or delivery quality of any business process. It is easy to see
from the relations presented in the Section II-C, that for a
given business process and for a given value of actual yield,
there exist infinite pairs (C,, Cpy) such that each one results
in the same actual yield. Similarly, by (8), for a given value
of Cpm, there exists an infinite number of feasible (C),, Cpy)
pairs. Nevertheless, it can be shown that for a given pair (actual
yield Cpy,), there exists a unique feasible pair (Cp,Cpr).
This suggests that the 3-tuple (C), Cpi, Cpr,) is sufficient to
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Fig. 4. MSS quality in the presence of shifts and drifts in process mean.

measure the delivery quality of any business process in a given
supply chain. This 3-tuple (Cp, Cpr, Cpm) can be substituted
by the pair (actual yield, Cp,,) to measure the delivery quality.

In this paper, we use the term DP to refer to the actual yield of
a given process. It describes the precision of deliveries. We use
the term DS for C,,,,, since it describes the accuracy of deliveries.
We use these two indexes to measure the quality of delivery
process in a given supply chain. Also, rather than expressing
the DP in terms of numerical values, we prefer to express it in
terms of Ao levels where § € RT. We are motivated by the
MSS program [4] in using the idea of fo levels. This will be
explained in the next section. Each fo level corresponds to a
particular value of actual yield or equivalently a particular value
of number of defects per million opportunities.

E. MSS Quality Program: A Generalized View

The six sigma concept [4], [12] is a way to measure fractional
defectives in a lot. Six sigma quality is the benchmark for excel-
lence of product and process quality. In this concept, a unique o
level is attached with each value of number of defects per million
opportunities (npmo). The npmo is the probability, expressed on
a scale of 1079, that a part is produced with quality character-
istic X lying outside the specification limits. Here, it is assumed
that X is normally distributed and the target value 7 is the mid-
point of upper specification limit (U) and lower specification
limit (L).

It is not uncommon to the manufacturing processes that j be-
gins to drift away from the nominal value of engineering spec-
ifications as the machine tool begins to wear and other inde-
pendent variables such as room temperature, material hardness,
etc., come into play. The shifting and drifting of process mean

is captured, in the MSS concept, by assuming a one sided mean
shift (bias) of 1.50 in the process mean. Also, it is assumed that
the variance of the shift in process mean is zero.

The idea behind fixing the value of o levels in this case, is as
follows. If U and L coincide with (7 + o) and (7 — o) respec-
tively, which are different from (14 o) and (1 — o) (see Fig. 4),
then, the corresponding upper bound on yield will be assigned
1o level. Similar is the case with 20, 3o, and others. Note that
the MSS program uses upper bound on yield (not actual yield)
in order to assign o levels. However, we follow a slightly dif-
ferent approach. We say DP of the process is 60 iff actual yield
of the process is (1-3.4 x 10~%) whereas according to the MSS
concept, six sigma quality is achieved when the the upper bound
of yield is (1-3.4 x 1079).

As shown before, for a given (C,,, Cp1) pair, the value of ac-
tual yield is fixed. But for a given actual yield value, there exist
infinite such (C,, Cpx) pairs. Hence, DP can be completely de-
termined by knowing C), and C},. However, there are numerous
(in fact, infinitely many) ways in which we can choose the pair
(Cp, Cpi) to achieve a given value of DP. This leads to a gener-
alized view of six sigma quality. MSS is a special case of this in
which bias is fixed i.e., 1.50. In order to elaborate this idea let
us start with the equation

Actual Yield = ®(3Cp;) + ®(6C), — 3Cp;) — 1.

If we fix the value of the actual yield as « in the above equation,
there will be two independent variables C,, Cyp, and the solu-
tion set will be unbounded. However, we have earlier shown that
for a given actual yield o, C,, and Cl,j, are bounded within cer-
tain range. Therefore, the solution is bounded by C;’k <Cpr <

o Oy < 0 < oo, If we substitute @ = (1-3.4 x 1075)
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and plot a graph, then, all the points lying on the curve will give TABLE 1II

(Cp, Cpr) pairs that result in 60 quality level. This equation can
be generalized for any Ao level by expressing « in terms of 6.
It is easy to see from Fig. 4 that the upper bound in the MSS
program for fo level is ®(f — 1.5). Equating this to the actual
yield of the process we get the following equation for fo quality
curve on the C), — Cp; plane, we get

(9 — 1.5) = ®(3Cpk) + ®(6C, — 3Cy,) — 1.

Some of these curves are plotted in Fig. 5. We can proceed
one step further by looking at the connection between DP and
DS in the light of our generalized notion of six sigma quality.
For this, we consider the plots of o quality levels on C}, — Cpp,
plane and then see how C),,,, varies on the same plot. To see
this, we use the identity relation (8) among C,, Cy, and Cp,,,
and plot this relation for a constant value of Cy,,, (say Cy,,). The
plot comes out to be a section of a hyperbola. From a process
design point of view, it can be said that for a desired level of
DS (i.e., Cpm) and DP (i.e., Cp, Cpp), this curve provides a set
of 3-tuples (Cp, Cpi, Cpm) Which all satisfy these two require-
ments. The designer has to decide which one of the triples to
choose depending upon the requirements. Fig. 5 shows some
Cpm curves on the C, — Cp, plane.

III. Six SIGMA SUPPLY CHAINS
A. Notion of Six Sigma Supply Chains

Motivated by the discussion in the previous section, we seek
to define the notion of six sigma supply chains, to describe a
supply chain with superior delivery performance. We define a
six sigma supply chain as a network of supply-chain elements

SAMPLE VALUES OF 3-TUPLES (C,, Cpi, Cprmn) WHICH
ACHIEVE S1X SIGMA DELIVERY PERFORMANCE

Cp Cok Cpm
1.548350 1.548350 1.548350
1.548900 1.540000 1.548348
1.551535 1.530000 1.548307
1.557998 1.520000 1.547972
1.573665 1.510000 1.545724
1.721814 1.500010 1.433445
1.726667  1.5000000001  1.427826

which, given the customer specified window and the target de-
livery date, results in defective deliveries (i.e., DP) not more
than 3.4 ppm. All triples (C}, Cpi, Cpr,) that guarantee an ac-
tual yield of at least 3.4 ppm (or DP = 60) would correspond
to a six sigma supply chain.

Table III provides sample values of PCIs that achieve six
sigma delivery performance. It is important to note that in order
to achieve DP = 60, the DS needs to assume appropriately
high value. In a given setting, however, there may be a need for
extremely sharp deliveries (highly accurate deliveries) implying
that the Cp,,,, index is required to be very high. This can be spec-
ified as an additional requirement of the designer.

B. Design of Six Sigma Supply Chains

We can say that the design objective in supply-chain networks
is to deliver finished products to the customers within a time as
close to the target delivery date as possible, with as few defec-
tive deliveries as possible at the minimum cost. To give an idea
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of how the design problem of a complex supply-chain network
can be formulated, let us consider a supply chain with n business
processes such that each of them contributes to the order-to-de-
livery cycle of customer desired products. Let X; be the cycle
time of process . It is realistic to assume that each X; is a con-
tinuous random variable with mean p; and standard deviation
o;. The order-to-delivery time Y can then be considered as a
deterministic function of X;’s

If we assume that the cost of delivering the products depends
only on the first two moments of these random variables, the
total cost of the process can be described as

where g is some deterministic function.

The customer specifies a lower specification limit L, an upper
specification limit U, and a target value 7 for this order-to-de-
livery lead time. With respect to this customer specification, we
are required to choose the parameters of Xi,...X,, so as to
minimize the total cost involved in reaching the products to the
customers, achieving a six sigma level of delivery performance.

Thus, the design problem can be stated as the following math-
ematical programming problem:

Minimize Z = g(p1,01, - .-, fin,0n)
subject to
DS for order-to-delivery time > C},,
DP for order-to-delivery time > 6o
Wi >0 Vi
g, >0 Vi

where C,, is a required lower bound on DS. The objective
function Z of this formulation captures the total cost involved
in taking the product to the customer, going through the indi-
vidual business processes. We have assumed that this cost is
determined by the first two moments of lead times of the indi-
vidual business processes. One can define Z in a more general
way if necessary. The decision variables in this formulation are
means and/or standard deviations of individual processes. The
constraints of this formulation guarantee a minimum level of
DS (Cj,, is the minimum level of DS required) and at least a
six sigma level of DP.

While solving the design problem, an important step is to
express the constraints in terms of the decision variables. This
will be elaborated upon in the next section.

C. Representative Design Problems

Depending on the nature of the objective function and
decision variables chosen, the six sigma supply-chain design
problem assumes interesting forms. We consider some prob-
lems below under two categories: 1) generic design problems;
2) concrete design problems.

1) Generic Design Problems:

* optimal allocation of process means;
* optimal allocation of process variances;
* optimal allocation of customer windows.
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2) Concrete Design Problems:

* due date setting;

¢ choice of customers;

* inventory allocation;

e capacity planning;

¢ vendor selection;

* choice of logistics modes, logistics providers;

* choice of manufacturing control policies.
These problems can arise at any level of the hierarchical design.
Thus, in order to develop a complete suite for designing a com-
plex supply-chain network for six sigma delivery performance
through the hierarchical design scheme, we need to address all
such subproblems beforehand. In the Section IV, we consider
one such subproblem, optimal allocation of inventory in a mul-
tistage six sigma supply chain, and develop a methodology for
this problem.

IV. INVENTORY OPTIMIZATION IN A
MULTISTAGE SUPPLY CHAIN

In this section, we describe a representative supply-chain
example for LPG, with four stages: supplier (refinery), inbound
logistics, manufacturer [regional depot (RG) for LPG], and
outbound logistics [17]. We formulate the six sigma design
problem, based on the concepts developed in earlier sections,
for this supply chain. Then we show how one can allocate
variabilities to lead times of individual stages so as to achieve
six sigma delivery performance. We also show how to compute
the optimal inventory to be maintained at the RD to support six
sigma delivery performance.

A. Four-Stage Supply-Chain Model With Demand and Lead
Time Uncertainty

1) Model Description: Consider N geographically dis-
persed DCs supplying retailer demand for some product as
shown in Fig. 6. The product belongs to a category which does
not make it profitable for the DC to maintain any inventory. An
immediate example is a distributor who supplies trucks laden
with bottled LPG cylinders (call these as LPG trucks or finished
product now onward) to retail outlets and industrial customers.
In a situation like this, as soon as a demand for an LPG truck
arrives at any DC, the DC immediately places an order for one
unit of product (in this case, an LPG truck) to a major RD. The
RD maintains an inventory of LPG trucks and after receiving
the order, if on-hand inventory of LPG trucks is positive, then,
an LPG truck is sent to the DC via outbound logistics. On the
other hand, if the on-hand inventory is zero, the order gets
backordered at the RD. At the RD, the processing involves
unloading the LPG from LPG tankers into LPG reservoirs,
filling the LPG into cylinders, bottling the cylinders and finally
loading the cylinders onto trucks.

The inventory at RD is replenished as follows. The RD starts
with on-hand inventory R and every time an order is received,
it places an order to the supplier for one LPG tanker (called the
semifinished product now onward) which is sufficient to pro-
duce one LPG truck. In this case, the supplier corresponds to a
refinery which will produce LPG tankers. In the literature such
a replenishment model is known as the (@), R) model [22] with
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Fig. 6. Four-link linear supply-chain model.

@ = 1. In such a model, the inventory position (on-hand plus
on-order minus backorders) is always constant and is equal to R.

It is assumed that raw material (crude oil or naphtha) required
for producing an LPG tanker is always available with the re-
finery, but the refinery needs to do some processing of this raw
material to transform it to LPG and load it onto a tanker. There-
fore, as soon as the refinery receives an order from the RD, it
starts processing the raw material and sends an LPG tanker via
inbound logistics to the RD.

The LPG supply-chain network is a typical example of a mul-
tiechelon supply-chain network. The four stages could be con-
sidered generically as procurement, inbound logistics, manufac-
turing, and outbound logistics, as described below (descriptions
in parentheses corresponds to the LPG example).

1y
2)

3)
4)

procurement or supplier (refinery);

inbound logistics (transportation of LPG tankers from re-
finery to RD);

manufacturing (RD);

outbound logistics (customer order processing and trans-

portation of LPG trucks from RD to a DC).

The DCs in the LPG example correspond to the end user in
the general setting of a four-stage supply-chain network. This
example emphasizes the distribution aspect of the supply chain.

In the next section, we articulate all the assumptions we have
made regarding behavioral and operational characteristics of
this model. We believe that these assumptions are reasonable
enough to make the model realistic and yet tractable, preserving
all important insights of the problem.

2) Assumptions:

1) A customer places order for only one unit of finished
product at a time to the manufacturer.

2) The orders arrive at the manufacturer in Poisson fashion
from each customer. The Poisson arrival streams of orders
are independent across the customers.

3) Each customer specifies a delivery window while placing
an order. This window is assumed to be the same for all
the customers. Also, in this window the date which cus-
tomer targets for delivery of the item has equal offset from
the upper specification limit and lower specification limit.

4) If the item is not on-hand with the manufacturer, then, the
customer’s order gets backordered there. All such backo-
rders are fulfilled in a first in first out (FIFO) manner by
the manufacturer.

END
CUSTOMER

5) Lead time for an item at each stage of the supply chain is
a normal random variable. Lead times of the four stages
are mutually independent. As soon as a supplier receives
an order from the manufacturer, processing commences
on the corresponding raw material.

6) Inbound and outbound logistics facilities are always avail-
able. Therefore, as soon as an item finishes its processing
at the supplier, its shipment starts via the inbound logis-
tics. Similarly, as soon as an order of a customer is re-
ceived by the manufacturer, the shipment of an item, if
available, commences using the outbound logistics. Oth-
erwise the shipment commences as soon as it becomes
available at the manufacturing node (following an FIFO
policy). Inbound logistics lead times are independ iden-
tically distributed (i.i.d.) random variables and outbound
logistics lead times are also i.i.d. random variables.

7) An item that arrives from the supplier does not wait in
queue at the manufacturer for getting processed (there is
no queuing before the manufacturing stage). Processing
times for items at the manufacturing node are i.i.d.
random variables.

8) The processing cost per item at each stage depends only
on the mean and variance of lead time of the stage.

9) Costs related to maintenance of inventory at the manu-
facturing node are fixed. Such costs include order placing
cost, inventory carrying cost, cost of raw material of an
item, and fixed cost against backorder of an item. How-
ever, the variable cost of the backorder is a function of
time for which the order is backordered.

Note that in this example, the following hold.

* We have modeled the dynamics of each of the four indi-
vidual stages by a corresponding normally distributed lead
time random variable.

* We have assumed only one stock, at the RD. We could
have assumed inventories at the other three stages, but that
would not add much to the insights sought to be illustrated
here.

* We have modeled the demand process.

* We have modeled stockouts, backordering, and inventory
replenishments corresponding to the inventory at the RD.

3) System Parameters: This section presents the notation
used for various system parameters.
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Lead Time Parameters:
X1 ~ N(p1,0%) Procurement lead time.

Xo ~ N(pu2,03) Inbound logistics lead time.

X3 ~ N(p3,0%) Manufacturing lead time.

X4 ~ N(pa,0%) Outbound logistics lead time.

L, Time elapsed between placement of an

order by manufacturer and receipt of the
order from supplier.

Ly Time elapsed between placement of an
order by manufacturer and completion of
the order manufacturer.

¢ End-to-end lead time of customer’s order.
L. An upper bound on L.
(fm,02) Mean and variance of L,,.
(1 ,0}2@) Mean and variance of L.
(e, 02) Mean and variance of L..
(fie, 0.2) Mean and variance of L.
Demand Process Parameters:
i Order arrival rate from sth customer (item/year).
A = va \;, Poisson arrival rate of orders at the manu-
facturer.

R Inventory level at the manufacturing node.
@ = 1 Reorder quantity of the manufacturer.
M,  Stockout probability at the manufacturing node.

E Average number of backorders per unit time at the
manufacturing node (item/time).

B Expected number of backorders with the manufac-
turer at arbitrary time ¢ (item).

D Expected number of on-hand inventory with the man-

ufacturer at arbitrary time ¢ (item).
m () Steady-state probability that the manufacturer has a
net inventory equal to z.
Pl MYexp(—At)(t)7) /().
P(r; My o2 p(z; At).
Cost Parameters:

K1 = f1(p1,01), Procurement cost ($/item).

Ko = fa(us2, 02), Inbound logistics cost ($/item).
Ks = f3(us, o3), Manufacturing cost ($/item).

Ky = fa(u4, 04), Outbound logistics cost ($/item).
A Order placing cost for manufacturer ($/order).
II Fixed part of backorder cost ($/item).

I Variable part of backorder cost ($/item-time).

I Inventory carrying cost ($/time-invested).

C Cost of raw material($/item).

Cnm Capital tied up with each item ready to be

shipped via outbound logistics ($/item).
Delivery Quality Parameters:
Cp, Cpi, Cprn Supply-chain PCIs for end-to-end lead time
of customer order.

(r,T) Delivery window specified by customer.
U=71+T Upper limit of delivery window.
L=7-T Lower limit of delivery window.

b=|r — u.| Biasfor L.

b= |r — ji.|. Bias for L..

d min(U — pe, pte — L).

d min(U — fi, g. — L).
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B. System Analysis

1) Lead Time Analysis of Delivery Process: In this section,
we study the dynamics of material flow in the four-stage supply
chain described earlier. This is a classic example of a discrete
event dynamical system (a class of systems where the dynamics
is completely determined by the occurrence of events at discrete
epochs). The various events of the supply chain, that are of our
interest, are illustrated in Fig. 7.

In this section, we wish to present a couple of observations
about the lead time of the delivery process. These observations
will give a sense of end-to-end lead time and will also serve
as building block while formulating the IOPT problem. Some
of these observations are described in the form of Lemma 1.
A few of them, that follow immediately from system dynamics,
are stated below without any explanation.

1) End-to-end lead time experienced by manufacturer after

placing an order to supplier (i.e., L,,) is given by
2 2
L,, = ZX,L- with p,, = Z/l,i and

=1 i=1

2

2 _Z 2

0, = g, .
i=1

2) The time taken to get finished product ready, after manu-
facturer places the corresponding order for semifinished
product to supplier (i.e., L) is given by

3 3
Lf:ZXi With,u,f:Z/Li and U%:ZO’?.

i=1 i=1
The lemma below provides an upper bound on end-to-end lead
time experienced by an end user.

Lemma 1: The upper bound on end-to-end lead time (L)
experienced by an end customer, in a four-stage (LPG) supply
chain described above, is given by

L.= X4+ My(X1 + Xo+ X3)

where M, is the stockout probability at the manufacturer (RD).

Proof: Recall that the arrival of an end customer order
triggers placement of an order request by the manufacturer to the
supplier. Also, the item is shipped to the end customer immedi-
ately if it is available in stock at the manufacturer, otherwise the
order gets backordered at the manufacturer (see Fig. 7). In the
first case, the lead time experienced by the end customer will be
the same as the outbound logistics time i.e., X 4. For the second
case, assume that the customer order is the ith backorder at the
manufacturer where ¢« = 1,2,...,00. By virtue of the inven-
tory replenishment policy followed by the manufacturer, there
will be (R + 4) outstanding orders of semifinished products im-
mediately after arrival of this backorder. Remember that it is an
underlying assumption of the model that X, X5, and X3 are
independent across items also. Hence, L is independent across
all these (R + 4) orders. It is a direct consequence of this result
that the orders placed by the manufacturer can cross each other
which means that a product for which supply-chain activities
were started later may be ready in finished form earlier than the
product for which activities were started earlier. A comprehen-
sive idea of this phenomenon is presented in [22].
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Fig. 7. Event diagram for four-stage supply-chain model.

In view of the crossing of finished products at the manufac-
turer, it is easy to see that the finished product which is allocated
to some backorder may not be the one that results from the cor-
responding order placed by the manufacturer to the supplier on
arrival of this backorder. If it were so, the time taken to serve a
backorder by the manufacturer would have been no more than
X1 + X3 + X3. Thus, due to:

1) crossing of orders at manufacturer;

2) assumption of indistinguishable products;

3) FIFO policy for serving the backorders;
this time is definitely less than X7 + X» 4+ X3. Hence it can
be said that random variable X; + X 4+ X3 + X, gives an
upper bound on the time taken to get the finished product by
end customer in the second case.

Considering the first and second case together and using
theory of total probability, it is easy to establish following
expression for upper bound on lead time experienced by end
customer

Le=(1—M,)Xy+ My(X1 + Xo+ X3+ Xy)
= Xa+ Mo(X1 + Xo + X3). u
It is now clear that in the absence of crossover, the end-to-end

lead time_for the second case will be equal to X7 + Xo+ X3+ X}.
Hence, L. will represent the end-to-end lead time L. rather than
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at Supplier
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Delivery of
Semi Finished
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Semi

an upper bound on it. It is interesting to observe that as the vari-
ability in lead time or demand process reduces, the likelihood
of crossover reduces which in turn brings L. closer to L. For-
mally, it can be said that the difference A = L.— L. is amono-
tonically increasing function of crossover probability p..

2) Analysis of Inventory at the Manufacturing Node: Ob-
serve that the manufacturer follows a (Q, R) policy, with @ = 1,
for replenishing the finished product inventory (such a policy is
also called as the base stock policy in inventory management
literature). There is a well-known theorem (after Tackacs 1956)
[22] for (@, R) models with () = 1 which is reproduced below.

Theorem 1: Let the (@, R) policy with Q = 1 be followed
for controlling the inventory of a given item at a single location
where the demand is Poisson distributed with rate A, and let the
replenishment lead times be nonnegative independent random
variables (i.e., orders can cross) with density ¢g(¢) and mean p.
The steady-state probability of having net inventory (on hand
inventory minus backorders) x by such a system can be given by

exp(—Ap)(Ap)”
! '

P(x) =

In other words, the steady-state probabilities are independent of
the nature of the replenishment lead time distribution if the lead
times are nonnegative and independent.
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In the context of the four-stage supply chain, the replenish-
ment lead time for manufacturer is L; which has already been
shown to be independent over finished products (i.e., finished
products can cross each other). However, Ly is a normal random
variable which is not nonnegative. Therefore, the above theorem
cannot be applied to finished product inventory directly.

Nevertheless, it is safe to assume that the probability of
X1, X5, and X3 taking negative values is small enough that
the above theorem can be applied for lead time L; without
significant error. For example, if uy > 6oy then, the negative
area of the probability density function of Ly is no more than
1075, which can be ignored for all practical purposes and
Ly can be assumed as virtually nonnegative. In view of this
argument, the steady-state probability of having a net inventory
x of finished products with the manufacturer can be given
as follows:

Ve =R
R—1,...,0,-1,-2,....

() = exp(—Apug)(Ang)”

z!

Now, it is no more difficult [22] to derive the expressions for the
stockout probability (M, ), the average number of backorders
per unit time (F), the expected number of backorders at any
random instant (B), and the expected number of on-hand inven-
tory at any random instant (D). These expressions are listed as

(R; /\Mf)
i /\uf (A pg)"
R-1
A
=1—exp(—Apuy) ( l]jlf) 9)
k=0 '
E =)\M, (10)
B =MisP(R—-1;Aus) — RM,
exp(—A Apg)B
= M, (g — 1) + 2 (R”_f)l()!“f) (11
D=R- M+ B. (12)

The expression for M, serves in deriving an important con-
clusion about upper bound on end-to-end lead time for cus-
tomer (i.e., L.) which is described (without proof) in the form
of Lemma 2.

Lemma 2: For a fixed value of I?, A, and p ¢, the upper bound
on end-to-end lead time experienced by an end customer (i.e.,
L.) is a normal random variable with mean /i, and variance 7,2
given by

(13)
(14)

fic = pta + Mo(p1 + po + p3)
7.2 =034+ M? (01 +02+03)

where M, is given by (9).

C. Formulation of IOPT

The objective of the study here is to find out how variability
should be allocated to the lead times of the individual stages and
what should be the optimal value of inventory level R, such that
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the specified levels of DP and DS are achieved for the end cus-
tomer lead time, in the steady-state condition, in a cost effective
manner. We call this problem as the IOPT problem in six sigma
supply chains.

It is easy to see that an increase in the value of R results
in high inventory carrying cost, and improved quality of deliv-
eries. Similarly, variance reduction of lead time at any stage(s)
of the supply-chain results in a high processing cost and im-
proved quality of deliveries. This means that a specified level
of quality for the delivery process can be achieved either by in-
creasing the value of R or by reducing the variance of lead time
for one or more stages or both. The problem here is to deter-
mine a judicious balance between these two such that the cost
is minimized.

Depending upon whether R > 0 or & = 0, there is a slight
change in the formulation of the problem. Therefore, we formu-
late two separate IOPT problems for the cases R > 0 (which we
call “with stock”) and R = 0 (which we call “with zero stock™).
Since in both cases, we use a make-to-order policy to pull the
products, we can more completely describe these two policies
as make-to-order-with-stock (MTOS) policy and make-to-order-
with-zero-stock (MTOZS) policy, respectively. The input param-
eters and decision variables are the same for both MTOS Policy
and MTOZS Policy. However, the objective function as well as
the constraints are different for these two policies. The input pa-
rameters, decision variables, objective function, and constraints
in the IOPT problem are as follows.

1) Input Parameters: The input parameters to the IOPT
problem are: mean p; of random variable X;, fors = 1,2, 3,4,
arrival rate A for customer orders, customer delivery window
(7,T), desired levels of DP (fo) and DS (C},,,) for customer
lead time, and coefficients of the first three terms in Taylor
series expansion of processing costs K; for: = 1,2, 3, 4.

It is assumed in Section IV.A2 that XC; is a function of x; and
o;. But u;’s are known in the IOPT problem. Therefore, K; is
now a function of o; only. Hence, the first three terms in the
Taylor series expansion of XC; can be given as follows:

Ki = Aig + Ajoi + Ajppo?. (15)
The coefficients A;o, A;1, and A;> do not have an immediate
physical significance and will have to be determined by the
supply-chain designer using data available about the supply-
chain business processes.

2) Decision Variables: The decision variables in IOPT are
standard deviation o; of each individual stage i(: = 1,2, 3,4),
and the inventory position R.

3) Objective Function:

MTOS Policy: We identify the following costs as signifi-
cant costs for this policy:

* average annual processing cost for supplier = AK; $/year;
* average annual inbound logistics cost = Ao $/year;

* average annual manufacturing cost = A3 $/year;

e average annual outbound logistics cost = A4 $/year;

e average annual order placing cost = \A $/year;

* average annual backorder cost = IIF + 1B $/year;

e average annual inventory carrying cost = I DC,, $/year;
* average annual cost of raw material = AC' $/year.
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The sum of all the above mentioned costs gives the total average
annual operating cost, say COST. This comes out to be

4
IC:)\ZICi+A/\+HE+f[B+IDCm+)\C.

i=1

(16)

It is easy to see that capital tied up with each unit of finished
good, ready to be shipped at manufacturer, includes: raw mate-
rial cost, total processing cost excluding outbound logistics cost,
and order placing cost against this finished good. This comes out
to be

3
Con=C+A+) Ki

=1

a7

This results in
3
K= (A+1ID)) Ki+MKy+ A+ C)+1IE
i=1
+IIB +ID(A+C). (18)

Observe that, for a particular value of R,\,B,D,E,C,
AT, T1, T are all known constants and hence they can be com-
bined into one single constant 5 and the equation reduces to

IC:(/\+ID)(IC1+IC2+IC3)+)\IC4+,B (19)

where 3 = A(A+C)+IE+TB+ID(A+C).If we use (15)
to express K1, Ko, K3, Ky then the above expression becomes
3
K= (A+1ID) Z (Aio + Airo; + Aipoy)
=1
+ A [Aso + Asroa + Asoi] + 8. (20)

MTOZS Policy: This policy is a special case of the pre-
vious one in which the inventory carrying cost need not to be
considered. The processing costs for each stage in this policy
are the same as those of the MTOS Policy because these costs
have no relation to the finished product inventory at the manu-
facturer. Also, raw material cost and order placing cost are the
same as in the previous one. However, the expression for the cost
of backorders is a little different. Under this policy, every order
of the customer which arrives at the manufacturer does not find
the finished product and therefore gets backordered there. This
implies M, = 1 so the values of £/ and B become A and Ajiy,
respectively. In view of this, the annual backorder cost becomes
A + ﬁ)\u f- Summing up all the significant costs, we get the
following expression for COST in this policy:

4
K=Y Ki+ AN+ TA+ T gy + AC.

i=1
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4) Constraints: Recall that L. is an upper bound on end cus-
tomer lead time L.. Hence, if we specify the constraints which
assure to attain the specified levels of DP and DS for L., itwill
automatically imply that L. attains the same or even better levels
of DP and DS than the specified. These constraints can be given
as follows:

DS for L, > C;m
DP for L, > fo.

(22)
(23)

It is required to express these constraints in terms of decision
variables o;’s before we can formulate optimization problem.
Recall, Lemma 2 relates the variance ¢,.2 with variances of in-
dividual stages, for a given value of R (note that A and ¢ are
known here). Thus, for a given value of R, 5.2 can be expressed
in terms of C}, and Cpy, of L. in the following manner:

2 72
P pk
where 7', the tolerance of customer delivery window, is a known
parameter in the IOPT problem and d is given as follows:

d = min(U — jic, fic — L). (25)

Substituting the value of ji., from Lemma 2 in the above rela-
tion, we get

d:min(

In the above equation U, L, j11, o, i3, 144 are all known param-
eters. Also, M,, according to (9), depends only on A, R, and ji5.
Therefore, for a given value of R, d is a known parameter. The
only unknown quantities in (24) are C}, and Cp. Substituting
the value of (24) in (14) we get the following relation which is
the crux of the problem of converting constraints in terms of de-
cision variables, for a given value of R

3
/~L4+MOZM—L

i=1

3
U_ﬂ4_MoZN'i] )

i=1

2 2( 2 2 2 T’ &’
U4+Mo (01‘1‘0'2"‘03):@:@. (26)
The above relation is the crux behind expressing the constraints
(22), and (23) in terms of decision variables. The idea is like
this: choose the values of index C), and Cp, for L. in such a way
that desired level of DP and DS are ensured. Use these values in
above relation. This idea is elaborated in the next section. Under
the MTOZS policy, the above expression remains the same ex-

cept that M, = 1.

D. Solution of IOPT

Observe that the objective function K is a function of ¢;’s
and B, D, E which are all functions of R. Theoretically, R can
take any value from set of natural numbers and o;’s can take any
positive real value. It makes the optimization problem a mixed
integer nonlinear optimization problem. Fortunately, R cannot
take any arbitrarily large value. For example, a seasoned asset
manager who is engaged in managing the inventory can tell by
his experience that R can never exceed a certain value. Also,
often times, there is a constraint on storage space, or capital
tied up with inventory, etc. which further limits the value of R.
Therefore, a good way of solving the IOPT problem would be
the following.

1) Fix a value for R and solve the resulting subproblem
to determine optimal values of o;’s to achieve the op-
timal COST for that value of R. This requires a careful
study and interpretation of the constraints to determine
the values of C,, and C),, for a given value of R. This is
discussed in the next subsection.

2) Repeat Step 1 for all possible values of R > 0.

3) Repeat Step 1 for R = 0. The case R = 0 is a bit dif-
ferent from that of R > 0 since it leads to a subtly dif-
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Fig. 8. Possible geometric shapes of feasible region for Cp and Cpy of L..

ferent objective function and subtly different constraints
(for details, see [21]).

4) Determine the minimum among all such optimal upper
bounds on COST computed above. The corresponding R
will give the optimal inventory level to be maintained and
the corresponding o;’s will give the optimal variabilities
to be assigned to individual lead times.

Thus, the complexity of the IOPT problem will be equal to
O((R*+1) x &)+ O(R*log R*) where R* is the upper bound
on inventory R and ¢ is the complexity for solving the optimiza-
tion problem for a fixed value of R. Thus, the first term of this
expression gives the complexity involved in executing the Steps
1 through 3 of the above algorithm and second term represents
the complexity of the Step 4.

E. Determining Cp, and Cpy, for a Given Value of R

The unknown pair (C), Cpy) in (26) is chosen in a way that
it satisfies both the constraints (22) and (23). The idea behind
getting such a pair is as follows. The relation (26) forces the de-
sired (Cp, Cpy) pair to lie on the line Cpr, = (d/T)C, in the
Cp — Cpi, plane. Also, it is easy to see that the constraint (22)
forces the desired pair to lie on or above the curve C, = C,,
in €}, — Cyy; plane. Similarly, constraint (23) forces it to lie on
or above the fo curve in the same plane. All these result in a
feasible region in the C}, — Cp, plane. Fig. 8 shows all possible
geometries for such a feasible region, depending upon the rel-
ative position of Cp,, = Cj,, curve and the 6o curve. From
Fig. 8, it is clear that the feasible region in each case is the part
of the line Cp, = (d/T)C,, denoted by EP, which intersects
the shaded region. For the sake of clarity, we have shown the
line OP only in Case 1. In all other cases it is understood. Each
point of the feasible region satisfies both constraints (22) and

(23) and therefore, can be used as a design point in (26). The
concern here is which point should be selected as design point.
Before we investigate further in this direction, let us consider a
few interesting facts about such a (C),, Cpy) pair in the form of
two Lemmas (3, 4). These two lemmas are proved in [19] and
we reproduce the proofs here for the sake of self-sufficiency.

Lemma 3: For given values of T and d, DS of L, is bounded
above by

T

Cm 3(T — d)

Proof: For a given value of T" and d, Cy,, and Cpy, of the
process L. need to satisfy the following relation (see (26)):

d
Cpk - <T> Cp.

If we take any point on this line, it represents a unique combi-
nation of C},, Cp, and Cj,,,,. Hence, if we choose this point as
design point, the DS for L. gets fixed. Now, consider the fol-
lowing equation for a typical C,,, curve on the C}, — C}, plane:

2
pm P P

It can be verified that this equation represents a hyperbola. It
is quite possible that the line given by (27) becomes an asymp-
tote of such a hyperbola. Such a hyperbola is the curve of m
because it is clear from the geometry of the figure that this line
cannot intersect any other Cy,,, curve which is greater than Cp,,, .
Hence, it is not possible to achieve the C,,,,, value (or DS) higher
than C,,,,, for process L., under the given T and d.

It is easy to show that the slope of asymptotes of m curve
is (1£(1)/(3Cpm))- Equating these to the slope of the line (27)
we get the required expression for Cp, . [ |

27
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Fig. 9. Optimal inventory level R for DP = 30 and DS = 0.7.

Lemma 4: For given values of T and d, a unique value of DP
gets fixed automatically for L. whenever it is attempted to fix
DS for L. and also vice versa. Moreover, these DP and DS have
a positive correlation.

Proof: Earlier, we said that the (C}, Cpx) pair is chosen
for L, in a way that apart from satisfying both the constraints
(22) and (23), the pair must lie on the line (27).

It is easy to verify that a unique C),,,, curve and a unique 6o
curve pass through a unique point of the line (27). These 6o
values and C),,, values are final DP and DS, respectively, which
are achieved for L, if this particular point is chosen as design
point. Hence, it can be concluded that once a value is chosen for
DP of L., it will automatically decide the corresponding value
of DS and also vice versa. To prove the other statement of the
lemma, observe that as we move from point ', = 0 to point
Cp = oo on the line (27), the values of both C,,, curve and
o curve which pass through that point increase. Therefore, DP
increases (or decreases) as DS increases (or decreases) for given
values of T and d. [ |

The implication of Lemma 1 is as follows. If the desired
C;m is greater than m for given values of 7" and d, then, the
problem is infeasible. In such a situation, we need not proceed
any further. Lemma 2 also has a key implication on the problem
of fixing the values of C, and C,, for L. According to Lemma
2, DP and DS of L. get fixed immediately as soon as a feasible
point from line (27) is chosen as design point. It is easy to see
that each point on the Cy,;, — C), plane is unique on its own be-
cause it has a unique combination of DP and DS. Therefore, it
is quite possible that the point which we have chosen results in
either higher DP or higher DS than required for the end-to-end
delivery process. Hence, it can be claimed that it is not always
true that the DP and DS obtained for L. from design are exactly
the same as given in constraints (22) and (23).

20 25 30 35 40

In view of the above findings, the problem of fixing the values
of €}, and Cp, can be addressed as follows. First step toward
this is to test the feasibility of the problem through Lemma 1.
If the problem turns out to be feasible then each point in the
feasible region is allowed to be chosen as design point. How-
ever, depending upon the point which is chosen as design point,
the final cost C* (which we get out of solving the optimization
problem) may vary. At this point, we cannot say which feasible
point will result in minimum cost. Hence, the problem is han-
dled in an indirect manner. The proposed scheme is like this.
First, solve the optimization problem without any constraint and
get the optimal variance 9 for L.. It will result in a global min-
imum cost. Now, use this variance 9 to get Cg and C’I“)’k for
L which result in minimum cost. If the point (C¢,C%,) falls
in the feasible region, then, this point is used as a design point
(C;, C;k); otherwise, the point £ where the line OP enters the
shaded region is taken as the final desired (C};, Cy; ) pair. The
reason behind choosing point £ as design point is as follows.
The values DP and DS which result from point £ are the min-
imum possible values satisfying both the constraints (22) and
(23). If we choose any other feasible point, then, even though
the resulting DP and DS for L. will satisfy the constraints (22)
and (23), yet their values will be a bit high and this will lead to
higher cost. In this way, we convert the constraints in terms of
decision variables for a given value of .

An important point to note here is that (14) holds true only
when the negative area of L ¢ is negligibly small. In order for this
condition to hold, it is necessary that the following constraint
must also be satisfied along with constraint (26):

py 2> 6oy (28)

(1 + p2 + p3)?

:>(U%+O'§+U§)S 36

(29)
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The following equality and inequality constraints are now ready
for the IOPT problem:

2 2 2 2 2 T2 Jz
oy + M, (01‘*‘02"‘03):@:@ (30)
N2
(a%+a§+a§)g—(“l+’“§26+“3) 31)
0;>0  Vi=1,2,34. (32)

The MTOZS policy is a special case of the MTOS Policy with
R = 0. Under this policy, M, = 1. Therefore, the constraint
(30) remains the same except M, = 1. However, the constraint
(31) is no more needed because in this case M, = 1 irrespec-
tive of whether L. is nonnegative or not. Following are the two
insights about these constraints.

* Because the formulated constraints ensure the provided
levels of DP and DS for L. rather than for L., the min-
imum cost which we get after solving this problem is ac-
tually greater than or equal to what is actually required to
achieve the specified levels of DP and DS for L.. In other
words, it can be said that the COST which we get here is
an optimal upper bound on the COST for achieving spec-
ified levels of DP and DS on L..

* Ifone looks at the purpose of constraint (31), then it is easy
to see that it enforces nonnegativity of L without which
it is not possible to use formula (9) for M,. We imposed
condition p1 > 60 ¢ to ensure this nonnegativity and be-
cause of that only we got this constraint. We could have
as well chosen py > 50 but in that case error involved
in computing the M, with the help of formula (9) would
have been higher. The maximum error that we can tolerate
in the results will determine whether or not this constraint
is needed in the ultimate analysis. If the constraint is re-
moved, the optimization problem will turn out to have only
equality constraints.

Having obtained a pair (Cp, Cp.) for the given R, we will thus
be required to solve a nonlinear optimization problem with
equality constraints. The Lagrange multiplier method can be
used here.

FE. Solution of IOPT for a Specific Instance

Let us consider the LPG supply chain once again and study
the problem in a realistic setting. We have chosen the following
values for typical known parameters of the IOPT problem in the
context of the LPG supply chain. The values we have chosen.

1) Lead Time Parameters: (11 = 1day, uo = 3 days, us = 2
days, and py = 7 days.

2) Demand Process Parameters: X\ = 1500 trucks/year.

3) Cost Parameters: These parameters have been chosen so
as to capture the negative correlation between cost and mean
lead time and between cost and variability of lead time

1 1
—10(1 -
K1 0< +exp<01> 200) $/truck
1
Ko =100 (1+exp< 2) 200) $/truck
K3 =10 (1 +exp< ) 200) $/truck
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K4 =100 (1 + exp(o%l) 200) $/truck
A =58%/order; TII =0 $/truck;
IT = 500 $/truck—year
I = 0.2 $/year—S$invested
C = 1000 $/truck.

4) Delivery Quality Parameters: T = 10 days; T' = 10 days
For the sake of numerical experimentations, we consider the fol-
lowing four different sets of constraints and solve the problem
under each case:

1) DP = 30 and DS = 0.7 for L. (see Fig. 9);

2) DP = 40 and DS = 0.8 for L. (see Fig. 10);

3) DP = 50 and DS = 0.9 for L. (see Fig. 11);

4) DP = 60 and DS = 1.0 for L. (see Fig. 12).

Assume that it is not possible for the RD to keep more than
40 LPG trucks ready at any given point of time.

We first describe Step 1 of the procedure to solve IOPT, dis-
cussed in the last section, for this numerical example. Let us
choose constraint set DP = 30 and DS = 0.7 to work with.
Step 2 can be carried out in the same manner for all the other
values of R. Step 3 and Step 4 are also trivial. The same proce-
dure can be repeated for other constraints sets also.

To start with, let us fix R = 10. We first compute the fol-
lowing parameters for the given numerical values:

py = 6 days
M, =0.999 722 639 663 766
E = 1499.583 959 trucks/year
B =14.657947 016 303 742 trucks
D = 0.000412 769 728 402 651 trucks
B = 4.983672090 063 828 x 10°
d = 7.001664 162017 404 days

Substitution of these values in (20) and (30) results in the fol-
lowing optimization problem:
Minimize ,
K = 1500.000083 ) " (A
+ 1500 [Aso :2410—4 + Ay203] + 4.983672 x 10°

4
<say, K=a+ Z a;10; + ai20?>

i=1

i+ Ao + Aipoy)

(33)

where

a11 = 1500.000 08341,
a2 = 1500.000 083 A2
as1 = 1500.000 083 As;
95 = 1500.000 083 A2y
asz1 = 1500.000 083 A5,
aze = 1500.000 083 A3,
as1 = 1500A4;
ase = 1500 A4
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Fig. 10. Optimal inventory level R for DP = 40 and DS = 0.8.

3
a = 1500.000 083 Z Ao + 1500440 + 4.983672 x 10°

i=1
subject to
100 49.0233
2 2 2 2
03 +0.999445 (07 + 054+ 03) = —5 = ——5—,
902 9C,
o >0 Yi=1,234.

The constants A;; can be determined with the help of Taylor
series expansion of the cost functions K;. We have expanded
all the cost functions at o; = 1 and used the corresponding
coefficients as the constants A;;. The immediate problem is to
find out values of C,, and Cpy. As a first step toward this, it is
required to check the feasibility of the problem as per guidelines
provided in Lemma 1. Note the upper bound on DS for this
case is

Com = L = 1.111727809.
3(T —d)

Hence, as far as feasibility is concerned, there is no problem be-
cause all the desired values of DS are within permissible range.
As a next step we find out the pair C and Cgk that results in
global minimum and test whether it belongs to the feasible re-
gion or not. For this, let us assume that S = {(o1,02,03,04) :
o; € RYVi = 1,2,3,4}. It immediately follows from this def-
inition of S that £ : S — F; where S is a nonempty open
convex set. To test the convexity of objective function K, we
compute gradient vector VX (X) and Hessian matrix H (X) for
function K at point X = (01, 02,03,04)T. Observe that the
gradient vector and Hessian exist for each X € S. It directly
follows that function K is twice differentiable over S. More-
over, the Hessian is independent of X. Therefore, it is sufficient
that we test the positive definiteness (PD) or positive semidefi-

20 25 30 35 40

-

niteness (PSD) of the Hessian at any one point of S instead of
testing it all over S.

It is easy to see that all the diagonal elements of the Hes-
sian are positive real numbers because A;» are positive. There-
fore, the Hessian is PD and function X is strictly convex which
implies that a local optimal solution of unconstrained problem
is the unique global optimal solution. This can be obtained by
equating VX (X) to 0. For the present numerical example it re-
sults in o = 0§ = 0§ = o = 1.333 days. These o7 can be
used to find out 09 which comes out to be 2.665 44 days. Indexes
C¥ and C’gk can be computed by using ¢¢. For the present ex-
ample, these indexes are C = 1.250 57 and Cgk = 0.875 609.
These CJ and C?/, can further be utilized to determine the value
of DP and DS at the global minimum point which come out to
be 4.126 780 and 0.830 88 respectively. These quality levels are
more than what is desired. Hence, we use Cg and Cpg & as design
values. If these quality levels come out to be less than specified
in the constraints, it is required to use the scheme suggested ear-
lier in Section IV.C.4. Substituting the o7 ’s in objective function
(33) gives optimal upper bound on COST (2.5921 million $) of
supply chain with R = 10.

Fortunately, in the present situation the global minimum point
becomes a design point so we need not proceed for any further
calculation. But if it is not so, then we will be required to solve
the underlying optimization problem by the Lagrange multiplier
method and get stationary points which satisfy the necessary
conditions. This is explained below.

Method of Lagrange Multipliers:
Lagrange Function: The Lagrange function L(oy, 02, 03,
04,V) is given as

3
L(o1,09,03,04,v) = K4v <UZ +0.999 445 <Z 01-2) - 0)

i=1
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Fig. 11. Optimal inventory level R for DP = 50 and DS = 0.9.

where 6 = (100/9C}) = (49.0233/9C%) and K is given by
(33).

Necessary Condition for Stationary Points: Let point
P* = (0Ff,0%,0%,04,v*) correspond to a local optimal point,
then this point must satisfy the following necessary conditions
for being a stationary point:

oL 0L _JL _JL _OL —0
orlp. = B02lp. ~ Doslp. ~ Boulp. Oy O
These necessary conditions result in the following relations:
oy = —a11
2(a12 + 0.999 445v)
oy = —a21
2(ag2 + 0.999 445v)
oy = —asy
2(a32 + 0.999 445v)
o4 = —a41
2(@42 + I/)

099944502,
= U(azz + 0.999 4451)2
0.999 44542,
4(aze + 0.999 4451)2

0.999 44543,
4(agz2 + 0.999 4451)2
af
4(age +v)?
Solving the above system of equations, by some numerical tech-
nique, will give the desired stationary points. First of all those
stationary points are discarded which are either imaginary or for
which the nonnegativity condition does not hold. After this, we
apply second order conditions to determine whether the point is
a maxima or a minima. Among all the minima points, the one
which yields minimum COST is considered as the solution of

the problem and we call it as the optimal upper bound on COST
for R = 10 yielding at least DP = 50, and DS = 0.7.

20 25 30 35 40
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G. Some Numerical Results

Note that in the last section, we studied an instance of the
IOPT problem assuming R = 10, DP = 30, and DS = 0.7 for
L.. We obtained the optimal allocation of standard deviations
to achieve a minimum COST. The standard deviations obtained
can be used by a supply-chain manager to decide among alter-
nate logistics providers or alternate suppliers, etc.

To obtain the optimal value of R, we repeat the solution of the
IOPT problem for different values of R, each time computing
the optimal upper bound on COST and the corresponding al-
location of variabilities. The results of the above problem are
summarized in the following four plots, one for each set of con-
straints. Each curve represents the variation of optimal upper
bound on COST ($/year) with inventory level R.

One can observe the following trends.

1) The optimal value of inventory is R* = 26 for the first set
of constraints. This optimal value changes for a different
set of constraints.

2) The optimal level R* increases as the desired quality level
increases. This can be verified by observing the trends
of the plots. Notice that for lower values of DP and DS,
keeping inventory is always profitable. If desired DP and
DS levels are high, the variabilities of the individual pro-
cesses must be low enough to afford the luxury of having
very less inventory. It results in higher cost. In such a sit-
uation, higher inventory levels can only allow us to have
luxury of high DP and DS.

3) We found in some cases R* turns out to be equal to zero.
This means that an inventory less system may be the best
option under some circumstances, providing a major case
for zero inventories.
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Fig. 12. Optimal inventory level R for DP = 6o and DS = 1.0.

V. SUMMARY AND FUTURE WORK

In this paper, we have presented a novel approach to achieve
variability reduction, synchronization, and therefore delivery
performance improvement in supply-chain networks. Our
approach exploits connections between design tolerancing
in mechanical assemblies and lead time compression in
supply-chain networks. The contributions of this paper can be
summarized as follows.

* Defining the notion of six sigma supply chains, to describe
supply-chain networks with superior levels of DS and DP.

* Describing design of six sigma supply chains as a
mathematical programming problem, thus providing a
sound framework for studying a rich variety of design
optimization and tactical decision making problems in
supply chains

* Illustrating the efficacy of the approach by formulating
and solving the IOPT problem for a four-stage LPG
supply-chain network.

The paper leaves plenty of room for further work in several
directions. The design problem that we studied here is only
one of a rich variety of design optimization problems that one
can address in the framework developed in this paper. Many
other problems, as listed in Section IIL.F can be studied. Also,
the supply-chain example that we have looked at belongs to
the make-to-order type and has only one stock. Multiechelon
supply chains with multiple inventories and make-to-order
policy would be the next category of systems that can be
addressed using our methodology. There is no reason why our
approach cannot be applied for coordination types other than
make-to-order, such as make-to-stock (MTS) and build to order
(BTO).

We believe the concepts and approach developed in this paper
provide a framework in which a rich variety of supply-chain

20 25 30 35 40
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design and tactical decision problems can be addressed. De-
veloping a sound methodology for rigorous design of complex
supply-chain networks is the ultimate goal of this research.
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