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Optimal Reservoir Operation for Irrigation of Multiple

S. VEDULA AND P. P. MUJUMDAR!

Department of Civil Engineering, Indian Institute of Science, Bangalore

A model for the optimal operating policy of a reservoir for irrigation under a multiple crops scenario
using stochastic dynamic programming (SDP) is developed. Intraseasonal periods smaller than the
crop growth stage durations form the decision intervals of the model to facilitate irrigation decisions
in real situations. Reservoir storage, inflow to the reservoir, and the soil moisture in the irrigated area
are treated as state variables. An optimal allocation process is incorporated in the model to determine
the allocations to individual crops when a competition for water exists among them. The model also
serves as an irrigation scheduling model in that at any given intraseason period it specifies whether
irrigation is needed and, if it is, the amount of irrigation to be applied to each crop. The impact on crop
yield due to water deficit and the effect of soil moisture dynamics on crop water requirements are taken
into account. A linear root growth of the crop is assumed until the end of the vegetative stage, beyond
which the root depth is assumed to be constant. The applicability of the model is demonstrated through

a case study of an existing reservoir in India.

INTRODUCTION

Decision making for reservoir releases for irrigation in-
volves many subtle considerations such as the nature and
timing of the crop being irrigated, its stage of growth, the
competition among different crops for the available water
and the effect of a deficit water supply on the crop yield.
Water released from the reservoir is utilized by the crops in
the form of evapotranspiration. In determining the amount of
release from a reservoir, it is therefore necessary to consider
the crop water requirement in relation to the crop growth
and its yield. Also, in the context of multiple crops, the
competition among the crops, when the available water is
inadequate to meet the aggregate demand, must be taken
into account in deciding upon the release from the reservoir.
From the point of view of efficient use of water at the farm
level, this implies the need for a single decision-making
mechanism for the entire system.-The decision should be
sufficiently explicit to indicate not only how much water is to
be released from the reservoir in a given period but also how
much of it should be allocated to a given crop.

The uncertainty in the various hydrologic variables in-
volved, rainfall, evapotranspiration, soil moisture and the
reservoir inflow, adds to the complexity of decision making.
Mathematical modeling can aid in the development of opti-
mal reservoir operation for irrigation given the complete
cropping scenario in the command area. Earlier models
developed for optimal reservoir operation for irrigation dealt
with different aspects of the problem in different degrees of
complexity. Stochastic dynamic programming proved a po-
tential tool in developing reservoir operation models in the
recent past [e.g., Butcher, 1971; Torabi and Mobasheri,
1973; Dudley and Burt, 1973; Mawer and Thorn, 1974; Roefs
and Guitron, 1975; Bogle and O’Sullivan, 1979; Oven-
Thompson et al., 1982; Stedinger et al., 1984; Esmaeil-Beik
and Yu, 1984; Goulter and Tai, 1985; Karamouz and Houck,
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1982]. Yeh [1985] presents a comprehensive state-of-the-art
review of the various reservoir operation models.

Whenever reservoir management for irrigation has been
discussed, even through variability in reservoir inflow was
taken into account [Hall et al., 1968, 1969; Schweig and
Cole, 1968] most of the approaches treated seasonal crop
water demand for irrigation as deterministic. Exceptions to
this generalization are the approaches of Sanford [1969],
Dudley [1970], and Burt and Stauber [1971] which stressed
the need to take account of intraseasonal variations in crop
water requirement. Burt and Stauber [1971] incorporated
stochastic crop water demand but assumed a deterministic
water supply. Both stochastic water demand and stochastic
addition to storage were considered by Dudley et al. [1971a,
b, 1972], Dudley [1970, 1972], and [Dudley and Burt [1973].

Dudley and Burt [1973] developed an integrated intrasea-
sonal and interseasonal stochastic dynamic programming
model to determine an optimum decision rule for intertem-
poral water application rates and crop acreage decisions for
a single crop. Area available for irrigation, soil moisture
level, available water (reservoir content) and a measure for
the crop production function are treated as state variables.
In the application, soil moisture was deleted as a state
variable, however. Subsequently, Dudley et al. [1976] devel-
oped a hierarchy of models to aid decisions in multicrop
systems for deterministic crop water requirements. These
models use linear programming (LP), simulation and d:-
namic programming. Linear programming is used to select
best crop combinations, simulation to predict changes in
reservoir storage and dynamic programming to optimizz
interseasonal water allocation. Dudley [1988] advanced th:s
earlier work by simulating the effects of the optimal dec:-
sions under the assumption of a single decision maker
Development of a single model, computationally simpiz
enough for application to reservoir operation for multipiz
crops, which takes into account stochastic reservoir inflow s
and stochastic evaporative demands with dynamic soil mois-
ture accounting, still remains a formidable task.

In determining the release policy for irrigation, the deci-
sion interval often used is the crop growing season or thz
individual growth stages of the crop. However, the irrigation
release decisions have to be made in a much shorter timz
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iterval, such as a week or two weeks in a real situati.on.
‘herefore, models which aid decision making over large time
1tervals such as a month or a season are inadequate, as they
o not take into account the variability in irrigation dcrqand
vithin these time intervals. What is therefore necessary is t9
letermine the optimal operating policy of the reservoir
is--vis the intraseasonal irrigation requirement of all the
:rops, to enable release decisions to be made sych that the
‘ight amount of water is provided at the r'lght time. .
Apart from the need to consider relatlvcly .shorter time
ntervals, the occurrence of possible competition for water
\mong different crops in an intraseason pe.n.od adds to the
somplexity of the problem. However, policies for optimal
allocation of water among competing Crops, based_on de-
tailed crop information, even with some assumpt.nons to
facilitate computations, would be of imn.‘lense value'm plan-
ning and real time operation of irrigatlor'l TESErvoirs. The
present study deals with reservoir modglmg with Ih.ls pur-
pose in view. To keep the model application computationally
tractable, only the reservoir inflows an? assumed to be
stochastic, however. The present paper, 1 contrast to th'e
paper by Dudley et al. [1976], develops a .model for reservoir
irrigation of multiple crops with stochastic reservoir mﬂqws
but with variable irrigation demands. The demands Wh‘ch
vary from period to period are determined from a soil
moisture balance equation with soil moisture specified as a
state variable in the three state variable stochastic dynamic
programming model (the other states being reservoir inflow
and storage). Rainfall and evapotranspiration are 'treated as
deterministic in computing the irrigation appllcatnqn to dif-
ferent crops. Irrigation is given to a crop in any perlpd if t‘he
available soil moisture falls below a specified level, in which
case the amount of irrigation is such as to bring the soil
moisture to field capacity. The reservoir storage continuity
and soil moisture balance requircments are stated as con-
straints. The cropped areas and the c¢rop calendar are
assumed to be fixed.

The proposed model,
lease decisions with the irrig . !
field level with respect to each crop in each period, is
formulated conceptually to operate intwo phgses. In the ﬁ_rS‘
phase, the model uses deterministic dynamic programming
and allocates a given amount of water among all the_ crops to
optimize the impact of the allocation within a pe_nod. ?h:s
allocation is determined for all possible supplies in a given
period, for all periods in a year. These ““within year™ periods
are referred to as intraseasonal periods. In the second phase,
a stochastic dynamic programming (SDP) model evaluates
all the intrascasonal periods to optimize the overall impact of
the allocations over a full year. The end result of this
two-phase analysis is a set of decisions indicating the reser-
voir release to be made in each intrascason period and the
distribution among the crops of this release available at the
crop level (accounting for losses between the reservoir and
the application area).

The next section of the paper gives an overview of the
second phase of the model. which is solve}i by slqchast_ic
dynamic- programming. It includes suhfcctlons which dis-
cuss the state variables and the recursive equation. Then
follows a section which describes the first phase of the
model, in which the inputs for use in the second phase are
calculated. These inputs consider potential and actual
evapotranspiration and soil moisture balances. and represent

which integrates the reservoir re-
ation allocation decisions at the

optimal within-period allocations of water among crops. An
application to an actual irrigation operating problem is then
presented, followed by some closing comments.

MoODEL DEVELOPMENT

The formulation of the stochastic dynamic programming
model used to determine the steady state optimal operating
policy for a single-purpose irrigation reservoir in the context
of multiple crops is discussed in this section. The SDP model
is solved using backward recursion beginning from a year
chosen sufficiently distant in the future to arrive at a steady
state policy. The steady state policy is one which gives a
steady state value of the objective function over a year as
defined later following equation (5).

State Variables

In a hydrologic system the number of variables influencing
the decision is so large that it becomes computationally
impossible to consider all of them simultaneously. It is
therefore necessary to choose only those variables that
influence the decision process the most. The state variables
vector ¢, in this study is defined as

¢IZ{SI‘ Ql‘ 91}~ (l)

where S, is the reservoir storage (volume) at the beginning of
period 7, Q, is the reservoir inflow (volume) during period ¢,
and 6, is the average initial soil moisture (depth per unit root
depth) at the beginning of period .

Stochasticity in the model is introduced through the spec-
ification of the reservoir inflow Q, as the stochastic variable.
These inflows are assumed to constitute a simple (or one-
step) Markov chain and the process is assumed to be
stationary. This implies that the inflow transition probability
matrix for any given period within a year does not change
from year to year which allows the derivation of a steady
state operating policy from the model.

Rainfall and potential evapotranspiration that affect the
release policies are, however, taken as deterministic inputs
to the model.

Discretization

Each state variable is discretized so that its value at any
given time lies in one of several “‘class intervals™ or *‘class-
es’" through which the possible range of the state variable is
divided. Any value within the range of a class interval is
represented by a single value for that class interval, referred
to as its representative value. The larger the number of such
class intervals, the better the approximation of the variable.
However, an increase in the number of class intervals would
result in an increase in the required computer memory
and/or run time. One guiding principle in designing the
discretization scheme for the state variables (e.g., reservoir
storage and inflow in a specific case) is to see that trapping
states are avoided in reservoir simulation.

State Transformation

Let the indices k and [ represent the class intervals for the
storage, and m and n for the soil moisture, at the beginning
of periods t and r + 1 respectively. Let i and j be the class
intervals for inflow during the periods t and ¢ + 1, respec-
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tively. Let S§, S{*', 6%, 6:*!, Qf and Q/*', be the
representative values of the corresponding variables in the
respective class intervals.

The reservoir storage transformation is governed by the
continuity equation,

)

where Ry, is the release and e, the evaporation loss when
the initial storage class interval is k, inflow class interval is i
and the final storage class interval is [ in period 7. Equation
(2) specifies the release for a given combination of k,iand/
for each period ¢. It may be noted that some of the various
theoretical combinations of k, i and / may not be feasible, as
they result in a negative value of R;,-

The soil moisture transition from period to period is
governed by the soil moisture continuity equation. The soil
moisture balance defines the soil moisture state n at the
beginning of the period ¢ + 1, given the initial soil moisture
state m at the beginning of the period ¢ and the irrigation
application in the period . This aspect is discussed in detail
later in the paper.

t+1 _ ot t
8§17 =8+ Qi — Ruitr — €xu

Decision Intervals in the Context of Multiple Cropping

The length of the decision periods in an irrigation optimi-
zation problem depends on two factors: (1) the smallest time
interval during which irrigation decisions are to be taken,
consistent with the availability of data and (2) the duration of
the crop growth stages. Irrigation decisions in the field are
usually made weekly or biweekly. The decision interval
should accordingly be 2 weeks or less in order to provide a
useful guide for operating the reservoir.

The growing season of a crop may be divided into four or
five critical growth stages on the basis of the crop response
to water stress, such as the establishment, flowering, vege-
tative and yield formation stages. The crop water require-
ment and the sensitivity of the crop yield to water deficit are
different in the different growth stages. For example, a water
deficit of a given magnitude occurring in the vegetative stage
of a crop may cause a greater reduction in yield than the
same deficit occurring in the yield formation stage. It is
therefore important to consider not only how much of a
deficit occurs during the crop season but also at which
growth stages of the season the deficit occurs.

Furthermore, different growth stages of a crop are often of
different lengths. Thus, if the decision intervals in the
operation model are made equal in length to the growth
stages of a crop, not only will the decision intervals be all of
unequal lengths, but in the case of multiple crops, the
decision intervals may not coincide with the growth stages of
every crop. It is therefore necessary that the decision
interval be such that the total time (number of periods)
elapsed from the start of the crop to the end of any growth
stage of any crop be an integral multiple of the decision
interval. For modeling purposes, this condition can be
achieved by marginally adjusting the lengths of individual
growth stages (normally only by a few days). if necessary.
This does not cause any serious error considering the fact
that a change of crop growth stage from one stage to a
subsequent stage is never abrupt, as the complete change
occurs usually over a span of a few days. Within a certain
time period, two different crops may be in two different

growth stages. However, since the crop characteristics
within any growth stage of a crop are known, this does not
pose any conceptual difficulty in model formulation.

The Recursive Equation for the SDP Model

Let G denote a measure of the system performance which
must be minimized. G is, in'general, a function of the release
R i the soil moisture 6,, and the crop parameters during
the period 7. The nature and the detailed development of this
function is discussed later in this paper. For the present, it is
assumed that the value of G for given k, i, [, m and ¢ is
known. The objective function of the SDP model is then
written as

Minimize E [G(k, i, [, m, 1)] Vk,i,m (3)
{feasible 1}
where E,[ ] denotes the expected value, over all the

periods in a year, of the function contained in brackets.

The model is initiated at some arbitrary year Y in the
future at the last period T. This arbitrary year is chosen
sufficiently distant in the future to enable the derivation of a
steady state operating policy from the model solution
through backward recursion.

Let N define the number of periods remaining till the end
of year Y, and fN(k, i, m) represent the sum total of the
expected value of the system performance over N time
periods (with N periods to go), including the current period
¢, given that the initial storage is S, the inflow is O/ and the
average initial soil moisture is 6,, in the current period 1.
With only one period remaining (N = 1 and ¢t = T),

Fik, i, m)=Min G(k, i, {, m, T)
i

Vk,i,m (4)

where {l} denotes feasible /. In general, for period r and stage
N,

fNk, i, m) = Min [G(k, i, I, m, 1)
{1}

s PN ) Ykoiom o (5)
J

where P/; is the transition probability of the inflow, defined
as the probability that the inflow in period ¢ + 1 will be in
state j given that it is in state  in period ¢. It should be noted
that n in the second term in the right-hand side of (5) is the
soil moisture state at the beginning of the period t + 1. and
is a deterministic function of k. i, [, m and .

Equation (5) is solved recursively, following Loucks et al.
[1981], until a steady state solution is reached defining the
optimal policy [*(k, i, m, 1) for all values of k, i and m and
for all periods . Steady state is reached when TARIT S
m) — fN(k, i, m)] becomes constant for all k, i, m and for
all 1.

The next section describes how the values of G(k, i, [. m,
1) and n are obtained in a deterministic dynamic program
which allocates water among crops within a period.

DEVELOPMENT OF THE PERFORMANCE MEASURE

The system performance measure G(k. i, [, m, t) reflects
the response of the crops to the level of irrigation applied.
When a certain release R is made at the reservoir, its
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ultimate utility depends both on how much of it is used for
crop production and how it is allocated among the various
crops. The performance measure G(k, i, I, m, t) is deter-
mined based on an optimal allocation of the available water
(limited to the release Ry, adjusted for losses) in a given
intraseason period ¢ among the various crops. At this time,
the water available for allocation and the initial average soil
moisture in the irrigated area are assumed to be given or
known. In the case of multiple crops, water is allocated to
the various crops taking into account any competition for
water that might exist among them in the period ¢ such that a
specified objective function (expressing the impact of the
allocation on crop growth, described later in (7)) is optimized.
The water available for irrigation may be written as

Xite = BRinn (6)

where B is the field irrigation efficiency (ratio of the volume
of water available at the farm to the volume of water released
at the reservoir).

The actual response of a crop to water application is best
described by the crop production function, which can be
used to find the relative yield (ratio of actual to potential
yield) of a crop for a given amount of water deficit. A good
predictor of crop yield is the actual evapotranspiration rate.
Studies on plant water stress show that the stress occurs
when the actual evapotranspiration, ET, (depth units), is
less than the maximum (potential) rate of evapotranspira-
tion, ET . (depth units). Soil water stress does not occur
when ET, equals ET ,x, under which condition the plant is
assumed to have the optimum growth [Fogel et al., 1976].

Objective Function

On the basis of the production function given by Dooren-
bos and Kassam [1979], the following objective function is
considered for the optimal allocation of the available water
among different crops in a period #:

c

Min 2

c=1

ky![1 = ETS JETSu ) = Gk, is Lm0y (T)

where ¢ is the crop index, ky; is the yield factor of the crop
¢ corresponding to the growth stage to which the period ¢
belongs, and C is the numbr of crops in period 7.

The yield factor ky reflects the sensitivity of the crop yield
to a water deficit. A higher ky would, in general, mean a
higher reduction in the crop yield for the same amount of
water deficit. The yield factors are available in the literature
only for individual growth stages of a crop. It is assumed, in
the present study, that the yield factors for the different time
periods constituting a growth stage are the same as thosc for
the growth stage. This assumption has been made in earlier
investigations [Bras and Cordova, 1981; Rao, 1985].

The value of G(k, i, [, m, t) is zero in (7) if the volume of
water available, Xy, is greater than or equal to the total
water requirement of all the crops, as there is no competition
for water, and therefore no moisture deficit. This permits
water allocation to individual crops such that ET,, = ET,,.
The competition for water exists only if X;;, < S IRR{
where IRR/ is the irrigation requirement of crop c in period
¢ in volume units. The available water in such a case is
allocated by solving the allocation problem (equation (7)) by

a procedure discussed subsequently. The details of the
different components required for solving the allocation
problem are discussed below before the procedure used for
its solution is discussed.

Irrigation Requirement of a Crop

The irrigation requirement IRR/ of a crop c in.a given period
t depends on the initial soil moisture level and the rainfall
contribution to the soil moisture. It is determined as follows.

The irrigation policy (used in the present study) is to apply
irrigation to a crop c in period ¢ only when the available soil
moisture (soil moisture above the permanent wilting point) in
the root zone is below (1 — d)(Z; — Z,,) D!, where d is the
soil moisture depletion factor (expressed as a fraction) and
D! is the root depth of the crop c in period ¢ in depth units,
and Zyand Z,, are the moisture levels at field capacity and at
permanent wilting point, respectively, expressed in depth
per unit root depth. The amount of irrigation in such a case
is such that if sufficient water is available the soil moisture in
the root zone is raised to the field capacity.

Thus, the irrigation requirement of a crop, ¢, during a
period ¢, IRR{ (in volume units) is given by,

(6! — Z,)D"+ RAIN, = (1 — d)(Z;~ Z,)D;

(8)
IRR! = [Z,D! — (8.,D! + RAIN)JAREA, otherwise

IRR! = 0

where RAIN, is the rainfall in period r and AREA. is the
area of crop c. It is assumed that all the rainfall infiltrates
into the soil and contributes to soil moisture storage.

In (8), IRR! is expressed in volume units, AREA, is in
area units, RAIN, and D/ are in depth units and Z;, Z,, and
6!, are in depth per unit depth (of root zone) units.

Actual Evapotranspiration ET,

The actual evapotranspiration ET,, is given by [Doorenbos
and Kassam, 1979],

ET,=ETp. Z =1 -d(Z=2Z,)
9)
Z,

———— otherwise
(1 =d)(Z; = Z.)

ET[’I = ETmu\
where Z, is the available soil moisture in the root zonc in
period  (expressed as depth per unit depth of root zone),
determined by (10) below.

Determination of the actual evapotranspiration requires
the knowledge of the available soil moisture at a given time in
the root zone, while the root depth itself increases progres-
sively with time. A simple linear root growth is assumed in the
model. The root is assumed to attain its maximum depth at the
end of the third growth stage (flowering) and remain constant
thereafter till the end of the crop season. The root depth in any
period is approximated by the depth of the root corresponding
to the midpoint of the period.

Soil Moisture Balance

The following discussion of soil moisture balance is relev-
ent to each of the crops considered. The crop subscript. ¢, in
the terms of (10), (11) and (12) below is, therefore, omitted
for simplicity. It should be noted that the term RAIN;, is the
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Fig. 1. Definition sketch for soil moisture transition for a crop.

same for all the crops in a given period. The values Z; and
Z,,, being functions of the soil type, are the same for all the
crops in all the periods, as all the crops are assumed to be
grown on the same type of soil.

The available moisture in period ¢, Z,, for a given crop, is
determined for a known irrigation application by

ZD,= (8!, - Z,)D, + IRA, + RAIN, (10)

where D, is the root depth of crop in period and IRA, is the
irrigation applied during the period ¢ (depth units).

The initial soil moisture, 8}, is assumed known. This is
the representative value of the soil moisture class interval m
for which the value of the performance measure G(k, i, l,m,
{) is being determined. The depth, D,, of the root zone is
computed from the root depth model. Rainfall is treated as
deterministic and the average rainfall in period ¢ is used as
RAIN,.

Thus, for any given level of irrigation application IRA,,
the available soil moisture Z, can be determined. This soil
moisture level is then used to determine the actual evapo-
transpiration (ET,) from (9). The resulting soil moisture at
the end of the period ¢, 6, is computed by the equation,

05D, = 0.D,+ IRA, + RAIN, - ET, (1)
where ET/, is the actual evapotranspiration in period t.

The value 6, should be adjusted to represent the initial
soil moisture to be used for the subsequent period ¢ + 1 as
the root depth for ¢ + 1 is different from that of r. Thus,

0pD,+ 0sp(D; 4y~ D))
D,y

6¢..+1 = Min ( s Zf> (12)
where 8, is the initial soil moisture at the beginning of the
period t + 1 and 6, is the soil moisture in the layer of soil
added to the root zone in the previous period, assumed to be
known (in the present case, a constant value equal to the
field capacity).

Starting with an average soil moisture value of ), over all
the crops, the soil moisture balance determines the value of
8.1+ for each crop. The class interval to which the average
value of 6 ,,, over all the crops belongs is denoted as n.
The representative soil moisture of this class is 6" ', Figure
| schematically represents the soil moisture transition be-
tween two adjacent time periods ¢ and ¢ + 1.

Allocation Problem

The problem of water allocation among different crops, for
known X ;;, and 6}, in period ¢ is solved as a one-dimensional
allocation problem using the backward moving algorithm of
dynamic programming. This needs to be solved only when
competition for water exists among the crops.

The objective function for the allocation problem is spec-
ified by (7). As the allocation problem is always solved for a
given period ¢, the symbol ¢ appearing as either a subscript
or a superscript is omitted henceforth in this section for
convenience in presentation.

Each crop constitutes a stage in the dynamic program,
i.e., there are as many stages as there are crops. The state
variable is the amount of water g, available at a given stage
r for allocation among all the stages up to and including that

stage. The crops are indexed ¢ = 1,2, -, u and the stages
are indexed r = 1, 2, - -+, R. In backward recursion then,
¢ = 1correspondstor = R, ¢ =2tor = R — 1, and so

on. The last crop ¢ = u corresponds to r = 1. Numerically,
R = u = C, the total number of crops.

Let g,,(g,) be the minimum value of the objective func-
tion for given m when g, is allocated to r stages and g(r) be
the allocation made at the rth stage to the crop correspond-
ing to that stage. The allocation g(r), which is in volume
units, is divided by the area of the crop for which it is
allocated to get IRA,, the irrigation depth applied to the
crop, which is used in the determination of the available soil
moisture Z, (equation (10)) which in turn is used to compute
ET, (equation (9)).

At stage | (r = 1), i.e., with only the last crop remaining
for allocation,
. ET,
91m(q)) = Min |ky, l—ET 0=gq(l) =q,= X
q(1) max .

(13)

The value g(1) divided by the area of the crop u gives the
irrigation application IRA, defined earlier. The ET, value in
(13) is then obtained using (10) and (9).

The recursive relation for the rth stage may be expressed
as

Min | & 1 k!

grmlq,) = MIn Ry e I 7

4tr) ETmax u-r+1
+ 4 - n,,,,(qrq(r))} 0=q(r)=gq, =X, (14
At the last stage (r = R), all the crops remain to be

allocated and ¢ = Xyi-

Grmar = X)) = Min | ky | 1=
q C)

ET a
ET max
1

+ gk - nmldr = 4(R)) (15)

Here, ggm(X ) represents the value of the objective
function for optimal allocation of the available water X, for
a given m among all the crops in the time period ¢ under
consideration. Thus

Gk, i lom, 1) = grm(Xyin) (16)

Y k, i, | (feasible). m and r.

When the allocation model is solved, X,;, would have
been allocated fully and optimally among the various crops.
The optimal allocations are used in the soil moisture balance



(equations (10), (11) and (12)) to obtain n. The value of n thus
obtained and of G(k, i, [, m, t) obtained from (16) are
carried into the recursive equation of the SDP, equation (5).

The limitation in using an average soil moisture over all
crops in the formulation is discussed later in the general
remarks section.

APPLICATION TO AN EXISTING RESERVOIR

The application of the model is demonstrated through a
case study of the Malaprabha Reservoir in the Krishna
Basin, Karnataka state, India. The reservoir is a single-
purpose irrigation reservoir on Malaprabha River, a tribu-
tary to Krishna, and has been in operation since 1973.
Located in the northern region of Karnataka state, the
reservoir has a major portion of the irrigated area (71%) in
black cotton soil (montmorrillonitic, expansive clay with
very little organic matter, categorized as CH as per the
unified soil classification system). The model is applied to
the crops grown on this single soil type. The major crops
grown are cotton, wheat, sorghum, maize, safflower and
pulses. Figure 2 shows the principal crops and the crop
calendar for the black soils area.

There are two principal cropping seasons, kharif (mon-
soon season) and rabi (nonmonsoon season) and eight crops
in all, three in kharif, four in rabi, and one two-seasonal
crop, cotton. It is to be noted that if the same crop is planted
at a different time in the year, as far as the model is
concerned, it has to be treated as a separate crop.

In terms of assessing the water available from the Mala-
prabha Reservoir, the crop water requirement of the crops in
the black soil area is esimated to be two thirds of the
requirement for the total area served by the reservoir.
Hence, in the model application two thirds of the release
from the reservoir was assumed to be available for irrigating
the crops in the area. The optimal policy for the reservoir
operation was derived based on allocating this available
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Fig. 2. Crops and crop calendar.

water among the crops grown in the black soil area. A
decision interval of 10 days was chosen for the study. Daily
inflows for a period of 35 years (June 1951 to May 1986) were
used to develop the transition probability matrices for the
10-day periods. The inflows prior to the construction of the
reservoir were taken from a nearby downstream gauging
station. The growth stages of the crops were adjusted to be
multiples of the decision intervals (of 10 days) with the
pertinent information on crop growth stages being taken
from Doorenbos and Kassam [1979]. A value of 0.45 for d
was used in (8).

Discretization of the State Variables

The discretization of the inflows and the reservoir storages
was performed concurrently to avoid trapping states. The
possible range of inflows was identified from the historical
data and divided into four class intervals in each period. The
discrete values representing the class intervals were chosen
at their midpoints (except in the fourth class interval con-
taining the extreme flows in which the representative value
was chosen based on the relative frequency of occurrence of
such inflows).

A number of simulation runs were carried out with histor-
ical inflow data using the standard operating policy (a policy
in which the release in any period equals the demand or the
available water, whichever is less) with each period’s total
crop demands (computed ignoring the soil moisture contri-
bution but taking rainfall into account), each time with a
different number of class intervals for storage. It was found
that 12 intervals quite often resulted in trapping states in
simulation. When the number was increased to 15, trapping
states were avoided. The grid of storage discretizations used
in this study is different for different periods. The details of
the discretization of the state variables with their respective
class intervals, model formulation, and application are given
by Mujumdar [1988].
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Optimal Operating Policy

The solution was carried out in two phases. The first phase
consists of the determination of the values of G(k, i, [, m, 1)
and the associated values of n for each feasible combination
of k, i and [ for every m and for each period ¢. The second
phase uses these values to solve the recursive equation,
defined by (5).

In solving the allocation problem when competition for
water exists, the available water X;;, for allocation was
divided into 12 discrete values. The individual crop alloca-
tions were selected for each of these 12 values. With the
number of storage classes set at 15, the inflow classes at
four, the soil moisture classes at five and with 36 within-year
periods, there are 162,000 possible values of the function
G(k, i, I, m, t). In the model, however, the allocation
problem needs to be solved only for feasible combinations of
k, i and [, and only when irrigation is required, and even in
that case, only when there is competition for water among
the crops.

On a 32-bit minicomputer (Horizon III, made by Hin-
dustan Computers Limited, India) the computation of G(k,
i, 1, m, 1) values for all possible combinations for all the 36
periods (phase 1) took approximately 90 min of CPU time.
The solution yielded a steady state policy after four annual
cycles.

A typical presentation of the steady state policy obtained
from the model for different inflow states is shown in Figures
3 and 4 for a given time period. These figures give the policy
for period 22 for inflow class intervals 1 and 3 respectively.
Period 22 lies in the rabi season (nonmonsoon season) and all
crops of the rabi season are represented in this period
(Figure 2). Figure 3 gives [* (optimal end-of-the-period

7

Initial Storage Index k
A

Steady state policy for period 1 = 22; inflow state {

T T T

1 12 13 14 18

m=3 m=4 m=S

=1

storage state interval) values for each given initial storage
state k (at the beginning of the period) and initial average soil
moisture state m (at the beginning of the period) when the
inflow class interval is 1 (inflow range 0 to 3 Mm"®; repre-
sented by Q% = 1.5) in that period. Similarly Figure 4 gives
the steady state policy for the inflow class interval 3 for any
combination of kK and m in period 22. These figures are used
as follows.

For example, to determine the optimal reservoir release in
period 22, in which the inflow is in state 1, the known initial
storage and the average initial soil moisture level in the
cropped area are entered in Figure 3. When k = 9 (storage
range, 372-409 Mm?, represented by ngz =390.5)and m =
4 (initial soil moisture range, 1.92-2.38 mm/cm), Figure 3
gives the optimal final storage index [* = 6 (storage range,
261-298 Mm?, represented by S& = 279.5). The optimal
reservoir release, Ry, fork =9,i=1.1=6and ¢ =22.1is
then given by (2) with the evaporation, ¢y, computed from
the known evaporation rate for ¢ 22 and the average
reservoir surface area (corresponding to S3° and S¢°. the
beginning and end of the period storages, respectively). The
associated value of X, (with B = 0.7 in (6) used in the
study) and its optimal allocation to the various crops in that
period are then traced through the model solution.

The steady state policy thus obtained for all the 36 periods
can be used in conjunction with a suitable 10-day inflow
forecasting model when operating the reservoir in real time.
An alternative to using the inflow forecasts is to derive
policies which do not depend on the knowledge of the
current period’s inflow for implementation at the beginning
of the period, by identifying either a final storage volume
target, subject to limitations on the releases, or reservoir
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release targets, subject to limitations on the final storage
volumes. respectively, in each period 1, as indicated by
Loucks et al. [1981].

GENERAL REMARKS

The main contribution of the paper lies in the integration
of the decision-making mechanism at the reservoir level and
the tarm level taking into account soil moisture dynamics
and root growth of multiple crops when reservoir inflows are
<tochastic. Assumptions are made in the model formulation
to keep the application computationally tractable. The crops
and the crop calendar are assumed to be fixed in the model.

A major weakness of the model lies in the averaging of the
<oil moisture among all the crops at the beginning of the
period. This can, however, be avoided by defining a soil
moisture state variable for each crop in the formulation.
While there can be no conceptual difficulty in doing this.
computational complexities could render the present model
unworkable in a practical situation. In the context of multi-
~.c crops under a single soil type. however. the approxima-
son is believed to be better than for multiple soil types with
widely varying moisture-holding capacities (such as nonco-
hesive and cohesive soils). The error introduced in using an
sverage value for the initial soil moisture in the model can be
sssessed only by reformulating the problem with additional
<ol moisture state variables, one for each crop. Without

<:ch a rigorous assessment, any judgment on the validity of

tre procedure used can only be speculative.

Another limitation of the study is the assumption that the
rantall and the evapotranspiration in the irrigated area are
considered deterministic, while the reservoir inflow is con-

Steady state policy for period 7

m=3 m=4 m=S

22: inflow state i = 3.

sidered stochastic. This. however, may not be a serious
limitation where the reservoir is meant to serve for irrigation
of a drought-prone area that is subjected to relatively very
low rainfall. The impact of the assumption in the present
study was examined. In the present case study, Malaprabha
Reservoir serves to supply irrigation water to drought-prone
areas in the north Karnataka state. Although the average
annual rainfall in the irrigated area is 623 mm, most of it
oceurs in three months (July, August and September) while
the rainfall is nil or practically negligible in most other
months. The coefficient of variation of weekly rainfall is
significantly higher than the coefficient of variation of the
corresponding weekly evaporation. Therefore, the sensitiv-
ity of the steady state policy in the present study was
examined by varying only the rainfall. The steady state
policy was derived in cach case by setting the rainfall at four
different levels: zero. 0.67, 1.0, and 1.67 times the average
rainfall in each time period. It was found that [* values for
given k. i, m, 1 were identical for the first two levels of
rainfall. and also for the last two levels. The two sets of 1#
values differed for 20% of the total possible combinations of
k. i.m.and r. The differences ocurred mostly in periods in
which the rainfall is relatively high. Even in these periods of
relatively high rainfall. the shift in the optimal final storage
index [* has been only marginal (less than three class
intervals in most cases). It is recognized that consideration
of a random rainfall contribution to crop demands does.
however. pose conceptual difficulties. One way is to specify
the rainfall as a stochastic variable. This involves the defi-
nition of a rainfall transition probability matrix and a joint
probability density function for reservoir inflow and rainfall.
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Future research should be directed toward treating both
reservoir inflow and the crop water demand stochastically.

The representation of the value of the state variable
belonging to a given class interval by its midpoint, as used in
this study, can be improved by using appropriate interpola-
tion techniques. Such techniques would enable f;,, and
G(k, i, I, m, 1) to be estimated for all values of the state
variables, not just the class midpoints. This would allow the
release variable to be continuous, yielding better solutions.

Lastly, a limitation in the formulation caused by the use of
dynamic programming in the present study is recognized.
The interdependency of the crop production in a given
period on water allocations in other periods is not directly
reflected in the model. Instead, allocation policies for each
time period are derived first, based on water availability, and
optimized over the year for the objective of minimizing the
impact of water deficit on an integrated measure of relative
yields in crop production.

CONCLUSIONS

A three state variable stochastic dynamic programming
model has been developed to obtain an optimal steady state
reservoir operating policy integrating the reservoir release
and field allocation decisions in a single model which takes
into account soil moisture dynamics and crop growth at the
field level. Reservoir inflow is considered stochastic, while
the crop irrigation requirements are computed based on
deterministic rainfall and evapotranspiration in the irrigation
area. The optimal operating policy specifies the reservoir
release and crop water allocations for the various crops in
any given intraseason period for known initial storage.
inflow, and initial soil moisture in the cropped area. The
impact of water deficit on crop vyield, the effect of soil
moisture dynamics on crop water requirements and possible
competition for water among the crops in an intraseasonal
period are taken into account.

The model has been applied to the black soils area of the
Malaprabha Reservoir in Karnataka state, India.
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