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Influence of viscoelastic nature on the intermittent peel-front dynamics of adhesive tape
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We investigate the influence of viscoelastic nature of the adhesive on the intermittent peel front dynamics by
extending a recently introduced model for peeling of an adhesive tape. As time and rate-dependent deformation
of the adhesives are measured in stationary conditions, a crucial step in incorporating the viscoelastic effects
applicable to unstable intermittent peel dynamics is the introduction of a dynamization scheme that eliminates
the explicit time dependence in terms of dynamical variables. We find contrasting influences of viscoelastic
contribution in different regions of tape mass, roller inertia, and pull velocity. As the model acoustic energy
dissipated depends on the nature of the peel front and its dynamical evolution, the combined effect of the roller
inertia and pull velocity makes the acoustic energy noisier for small tape mass and low-pull velocity while it
is burstlike for low-tape mass, intermediate values of the roller inertia and high-pull velocity. The changes are
quantified by calculating the largest Lyapunov exponent and analyzing the statistical distributions of the
amplitudes and durations of the model acoustic energy signals. Both single and two stage power-law distribu-
tions are observed. Scaling relations between the exponents are derived which show that the exponents corre-
sponding to large values of event sizes and durations are completely determined by those for small values. The
scaling relations are found to be satisfied in all cases studied. Interestingly, we find only five types of model

acoustic emission signals among multitude of possibilities of the peel front configurations.
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I. INTRODUCTION

Science of adhesion is truly interdisciplinary involving a
great variety of different interrelated physical phenomena
such as viscoelastic, viscoplastic deformation, mechanics of
contact, fracture, and interfacial properties such as debond-
ing and rupture of adhesive bonds. Detailed mechanisms that
control various properties of such a complicated mixture of
phenomena are not yet well understood. Substantial part of
our understanding of adhesion is based on near equilibrium
or stationary state experiments supplemented by the corre-
sponding theoretical analysis. However, we routinely en-
counter situations that represent time dependent or dynami-
cal manifestations of adhesion such as use of adhesive tapes
for packing and sealing. Current understanding of dynamical
aspects of adhesion is largely based on a few types of experi-
ments such as peeling of adhesive tapes under constant pull
velocity or constant load conditions [1-3]. In both cases, the
peel process is intermittent accompanied by a characteristics
audible noise [1-3]. Further, observations of the peel front
under controlled conditions also reveal that the peel front
exhibits fibrills [4—6]. These experiments show that the in-
termittent peel process results from switching of the peel
process between the two stable branches that are separated
by an unstable branch not accessible to experiments. The low
velocity branch is attributed to viscoelastic dissipation while
that at high velocities to the crack speed reaching the Ray-
leigh wave velocity. However, it must be emphasized that
these two branches are measured in stationary state situa-
tions.

Our earlier attempts to understand the peel front dynamics
[7-9] were focused on understanding the origin of the inter-
mittent peeling of an adhesive tape and its connection to
acoustic emission (AE). The basic idea was to describe the
peel front dynamics by writing down an appropriate La-
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grangian that includes contributions from the kinetic energy,
the potential energy, and the dissipation arising from rapid
movement of the peel front apart from that subsumed in the
bistable peel force function. The latter depends on the local
displacement rate of the peel front, and is a crucial input for
describing the spatiotemporal peel front instability [7-9]. In-
deed, the basic premise of our model is that acoustic emis-
sion is the energy dissipated during abrupt stick-slip events
given by the spatial average of the square of the gradient of
displacement rate [7-9].

We demonstrated that the model was able to predict a
number of experimentally observed features [7-9]. For in-
stance, the stuck-peeled (SP) configuration in the model
[7-9] mimics the fibrillar pattern of the peel front observed
in experiments [4—6]. Further, several statistical and dynami-
cal features of acoustic emission such as the transition from
burst to continuous type signal observed in experiments was
also predicted by the model. In addition, the two stage
power-law distribution for the amplitudes of the experimen-
tal AE signals along with the associated exponent values
were also reproduced by the model. The model also predicts
spatiotemporal chaos for a specific set of parameters [7-9].
This also suggests that AE signals may have a hidden signa-
ture of chaotic dynamics, which has also been verified [8,9].
Indeed, crucial insight into many observed experimental fea-
tures of acoustic emission has been provided by the model
that establishes a correspondence between the nature of the
peel front and acoustic energy dissipated. This correspon-
dence helps us to understand the mechanisms that control the
crossover from burst type to continuous type AE signals ob-
served with increasing pull velocity [3,8,9].

Apart from the peel problem, number of stick-slip sys-
tems such as sliding friction [10,11], the Portevin-Le Chat-
elier (PLC) effect [12,13], nonlinear rheological response of
micelles [14] display negative “force-velocity” relationship.
Except in the case of sliding friction [10], the existence of

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.82.016211

JAGADISH KUMAR AND G. ANANTHAKRISHNA

the unstable branch is only inferred. For instance in the case
of the PLC effect, a kind of plastic instability observed dur-
ing tensile deformation of dilute alloys [13,15], the measured
strain rate sensitivity of the flow stress shows the two stable
dissipative branches only [16].

Models that attempt to explain the dynamical features of
stick-slip systems use the macroscopic phenomenological
negative force-velocity relation as input although the un-
stable region is not accessible. This is true in the present case
also [7-9]. In general, the negative force—velocity relation-
ship is attributed to rate dependent deformation. The under-
lying physical cause is the strong history dependent nature of
the deformation of these materials. This property well docu-
mented in the case of adhesives [17-19]. Indeed, the two
dissipative branches reflect precisely the rate dependence.
However, from a dynamical point of view, stick-slip dynam-
ics usually results from a competition between intrinsic time
scales, possibly several (for example, inertial times scales of
the tape mass and roller inertia in our model), and the ap-
plied time scale [11,13,20,21]. As the adhesive is a viscoelas-
tic material, both the visco-elastic time scale and rate depen-
dent deformation of the adhesive [17-19] are expected to
play an important role in the peel dynamics.

However, the time and rate dependence features have not
been included in our recent model for the peel front dynam-
ics [7-9]. Moreover, our earlier studies show that different
regions of the peel front experience different peel velocities
and thus the rate dependent deformation of adhesives
[17-19] can be important. Further, the peel process is itself
sensitive to the interplay of various time scales in the model
and thus, the nature of peel front dynamics will be influenced
by the additional viscoelastic time scale. Thus, our primary
aim is to examine the role played by the viscoelastic nature
of the adhesive on the peel front dynamics and its influence
on acoustic emission. However, as conventional rate depen-
dent effects are always measured in stationary conditions,
and our secondary aim, although a prerequisite, is to devise a
suitable framework for including time and rate dependent
effects in unstable intermittent dynamical situations. Clearly,
such an approach should be useful in understanding the rate-
dependent effects in the other bistable force-velocity situa-
tions.

II. MODEL

In our model, the viscoelastic nature of the adhesive was
included indirectly by assuming an effective spring constant
for the peel front that was taken to be constant k,, small
compared to the spring constant of the tape material k,. In
reality, the soft adhesive should be described by a time-
dependent spring constant that is conventionally described
by assuming a single relaxation time scale given by

k(1) = ky() + [k, (0) = ky(20) Jexp(= 1/T,), (1)

where k,(0) is the spring constant for short times while
kg(0)[>k,(0)] is the saturation value and T, is the viscoelas-
tic time scale. A more general expression that includes sev-
eral relaxations times can also be written down in terms of
network models [22]. Note that this equation has proper lim-
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its, namely, for short times, k,(¢) — k,(0) while for long times
ky(t) — ky(2). The time variable, however, is measured from
some reference state that implies that Eq. (1) saturates
quickly in a time interval long compared to the relaxation
time 7,. On the other hand, our equations of motion support
oscillatory solutions that capture the intermittent stick-slip
dynamics of the peel front. Hence, the explicit dependence
on time in Eq. (1) that makes no reference to slow-fast inter-
mittent dynamics would saturate within a few cycles of stick-
slip. Thus, we need to devise a method to include the vis-
coelastic effects valid for the intermittent state. To
accomplish this, we eliminate the time variable in terms dy-
namical variables as the model equations are autonomous.
While Eq. (1) is often taken to represent rate-dependent
deformation of adhesives, there is no rate dependence in its
present form. The latter is a complex phenomenon [17-19],
commonly observed in viscoelastic and viscoplastic materi-
als, as also in plastic deformation of metals and alloys [13].
The imposed deformation rate limits the internal relaxation
processes which themselves are functions of local strain, lo-
cal strain rate, local stress, temperature, deformation mode
etc. [13,17-19,37]. To the best of our knowledge, no theoret-
ical approach has been developed for including rate depen-
dent effects in unstable intermittent flow situations. Here, we
propose an algorithm that is suitable for this situation.
What is required is a method of including the following
features of rate dependence of the adhesive. For instance,
when a certain segment of the peel front experiences low
velocities, the segment should undergo viscoelastic creep as
there is enough time for the adhesive to relax. In contrast,
when a segment experiences high-peel velocity, the adhesive
segment should behave like a solid as there is very little time
for the viscoelastic relaxation to occur. This physical impli-
cation of rate dependent deformation of the adhesive is how-
ever not captured by Eq. (1) since time variable enters ex-
plicitly while the model equations display intermittent slow-
fast dynamics. Here, we propose a method of incorporating
the rate dependence by eliminating time in terms of the two
relevant dynamical variables, namely, velocity and displace-
ment. Rewriting Eq. (1) in terms of v and u, we have

y(ulv) = k(o) + [k, (0) - kg<oo>]exp(— UT) e

Clearly, Eq. (2) captures the desired rate dependent deforma-
tion of viscoelastic peel front as both the local peel velocity
v and displacement u depend on the imposed pull velocity.
We refer to this equation as dynamized form of Eq. (1). (The
sense in which dynamization is used here is very different
from that used earlier [23] or in Ref. [24]. In the latter, an
explicit dependence on applied strain rate is introduced into
the negative strain rate sensitivity of the flow stress. A simi-
lar approach is adopted in Ref. [23].) If we choose k,(0) to
be small compared to k,(=), it is easy to check that when a
peel segment experiences low velocity (in the region of the
left branch of the peel force function), the behavior of the
adhesive is viscous liquidlike [i.e., k,~k,(0)]. It is solid like
when the peel segment is on the high-velocity branch (i.e.,
k,~ ko(=0)). Thus, the spring constant is made dynamical.
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FIG. 1. (Color online) (a) A schematic representation of the
experimental setup. (b) Plot of the scaled peel force function ¢(v*)
as a function of scaled peel velocity v°.

We begin by collecting some relevant geometrical details.
Experiments carried out under constant pull velocity have a
set up similar to the schematic shown in Fig. 1(a). An adhe-
sive roller tape of radius R mounted on an axis passing
through O is pulled at a constant velocity V using a motor
positioned at O’ at a distance / from O. Let the peeled length
of the tape PO’ be L. From the figure it is clear that the
tangent to the contact point P (representing the contact line
PQ) subtends an angle 6 to the line PO’ and the line PO
subtends an angle « with the horizontal OO’ at O. Then
geometry of the set up leads to L cos §=—Isin a and
L sin 0=I cos a—R. As the peel point P moves with a local
velocity v, the pull velocity has to satisfy the relation

V=v+u+Racos 0, (3)

where u is the displacement. Let u(y) be the displacement
with respect to the uniform ‘stuck’ peel front along the peel
front direction. Similarly, we define all the relevant variables
v(y), 6(y), a(y) at every point y along the contact line.
Then, as the entire tape of width b is pulled at the velocity V,
a more general equation holds

b
- f [V=0(y) = i(y) - Ray)cos o) dy=0.  (4)
0

The model is described by a Lagrangian that has contri-
butions from the kinetic energy, the potential energy and fric-
tional dissipative terms. The total kinetic energy of the sys-
tem U, is the sum of the rotational kinetic energy of the
roller tape and the kinetic energy of the stretched part of the
tape. This is given by

b 2
=3[ a0+ 22 [

b
5 f plu(y)Pdy.  (5)
0

0

Here, ¢ is the moment of inertia per unit width of the roller
tape and p is the mass per unit width of the tape. The total
potential energy U, consists of the contribution from the dis-
placement of the peel front due to stretching of the peeled
tape and possible inhomogeneous nature of the peel front.
Thus,

b b 2
Up=1 [ SutPay+ | kg(t)b[a’;;y)}dy- ©

2 0 0

The peel process always involves dissipation. The domi-
nant contribution comes from the peel force function that
describes the two stable branches separated by an unstable
one connecting the two. In addition, we include another dis-
sipative mechanism that is crucial for describing acoustic
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emission as well as peel front instability. This term arises
from the accelerated motion of local regions of the peel front
during the abrupt rupture process. We consider this term to
be responsible for the generation of acoustic signals [7]. Any
rapid movement of the rupture front generates dissipative
forces that tend to resist the motion of the slip. Such dissi-
pative forces are modeled by

_I['L, ﬂ_w}
RAE—zfo b[ 2y dy. (7)

Note that this term has the same form as the acoustic wave
energy generated by dislocations during plastic deformation.
This is given by E,, & (r), where &(r) is the local plastic
strain rate [25]. Therefore, we interpret R,; as the energy
dissipated in the form of acoustic emission. Indeed, such a
dissipative term has proved useful in explaining the power
law statistics of the AE signals during martensitic transfor-
mation [26-28] as also in explaining certain AE features in
fracture studies of rock sample [25] apart from the AE fea-
tures in the peel problem [7-9]. Then, the total dissipation is

b
R = %f ff[v(y)]dvdy + Rags (8)
0

where f(v) physically represents the peel force function as-
sumed to be derivable from a potential function P(v)
=[f(v)dv (see Ref. [29]). The form of the peel force function
is represented by

f(v) =4020"% + 17101 + 68¢“77) - 369.650"° - 2.
©)

The above form preserves major experimental features such
as the magnitude of the velocity jumps across the two
branches of f(v), the range of values of the measured peel
force function and its value at the onset of the unstable
branch.

We now write the equations in a nondimensional form.
We define a time like variable 7=w,t with w’=k,/(bp) and
a length scale d=f,,/k,, where fu. is the value of f(v)
at v on the left stable branch. Using these variables,
we define scaled variables u=Xd=X(fya/k,), [=1°d, L=L*d
and R=R’d. The peel force f(v) can be written as ¢(v°)
=flv*(v)]/fmax» Where the dimensionless peel and pull
velocities are given by v'=v/v.w,d and V'=V/v.wd,
respectively. Here, v.=v,,/ w,d represents the dimension-
less critical velocity at which the unstable branch starts.
Using this we can define a few relevant scaled param-
eters Cy= (Frnax/ k) (p/ &), k=kg(u/v)b2/(kta2), Ak=[k()
—ko(0)1b*/ (ka®), v,=T,,/ (ka®), and y=ar, where a is a
unit length variable along the peel front.

Then, the scaled local form of Eq. (3) takes the form

S

. l
X=(V'-v ).+ RSE(sin a)d. (10)

In terms of the scaled variables, the scaled kinetic energy Uy
and scaled potential energy U} are respectively given by
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Uy=——

bla . . s( ) 2 .
=30, Ha(m% + CXAr) (dr, (11)

bla 2
U;=lf {XZ(r)+k(X/v'f){w] }dr. (12)
2J, ar

The total dissipation in the scaled form is

bla
RS:R}+RAE——f fd)[vv(r)]d + = { X(r):| dr.

ar
(13)

The first term on the right-hand side is the frictional dissipa-
tion arising from the peel force function. The second term is
the scaled form of the acoustic energy dissipated. The scaled
peel force function, ¢(v®), can be obtained by using the

. X d(v°) PX Ak
X=—X+k(X/U‘X)_2+S— ’yu—2+
ar P ar- 270’
1+ Esm o

) 2
XU3<£(> e—X/UyTa<£_
v\ ar T,

2X IX| s
20° + — eV a |,
z?r ar
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scaled velocities in Eq. (9). The nature of ¢(v*) is shown in
Fig. 1(b). Note that the maximum occurs at v*=1. We shall
refer the left branch AB as the “stuck state” and the high-
velocity branch CD as the “peeled state.”

Finally, in scaled variables, Eq. (2) takes the form

ko(X/0%) = k() + [k, (0) — kg(w)]eXP<— %) (14)

where 7,= M . The Lagrange equations of motion in terms
of the generahzed coordinates a(r), a(r), X(r) and X(r)
are
A
i, —sin a
VU
d=- F—CfRSl—dvs), (15)
<1 + —sin a)
LY
oX Ak |1 (ox)’ X
) e -Xn'r, _ _2X<_) e—X/ﬁTa(l - )
ar 270, v° ar v,
(16)

However, Egs. (15) and (16) should also satisfy the constraint Eq. (10). A standard way of implementing the consistency
condition between Egs. (15), (16), and (10) is to use the theory of mechanical systems with constraints [30]. This leads to an
equation for the acceleration variable v*(r) [obtained by differentiating Eq. (10) and using Eq. (16)], given by

. 1 Ak { 1
v'v,. = 3 -

- Ak X(Q() e_X/vSTa<£ _ 205) 2.l v

27'0031}54 ar 7,
2
Ak [ 9X s #X s
(—) ey X — k(X/v)— - )
27,0°\ dr ar

Henceforth we will drop the denominator in the above equa-
2 54 ( )2 X Ta(_ 20°) <1.

ZUU

Equations (10), (15), and (17) constitute a set of nonlinear
partial differential equations that determine the dynamics of
the peel front. They have been solved by discretizing the peel
front on a grid of N points using an adaptive step size stiff
differential equations solver (MATLAB package). We have
used open boundary conditions appropriate for the problem.
The initial conditions are drawn from the stuck configura-
tion, i.e., the values are from the left branch of ¢(v*) with a
small spatial inhomogeneity in X such that they satisty Eq.
(10) approximately. The system is evolved till a steady state
is reached before the data is accumulated.

tion as

(1 + —sin a
LX

2 .
or véT, T, vc v*? o7r or

#X RI
o2 T L

2
+sin aa

> s sin «
a”| cos a— R'l s

(17)

III. DYNAMICS OF THE PEEL FRONT

A. Competing time scales and parameters

The dynamics of the model is sensitive to the four time
scales (in the reduced variables) determined by the param-
eters Cp, v, k, and V°. Cs is related to the ratio of the inertial
time of the tape mass to that of roller inertia. & is the ratio of
spring constant of the glue to that of the tape in a dynamical
state and 7, is the viscoelastic time scale. The dissipation
parameter vy, reflects the rate at which the local strain rate
relaxes. Finally, the pull velocity V* determines the duration
over which all the internal relaxations are allowed to occur.
The range of Cy is determined by the allowed values of the
tape mass m and the roller inertia I. Following our earlier
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studies, I is varied from 107> to 1072, and m from 0.001 to
0.1. Thus, Cf can be varied over a few orders of magnitude
keeping one of them fixed. The range of V* of interest is
determined by the instability domain.

In our numerical simulations we have taken 7,=0.526,
ko(0)~0.01k, and k() ~0.71k, These values fix Ak
=[k,(0)—k,(0)]b*/ (k,a*). A rough estimate of the variation
of the elastic constant of the adhesive in a dynamical situa-
tion (i.e., during the time evolution of the equations) can be
obtained by inserting typical values of the peel force func-
tion. For example, for low values of v®~ 1073, kg~0.01k,,
while for values of ¢(v*) at its maximum, namely, v*=1 and
X=1, we get k,(X/v*)=0.1146k,. This value is of the same
order as the value of ky=0.1k, used in our earlier studies
(k,=1000N/m) [7-9]. On the right branch, taking v*=20 and
X=1, we get k,=0.647k,. Thus, the variation of the spring
constant in dynamical situations can be substantial. Indeed,
such a large variation of the modulus of the adhesive mate-
rial is known from rate-dependent studies [17-19].

To understand the nature of acoustic emission, we begin
with a few observations about the model acoustic energy
R4g. From Eq. (13), it is clear that the acoustic energy R4y is
the spatial average of the square of the gradient of the dis-
placement rate. However, the peel front configurations are
sensitive to the value of vy,. From Eq. (17), low v, implies
that the coupling between neighboring sites is weak and
hence the local dynamics dominates. Thus, the displacement
rate at one spatial location has enough freedom to deviate
from that of its neighbor. This generally leads to stuck-peeled
configurations. In contrast, as shown in Ref. [7,9], high v,
implies strong near-neighbor coupling and thus leads to
smooth synchronous peel front, and consequently sharp
bursts are seen in the model acoustic energy R,p.

In view of this, we shall fix vy, at a low value. This choice
is also supported by the estimate presented in [9]. The un-
scaled dissipation parameter I, is related to the fluid shear
viscosity 7 [31]. Using typical values of 7 for adhesives, it
was shown that the order of magnitude estimate of 1y, is
~1073-107*. The results presented here are for y,=0.01 as
the peel front patterns for smaller 7y, are similar. Finally, we
note that the exact nature of the peel front pattern and the
associated model acoustic energy R,y depends on other pa-
rameters C; and the pull velocity V*.

Finally, we estimate the region of time scales where the
viscoelastic time scale influences the dynamics. In the un-
scaled variables, we have two frequencies w,=(k,/m)"? and
w,=(Rf/D"2. Our earlier study has demonstrated that low-
mass limit of the ordinary differential equation model [29]
corresponds to the differential algebraic equations [23]. In
this limit, we have shown that the orbit in the X—v* plane
jumps abruptly across the two stable branches of the peel
force function amounting to infinite acceleration [9,29]. On
the other hand, finite tape mass causes jumps in v® to occur
over a finite time scale. This often restricts the phase space
trajectory from visiting the high-velocity branch of ¢(v®)
[7-9]. From this point of view, the viscoelastic time scale
should be expected to influence the dynamics at low and
intermediate tape mass values. However, we stress that the
roller inertia / also influences the dynamics.

PHYSICAL REVIEW E 82, 016211 (2010)

B. Methods of analysis

Simple dynamical tools such as velocity-space-time pat-
terns, phase plots in the X—v* plane for an arbitrary spatial
point on the peel front and the associated model acoustic
energy R,y are quite useful in studying the influence of vis-
coelasticity of the adhesive on the peel front dynamics. Our
earlier studies suggest that the system of equations could be
spatiotemporally chaotic (STC) for a certain set of param-
eters values. This can be quantified by calculating the largest
Lyapunov exponent (LLE) from the equations of motion. We
will also use statistical tools such as calculating the distribu-
tions of amplitudes and durations of the fluctuating acoustic
energy signals. As shown earlier, the distribution of event
sizes often exhibit power law behavior [7-9].

1. Dynamical tools

Our earlier work has established that the equations of mo-
tion for the ky-model are spatiotemporally chaotic for a cer-
tain range of parameters. The largest Lyapunov exponent for
such systems should be positive. Thus, in principal, one ex-
pects to find a range of values of the parameters for which
the viscoelastic model also to be spatiotemporally chaotic
(which however could be different from those of the k
model). In the following we briefly describe the method of
calculating the largest Lyapunov exponent.

Lyapunov exponents are measures of the sensitivity to
initial conditions. Positive Lyapunov exponent is a measure
of the rate of divergence of nearby orbits. This is calculated
by choosing two orbits that are close to each other and evolv-
ing them for a certain interval of time. If the system is cha-
otic, the orbits diverge from each other in a short time along
the directions corresponding to positive Lyapunov exponents
and contract along directions corresponding to negative
Lyapunov exponents. Here, the phase space is 4N dimen-
sional and there are as many Lyapunov exponents. For a
spatiotemporal chaotic system, the number of positive
Lyapunov exponents scales with the system size [32].

As argued earlier, the influence of viscoelasticity is seen
for low tape mass, a situation where the solutions are close to
that of the differential algebraic equations [29]. The orbits
jump between the two branches of the peel force function
almost instantaneously and therefore the peel velocity
changes abruptly. Thus, our equations are very stiff and
therefore demand high accuracy in computation. For this rea-
son, we calculate only the largest Lyapunov exponent. (Note
that if LLE is positive, the system is chaotic.) Indeed, under
these conditions, even evaluating the LLE turns out to be
time consuming due to slow convergence of the Lyapunov
exponent.

Given that equations of motion are chaotic, the equations
are evolved till the phase space orbit settles down on the
attractor. The method of calculating LLE involves choosing
two neighboring trajectories fl- and Ej with an initial separa-
tion d;;(0) and evolving them for a short time A and, moni-
toring the distance d,;(Ar). (Any acceptable norm can be
used. The simplest choice is to take dij=\'22”=1(§§p)—§}p))2,
where the sum is over M components of the vectors.) The
initial distance is taken to be small compared to the size of
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the attractor. Then, A—llog 7 (0 reﬂects the rate of divergence
of the orbits. The procedure is repeated by resetting the dis-
tance to d; (0) along the direction of the evolved difference
vector f, fj so that the attractor is well sampled. Then, the
largest Lyapunov exponent is given by

£ At)
M= _2 4,(0) 19

2. Power law distributions and scaling relations

Given a fluctuating time series, the simplest statistical
quantity that can be calculated is the distribution of event
sizes and their durations. Large number of driven systems
exhibit power law distributions of event sizes and their du-
rations. However, the definition of an event depends on the
physical situation. Here, we use the magnitude of the local
burst of the acoustic signal AR, as an event. This is defined
as the magnitude of the signal from a maximum to the next
minimum. The corresponding time difference associated with
AR, is taken as the duration 7. Then, the distributions
P(AR,g) of the event sizes and durations P(7) follow a
power-law defined by

P(ARyp) ~ ARE, (19)

P(T) ~ TP, (20)
In addition, event size and the lifetime are related though
ARAE -~ Tx. (21 )

However, our earlier investigations have shown that the
distributions of event sizes follow either a single scaling re-
gime or two distinct scaling regimes, one for small values of
the variable and another for large values [7,9]. For a two
stage power law distribution, a=ca; for small values of
AR, and a=a, for large values of AR,. Similarly, 8=,
and B, for small and large values of 7, respectively. We
assume that there is a single scaling regime, with an expo-
nent x, connecting the magnitude of the event with its dura-
tion. While a scaling relation between the exponents has
been derived for the case of a single stage power-law distri-
bution, a similar scaling relation is not available in the litera-
ture for the two stage power-law distribution. Thus, our first
task is to derive scaling relations valid for this case.

Our derivation follows the approach due to Rafols and
Vives [34]. Using a joint probability distribution of event
sizes and their durations P(AR4g,T), we have derived scal-
ing relations between the exponents in the Appendix. The
exponents corresponding to small values of event sizes and
durations are related through the standard scaling relation
given by

x(l-—a)=1-4. (22)

Surprisingly, the exponent for the event size AR,y corre-
sponding to the second scaling regime (i.e., large values) is
completely determined by [3; of the first given by

xa,—1)=p6+1, (23)
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FIG. 2. (Color online) Parameter values—C,=7.88, m
=103, I=10", V=148, and v,=0.01. (a) Model acoustic en-

ergy plot for the ky model. (b) Snapshot of stuck-peeled configura-
tions for the k, model.

Br=pB1+2. (24)

A few general comments are desirable. First, very often
the statistics of large events are poor that may overshadow
the possible existence of a power law for large values. This
limitation applies even to model systems let alone experi-
ments. Second, in general, the statistics of event durations is
known to be poor even in model systems. Thus, very often, it
may not be possible to verify if the scaling relations are
obeyed. Lastly, due to numerical accuracies, scaling relations
are satisfied only approximately.

IV. INFLUENCE OF VISCOELASTIC CONTRIBUTIONS
TO PEEL FRONT DYNAMICS

Here, we present a few representative results where-in the
influence of viscoelasticity is substantial and interesting.
Henceforth, we refer to the present model [Egs. (10), (15),
and (17)] as the viscoelastic model and our earlier work in
[7-9] as the k; model. Unless otherwise stated, all other pa-
rameters are the same when a comparison is made. Here we
investigate the influence of the viscoelasticity of the adhesive
on the peel front dynamics for a range of values of Cyand V*.
(Other parameters are fixed at R°=0.35, [I=3.5, k,
=1000N/m, 1/7,=1.9, and N=50 in units of the grid size).

A. Case 1: C;=17.88

For this case, the range of values of (m,I) are
(0.1,107%), (0.01,10™) and (0.001,1075). Since the effect
of viscoelasticity is minimal for m=0.1, we will not discuss
this case.

1. Case 1(i): C;=7.88 and m=107%, 1=10"°

This case corresponds to low inertia of the tape and low
inertia of the roller. As we shall see, this is also the case
where there is a substantial change in the peel dynamics of
the viscoelastic model compared to the k, model [9]. Note
also that m=0.001 corresponds to vanishing tape inertial
time scale and, hence the phase space orbit jumps abruptly
between the two stable branches of the peel force function
@(v*). For these parameter values, burst type AE signals are
seen at low-pull velocity V*=1.48 for the k, model as shown
in Fig. 2(a). Recall that in our earlier work on the k, model,
we had established a correspondence between the nature of
the model acoustic energy and the sequence of peel front
configurations responsible for the acoustic signal [7,9]. The
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FIG. 3. (Color online) Parameter values for the visco-elastic
model—C;=7.88, m=10", =107, V*=1.48, 7,=0.01, and
1/7,=1.9. (a) Model acoustic energy plot for the viscoelastic
model. (b) Time evolution of the stuck-peeled configurations. (c)
Largest Lyapunov exponent for the viscoelastic model. (d,e) Two
stage power-law distribution for the event sizes AR,y and their
durations 7. (f) Scaling relation between the event size AR, and
the conditional average (T).. The exponent value is x=1.33.

burst type of R,y arises when the system jumps between
rugged configuration that lasts substantial amount of time
and stuck-peeled configurations that last for a short time
[Fig. 2(b)].

In contrast, when the viscoelastic contribution is included,
R, turns noisy and irregular as shown in Fig. 3(a), although
there is a periodic component corresponding to burst type
signal of the ky model. The noisy nature of R,y arises from
the system traversing through a sequence of stuck-peeled
configurations that mostly contain only a few peeled seg-
ments whose location keeps changing rapidly. In this case,
there are much fewer stuck-peeled segments compared to
Fig. 2(b). The time evolution of the SP configurations is
shown as a color plot in Fig. 3(b). As can be seen, the pattern
appears to propagate to the right with a well-defined mean
velocity. Considering the stuck-peeled segment as a double
kink, it appears that the propagation is very similar to the
kink propagation. The nature of spatiotemporal patterns of
the peel front and their temporal evolution can be quantified
by calculating the largest Lyapunov exponent from the sys-
tem of equations. Figure 3(c) shows that the exponent value
converges to 0.04. Thus, these equations are spatiotempo-
rally chaotic for these parameter values.

The statistics of R, for the viscoelastic model shown in
Fig. 3(a) are analyzed in terms of the distributions of the
event sizes AR, and their durations 7. (Note that the statis-
tics are given in terms of un-normalized distributions de-
noted by D instead of normalized distribution P.) We have
calculated the distribution of AR, and their durations 7 de-
noted by D(AR,g) and D(T), respectively. A plot of the event
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size distribution D(AR ) ~ AR % exhibits a two stage power
law as shown in Fig. 3(d). For small values of AR,g, the
exponent value a=¢; is close to a; ~0.55*0.01, while for
large values of AR,p, the exponent a=a,~2.1+ £0.1.
Similarly, the distribution of the duration of the events D(T)
also exhibits a two stage power law with exponents f3;
=0.37*+0.01 and 8,=2.37%0.05 respectively for small and
large values of T [Fig. 3(e)]. Further, as can be seen from
Fig. 3(f), the event size AR, scales with a single exponent x
with the conditional average (T), (as assumed in our deriva-
tion) with x=1.33+0.07.

It is easy to check that the scaling relations given by Egs.
(22)—(24) are satisfied quite closely. For instance, for Fig. 3,
the left hand side of Eq. (22) is 0.60 while the right hand side
is 0.63. Similarly, Eqgs. (23) is satisfied as a,=2.1 which is

numerically close to Bl 5 .03. Further, 8,=2.37 is found
to be equal to B;+2. We have indeed verified that the scaling
relations are approximately satisfied in all cases where the
statistics are good.

Now as we increase the velocity V*, the general trend of
the changes in the peel front dynamics for the viscoelastic
model are similar to those for the k, model [9] with minor
differences. The acoustic energy R, is noisy with a notice-
able periodic component for the k, model. The origin of the
periodicity in R, can be traced to the fact that the peel front
goes through a repetitive sequence of SP configurations start-
ing with a few stuck-peeled segments to a maximum number.
This overall periodicity is less obvious in the acoustic signal
R, for the viscoelastic model. However, for V*=4.48, the
distributions of amplitudes of the acoustic signal exhibit a
two stage power law in both cases with nearly the same
exponent values. But, the statistics of event durations is poor
in both cases. For the kg model, the value of the LLE is
~0.03. Snapshot of SP configurations for the viscoelastic
model are also similar to those in Fig. 2(b).

2. Case 1(ii): C4=1.88 and m=10"2, 1=10"*

For this case, for low-pull velocity V*=1.48, the peel front
patterns for the present model are similar to those for the k
model [9]. Only dynamic SP configurations are observed
with the number of peeled segments changing continuously.
Plots of the SP configurations are not shown, as they are
similar to other cases. See for example Fig. 2(b). Thus, the
acoustic energy R,y is irregular with no trace of periodicity.

However, as we increase V* to 4.48, the AE signal for the
ko model turns completely periodic. A typical plot is shown
in Fig. 4(a). Indeed, the phase plot in the X—v* plane is
periodic with a single loop. Even though only SP configura-
tions are observed, they are long lived and are repetitive.
Velocity-space-time plots corresponding to maximum of R,
marked B is shown in Fig. 4(b). The minimum in R,
marked A has fewer stuck-peeled segments compared to that
for the point B [shown in Fig. 4(b)]. In contrast, for the
viscoelastic model, R, remains irregular as shown in Figs.
4(c). The phase plot also appears to be chaotic. The largest
Lyapunov exponent calculated from the equations of motion
is 0.16. The distribution function D(AR,) ~ AR} exhibits a
single stage power law with an exponent a=0.7=*+0.03 as
shown in Fig. 4(d). The exponent corresponding to event
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FIG. 4. (Color online) Parameter values—C;=7.88, m
=102, I=10"*, V*=4.48, and 7,=0.01. (a) Model acoustic en-
ergy plot for the k, model. (b) SP configuration for the kj-model.
Note the correspondence between the SP configuration shown and
the point A on R . (c) Model acoustic energy plot for the viscoelas-
tic model. (d) Single stage power law for the viscoelastic model.

duration is 8=0.5*=0.02 and that of x=1.82 =0.1. It is clear
x(1-a)=0.55 while 1-8=0.5. Thus, the scaling relation Eq.
(22) is well satisfied again.

B. Case 2: (=0.788

For this value of Cy, the four sets of values of (m,I) are:
(107',1072), (1072,107%), (1073,10™), and (107*,107).
However, here we report the results only for (10~*,107*) and
(1072,1073) as the effect of viscoelastic contribution is not
noticeable for high tape mass case while m=107* is similar
to m=1073 case.

Case 2(i), C;=0.788, m=103, I=107*

For this case also, there is a substantial change in the peel
dynamics of the visco-elastic model compared to the kj
model for V*=1.48. For the k; model, the model acoustic
energy consists of a triangular envelope of rapidly fluctuating
sequence of sharp bursts that repeats itself at near regular
intervals as shown in Fig. 5(a). The peel process involves
near periodic changes in the sequence of rapidly changing SP
configurations starting with a single peel segment increasing
to a maximum number of stuck-peeled segments, eventually
reverting back to a single peel segment. Figs. 9b and 9c of
Ref. [9] show the stuck-peeled configurations leading to the
acoustic energy with a triangular envelope. The distribution
D(AR,g) ~ AR} exhibits a two stage power law. For small
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FIG. 5. Parameter values—C;=0.788, m=10"2, I=107%, V*
=1.48, and y,=0.01 (a,b) Model acoustic energy plot for the k,
model and the viscoelastic model, respectively.
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FIG. 6. Parameter values—C;=0.788, m=107, I=107*, V*
=448, and vy,=0.01 (a,b) Model acoustic energy plots for the kg
model and the viscoelastic model respectively.

values of AR,y the exponent value a=a; is close to «
~0.5+0.02, while for large values of AR, the exponent
a=a,~2.0%0.1. Since the statistics of event durations are
poor, it is not possible to verify the scaling relations in this
case.

In contrast to the ky-model, for V*=1.48, the model acous-
tic signal R,y appears irregular yet retaining some periodic
component (of triangular bursts for the k, model) shown
in Fig. 5(b), The corresponding peel front configurations
involve dynamic SP configurations. The largest Lyapunov
exponent is ~0.027. The distributions of event sizes and
durations exhibits two stage power laws with exponent
values «;=0.6*+0.02, a,=2.1+0.01, B,=0.6*=0.02, B,
=2.5%0.1, and x=1.51. The scaling relation are satisfied
quite well.

As we increase V* to 2.48, the acoustic energy for the kg
model becomes irregular with a noticeable superposed peri-
odic component. Further increase in the pull velocity to V*
=4.48 transforms R, irregular without any trace of period-
icity as shown in Fig. 6(a). Concomitantly, only dynamic SP
configurations are seen.

For the viscoelastic model, as we increase V*, R, still
remains irregular for V*=2.48. A further increase to 4.48, the
model acoustic emission signal turns out to be burst type
with the bursts appearing at near regular intervals as shown
in Fig. 6(b). However, the nature of the bursts are clearly
different from Fig. 2(a). In this case, the quiescent regions of
R,r correspond to configurations that are nearly smooth.
Each burst in R, is caused by the system jumping from this
configuration to a sequence of rapidly varying SP configura-
tions with only a few stuck-peeled segments. The largest
Lyapunov exponent is close to zero suggesting the equations
are nonchaotic for the set of parameter values. The distribu-
tion D(AR,z) ~AR,%, shows a two stage power law distri-
bution ;=0.5%£0.02 and a,=2.05=*0.1. However, the sta-
tistic of the event durations is poor and the distribution of the
vent sizes shows no scaling regime.

Finally, some comments are warranted on the two con-
trasting dynamical responses of the peel front discussed
above when the viscoelastic contribution is included. In case
1) (Cr=7.88, m=10"3 and I=107°), at low pull velocity

*=1.48, burst type model acoustic energy R,x is observed
for the k, model that changes over to irregular type with the
addition of viscoelastic contribution. For the ky-model, on
increasing the pull velocity, R,y exhibits an irregular form
with a superposed periodic component, while R, retains the
totally irregular form for the visco-elastic model. In contrast,
for the case 2(i) (C;=0.788, m=1073 and I=107%), for the
ko-model, R,y consists of a triangular envelope of bursts for
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TABLE I. Statistical and dynamical invariants for the set of parameters where the influence of viscoelastic
contribution is significant. The values in the first row correspond to the viscoelastic model and that in the

second row to the k; model. NC is nonchaotic.

Model Ve C; m I a a, LLE
kg 4.48 7.88 1072 107 0.70 0.160
ky 4.48 7.88 1072 10 NC

kq 1.48 7.88 1073 1073 0.55 2.10 0.040
ky 1.48 7.88 1073 1073 NC

kq 1.48 0.788 1073 10 0.60 2.20 0.082
ko 1.48 0.788 1073 1074 0.50 2.00 0.270
kq 4.48 0.788 1073 1074 0.78 2.00 0.008
ko 4.48 ,0.788 1073 107 0.75 0.350

V*=1.48 that transforms to aperiodic pattern at high velocity
V¥=4.48. With the addition of the visco-elastic contribution,
R, is aperiodic at low-pull velocity (V*=1.48) changing
over to burst type for V*=4.48. Thus, the combined influence
of viscoelasticity and pull velocity is contrasting in these two
cases.

To understand this, consider the various mechanisms that
contribute to the growth and decay of peel front instability.
Recall that for a continuous aperiodic type of AE signal,
there will always be stuck and peeled segments at any given
time, i.e., when a segment that is in the peeled state gets
stuck, at least one other segment that is in the stuck-state
peels out so that there is a dynamic balance. In contrast, for
burst like AE signal that has a near periodicity, the entire peel
front spends a finite time on the low velocity branch and a
short time in the transient stuck-peeled configurations. Thus,
for converting a burst type of signal with the addition of
viscoelastic term, spatial heterogeneity needs to be sustained
while the opposite should happen (though at high-pull veloc-
ity) when an aperiodic signal changes to burst type.

Some insight can be obtained by examining the influence
of different terms in Eq. (17). The equation has three new
nonlinear terms compared to the k, model (first three terms
on the left hand side of the equation) that can contribute to
changes in the peel velocity v*(r). In addition, the coefficient
k of the diffusive term ‘;27)5 now depends on X/v®. Consider
the first term on the LHS of Eq. (17). Noting that X/v*7, is
always greater than unity when the peel velocity is in the
region of slow velocity branch of ¢(v*), and noting X=V
—v*, this term [with a nonlinear coefficient ('2—’:)2] contributes
to the growth of any perturbation. Note that other terms con-
tribute to the decay. Indeed, even the diffusive term
k(X/ v‘)% has a tendency to smoothen out SP configuration.
As these terms depend on the pull velocity V¥, the influence
of the viscoelastic term can be estimated by calculating in-
dividual contributions from these nonlinear terms for low
and high velocities. We find that the first term amplifies fluc-
tuations in the peel front velocity for the case 1(i) at low
velocities. Thus, SP configurations are favored.

In the case of case 2(i), at high-pull velocity (V*=4.48),
we find the diffusive term k(X/v* %, more than compen-
sates for the presence of the nonlinear amplifying (first) term

and therefore has a tendency to smoothen out SP configura-
tions. Dropping any of the nonlinear terms does not alter the
burst type AE signal. This also suggest that a choice of small
value for kg in the original model (without the visco-elastic
contribution) should also give rise to burst like R,z. Indeed,
we have verified that burst type AE are seen if we choose a
small value of k, (ky=0.05) in the k, model. While this dis-
cussion offers some understanding, the set of coupled equa-
tions are much too complicated for any further analysis.

A few systematics have been noted in our studies on the
power-law distributions of the event sizes and durations (for
entire range of parameter values). First, the distributions are
either a single stage power law or a two stage power law.
Second, if it is single stage power-law distribution, the expo-
nent corresponding to the magnitude of the events AR, is
invariably ~0.7. In contrast, the two stage power law distri-
butions are of two types. The exponent corresponding to
small values of AR, is typically ~0.5 while that corre-
sponding to large values of AR, is always close to ~2.0.
The exponents corresponding to the duration of the events
are related though ,=~ 8;+2. The derivation of the scaling
laws (see Appendix) provides some insight into these origin
of the systematics. Table I summarizes the changes induced
with the addition of viscoelastic contribution.

It must be stated that while the results given above only
deal with the set of parameters where the dynamics changes
substantially with the addition of viscoelasticity, there is a
range of parameter values for which there are changes that
are not as dramatic.

C. Summary of the model acoustic energy profiles
and the associated peel patterns

All the peel front patterns observed in the k, model are
also observed in the viscoelastic model. These patterns can
be classified as rugged, corrugated and stuck-peeled configu-
rations. Among the SP configurations, there are substantial
variations, for example, rapidly changing, long lived, etc.
The stuck-peeled configurations mimic the fibrillar pattern
observed in experiments. A typical model peel front profile
shown in Fig. 7 can be compared with the fibrillar pattern in
[5,6,33]. Despite the numerous possible configurations, only
five different forms of the model acoustic energy R,y could
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FIG. 7. (Color online) Spatial profile of the peel front for the k,
model for C;=0.788, m=1073, I=10"*, V’=1.48, and ¥,=0.01.

be identified for the entire set of parameters space studied for
both the viscoelastic model and k; model. This is surprising
since Ryp(7) is the spatial average over the local displace-
ment rate of all the allowed peel front configurations. De-
spite this a specific sequence of peel fronts configurations
[7-9] are found to be associated with each type of the model
acoustic energy R,p. Here, we list the five distinct model
acoustic emission signals and the associated peel front con-
figurations that generate the AE signals.

(i) Type I. Burst type AE pattern arises when the entire
peel front jumps from a smooth or rugged configuration cor-
responding to the low-velocity branch of ¢(v®) to a transient
set of stuck-peeled configurations [see Fig. 2(a) and 6(b)].

(ii) Type II: Irregular and continuous type of AE pattern is
the most complex type. The chaotic nature of the AE pattern
can be identified with a set of rapidly changing set of SP
configurations. The local minimum of R,y corresponds to
fewer number of stuck-peeled segments compared to that at
the following maximum of Ry.

(iii) Type III: Continuous irregular type AE signal with a
noticeable periodic component is also associated with the
dynamic SP configurations. Here, the peel front traverses
through a nearly periodic sequence of SP configurations
starting with a few stuck-peeled segments to a maximum
number. The minimum (maximum) in the nearly periodic
profile of R,y corresponds to SP configurations with a few
(maximum) stuck-peeled segments.

(iv) Type IV: Nearly periodic rapidly fluctuating convex
envelope of AE bursts separated by a quiescent region are
caused when the peel front traverses through a set of SP
configurations with increasing number of stuck-peeled seg-
ments starting with a rugged configuration. This type of sig-
nal is essentially type III, except that the number of bursts
within one cycle is substantially more than that in type III.
The quiescent region of R,y corresponds to rugged configu-
ration while the SP configuration with a maximum number of
stuck-peeled segments to a maximum of R,.

(iv) Type V: Completely periodic AE signals are produced
when the peel front traverses through a periodic set of SP
configurations. The usual correspondence of the minimum
(maximum) in R,z with the minimum (maximum) number of
stuck-peeled segments holds.

V. SUMMARY AND CONCLUSIONS

In summary, a detailed analysis of the peel front dynamics
and the associated acoustic energy signal shows that the ad-
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dition of viscoelasticity of the adhesive alters the dynamics.
In particular, we have demonstrated that the influence of vis-
coelasticity is observed for low and medium tape mass. The
combined effect of the roller inertia and pull velocity makes
the acoustic energy noisier for small tape mass and low-pull
velocities compared to the burst type emission for the k
model. For intermediate tape mass and roller inertia for high
velocity, a periodic model acoustic energy signal of the k,
model is transformed into an irregular pattern. In contrast,
for low-tape mass, intermediate roller inertia and high-pull
velocity, the original irregular acoustic energy signal is trans-
formed to burst like with the addition of viscoelasticity. De-
spite the multitude of allowed spatiotemporal configurations,
we find only five types of model acoustic emission signals
among multitude of possibilities of the peel front configura-
tions. Of these, the most interesting is the stuck-peeled con-
figurations. Even among the SP configurations, there are sub-
stantial variations, for example, rapidly changing, long lived,
propagating etc. Of these, Finally, the stuck-peeled configu-
ration are interesting since they resemble the observed fibril-
lar patterns of the peel front. This is shown in Fig. 7.

Two quantitative methods of analysis are introduced. The
dynamical changes are quantified by calculating the largest
Lyapunov exponent. Statistical features of the model acous-
tic energy signals are analyzed by calculating the statistical
distributions of the event sizes and their durations. Both
single and two stage power-law distributions are observed.
Scaling relations between the exponents are derived, which
show that the exponents corresponding to region of large
values of event sizes and durations are completely deter-
mined by those for small values. The scaling relations are
found to be satisfied in all cases studied where the statistics
are satisfactory.

By necessity, the work also addresses the conceptual
problem of including visco-elastic effects of the adhesives
applicable to intermittent peel front dynamics. This has been
done within the context of ky model and thus the results of k
model form the basis for comparison. In our work on the k
model, the viscoelastic nature of the adhesive was included
only in an indirect way by choosing the spring constant of
the peel front to be small. This clearly ignores two important
features, namely the time and rate dependence of the adhe-
sive material. Further, these properties are always measured
in stationary deformation conditions that are not applicable
to intermittent flow. Thus, a major obstacle in accomplishing
this objective is that there is no known method for including
time dependence of viscoelastic material (the elastic modu-
lus) and rate-dependent deformation valid for unstable inter-
mittent peel situations. While the former is well described by
Eq. (1), rate dependence arises from a subtle interplay of
several internal relaxation mechanisms, and is certainly a
complex phenomenon. In the context of the peel problem,
the relevant physics that needs to be captured is that at low
peel rates, the adhesive should behave viscous liquid like
while at high-peel velocities, it should behave solid like. Us-
ing the fact that all variables in the k, model already have a
built-in rate dependence on the pull velocity, we eliminate
the explicit time dependence in favor of dynamical variables,
here displacement and velocity of the peel front. Note that
the algorithm combines these two distinct properties into a
single equation.
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Interestingly, the approach introduced is quite general and
offers a platform for investigating rate dependent effects in
other unstable dynamical situations. For instance, one can
adopt this method in generalizing the PLC model [24] where
an explicit applied strain rate dependence has been intro-
duced into the negative strain rate sensitivity of the flow
stress. The method should also be applicable in intermittent
flow observed in wormlike micellar systems [14].

Some comments are in order on the scope of the model.
Comparison with experiments is difficult due to paucity of
experimental results, in particular since most parameters that
in principal can affect the dynamics are kept constant. For
instance, our investigations show that most theoretical pa-
rameters such as the roller inertia, tape mass, visco-elastic
parameters like k,(0), k (), and T, (connected to the com-
plex compliance) that affect the dynamics, are experimen-
tally accessible parameters. However, conventional experi-
ments are performed keeping these parameters fixed [1-3],
presumably as there has been no suggestion that these pa-
rameters would affect the peel dynamics. It would be inter-
esting to test the prediction of the model by altering these
parameters. While changing roller inertia or tape mass is
straight-forward, there is no reference material with respect
which viscoelastic contribution can be evaluated. The best
that can be done is to study the changes in the dynamics by
using tapes manufactured with different adhesives. More-
over, the available experimental results are mostly on acous-
tic emission measured as a function of pull velocity keeping
all other parameters fixed. This was dealt in our earlier pub-
lications [8,9]. Finally, it should be stated that effects arising
from thickness of the adhesive film are beyond the scope of
the model.
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APPENDIX

Consider a system that organizes into a critical state under
driving. Let the size of event denoted by s occur in a duration
T. Then, both these quantities follow a power-law distribu-
tion defined by

P(s) ~ 77, (A1)
P(T) ~ TP, (A2)

The lifetime of an event T is related to its size s by
s~ T (A3)

Clearly, event sizes and their durations are not indepen-
dent and, therefore, all the three exponents are not indepen-
dent. Indeed, a proper statistical description requires that we
use the joint probability density P(s,T)dsdT of having sig-
nals with amplitudes between s and s+ds occurring in a
duration with T and T+dT [34]. Using P(s,T), a scaling

PHYSICAL REVIEW E 82, 016211 (2010)

relation between the three exponents has been derived for the
case when the event sizes and durations exhibit a single scal-
ing regime [34]. Following Ref. [34], we derive scaling re-
lations valid for a two stage power-law distribution.

Given the joint probability density P(s,T), the two mar-
ginal probability densities are given by

Tmax
P(s) =f P(s,T)dT,
Tmin

P(T) = f ™ (5. T)ds. (Ad)

Smin

where Tiaxs Tmins Smax» and sy, are the upper and lower
cutoffs for 7" and s imposed by the particular experimental
setup within, which P(s,T) is normalized, i.e.,

Tmax  (Smax
f J P(s,T)dsdT =1. (A5)

Tmin Smin

For the current situation, we assume
P(T) ~ TPPT) ~ TP——=, A6
( ) C( ) 1+A2T2 ( )
instead of Eq. (A2). Clearly the exponent

B=B, for AT*<1, (A7)

corresponds to the first region of scaling, while for the sec-
ond, we have

Bo=pB+2, for AT>>1.

The above choice [Eq. (A6)] is motivated by some general
considerations. We first note that the distribution must be
well behaved for large 7. Second, the event sizes and their
durations corresponding to the second scaling regime are
likely to be uncorrelated, particularly in time. In the context
of peeling, large acoustic emission bursts require large seg-
ments to be peeled almost simultaneously. Such events are
likely to be well separated in time and therefore such events
are likely to act as independent events. Finally, the functional
form Po(T)~ ﬁ is the well-known Cauchy distribution.
This specific choice is motivated by the fact that the Cauchy
distribution is one of the distributions that reproduces itself
under addition of identically distributed independent random
variables. It is clear that this choice gives the exponent value
~pB for T<<1/A, while for T>1/A, the exponent is close to
2+ . There would be a crossover region around 7=T"
~1/A.

With this, for a two stage scaling regime, we interpret Eq.
(A2) to imply a=q; for the first scaling regime seen at small
values of s and a=a, for second scaling regime of large
values of s. In contrast, we assume a single regime relating
event size s with its duration 7 with a scaling exponent x.

Then, combining Egs. (A2), (A3), and (A6) (with the
above interpretation), a general scaling form for P(s,T) can
be written as,

(A8B)
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P(s,T) = g(s/T")s~°A(T), (A9)

where 6 is an exponent. We assume that the function g(z)
(with z=s/T") is a “well-localized” distribution function with
a maximum around z, and strongly decaying on either side of
Z.

Note that the scaling variable z=s/T" gives a precise defi-
nition for the exponent x. The functions g and f(7) can al-
ways be redefined so that P(s,T)=G(s/T*) ¢(T). In this case,
under the change s —z=s/T" reads

P(T) = §(D) T f el G(z)dz.

Sin/ T

(A10)
On comparing this equation with Eq. (20), we get
TF

~— All
1 +A%T? (ALT)

(1)

Using Eq. (A11), we can rewrite P(s) as

Tnax T‘B‘X
P(s) = G(s/T") ——5=dT. Al2
© f Tonin T (Al2)

Change of variables from s to z=s/T" leads to

(S/ me) 1/x
P(s) = G(2)

(S/Zmax)l/x

S—(B+x— 1 )/XZ—( 1+x)/x

Wdz. (A13)

By limiting the range of integration to appropriate limits, the
equation can be seen to have two regions of scaling. The first
one is for small s

PHYSICAL REVIEW E 82, 016211 (2010)

P(s) ~ s~ ~ s B==Di - for A%(s/7)P¥ <1,

(A14)
which gives

x(1-a)=1-p. (A15)
This is the standard scaling relation when the distribution
exhibits a single power law. For large s, we get

P(s) ~ s~ ~ s B for A2(s/7)2* > 1.

(A16)
which gives

x(ay-1)=B+1, (A17)

with 8=/, corresponding to the first scaling region. It is
important to note that the exponent corresponding to event
size for the second scaling regime «, is completely deter-
mined in terms of the B, of the first stage and x. (Note also
B>=pB;+2.) Further, we stress that the above derivation
makes no reference to slow driving at all. Indeed, in the case
of the PLC effect, the power laws are seen at high-drive rates
much like in hydrodynamics [15,35,36]. In the present case,

power-law distributions are seen at low as well as high-drive
rates.
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