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We investigate the geometric phases and the Bargmann invariants associated with multilevel quantum
systems. In particular, we show that a full set of “gauge-invariant” objects far-tavel system consists of
geometric phases aréin—l)(n—Z) algebraically independent four-vertex Bargmann invariants. In the pro-
cess of establishing this result, we develop a canonical form faj) W{atrices that is useful in its own right.

We show that the recently discovered “off-diagonal” geometric phalsledlanini and F. Pistolesi, Phys. Reuv.
Lett. 8, 3067(2000] can be completely analyzed in terms of the basic building blocks developed in this work.
This result liberates the off-diagonal phases from the assumption of adiabaticity used in arriving at them.

[. INTRODUCTION structed out of two sets of orthonormal basis vectors. We
investigate, in detail, their properties and identify and con-
The notion of geometric phase, though defined originallystruct a full set of gauge-invariant building blocks for the
in the context of adiabatic, unitary, and cyclic evolutidn, n-level system. We also develop a canonical representation
has now come to be recognized as a direct consequence of U(n) matrices and bring out its relation to the Bargmann
the geometry of the complex Hilbert space and that of theénvariants. This representation has recently been shown to be
associated ray spa¢2]. The quantum kinemati2] picture,  extremely useful in parametrizing the Cabibbo-Kobayashi-
which has thus emerged, provides a much wider setting foMaskawa matrix that arises in the context@P violation in
the notion of the geometric phase by rendering superfluouparticle physicg§10].
the various assumptions that attended its original discovery As noted above, the geometric phase becomes undefined
[1] and subsequent developm¢Bt-5]. In particular, the re-  for those open curves in the Hilbert space that have orthogo-
quirement of cyclic evolution is no longer necessary and itnal vectors at their ends. A recent work by Manini and Pis-
becomes possible to ascribe a geometric phase to any opéslesi [11] addresses itself precisely to such exceptional
curve in the Hilbert space that has nonorthogonal unit veceases. Employing the original Berry setting of adiabatic evo-
tors as its end points. Further, following the quantum kinedution for ann-level quantum system, they introduce the con-
matic approach6], one is led in a natural way to the intimate cept of off-diagonal geometric phases that can be meaning-
relationship that exists between the geometric phase and thelly defined in such cases, and showed that these off-
n-vertex Bargmann invarian{§’] and that between the geo- diagonal geometric phases play an essential role in the
metric phase and Hamilton’s theory of turf&. As an ap- interpretation of the findings of a recent experimgif].
plication of this approach, the Gouy phaske phase jump We study the off-diagonal phases of Manini and Pistolesi
experienced by a focused light beam as it crosses the)focuswithin the framework of the quantum kinematic approach
discovered over a hundred years ago, has been shown to bead show that, in actual fact, this approach, if suitably aug-
four-vertex Bargmann invariafg]. mented, is robust enough to accommodate the off-diagonal
In the present work, we develop the quantum kinematigphases as well. A brief outline of this work is as follows. In
approach for the special case of unitary evolution of anSec. Il, we quickly recapitulate the basic ingredients of the
n-level system. It turns out that, in the present context, itquantum kinematic approach to geometric phases in a gen-
becomes necessary to introduce Bargmann invariants coeral setting. In Sec. lll, we specialize the discussion to
n-level systems and construct the gauge-invariant objects for
this case. These turn out to lmegeometric phases and a
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In Sec. IV, we develop a canonical representation fon)U( tional of the ray-space curv€. All three phases are, how-
matrices that is then used in Sec. V for isolating the indepenever,individually reparametrization invariant.
dent four-vertex Bargmann invariants. In Sec. IV, we apply Now we turn to the Bargmann invariants and their con-
the machinery developed in the previous sections to the offaection to geometric phases. Given any sequenae \ac-
diagonal geometric phases and show how they can be eors x1,x2, - - - ,Xn IN B, the corresponding-vertex Barg-
pressed in terms of the ordinary geometric phases and th®ann invariant is
four-vertex Bargmann invariants, thus liberating these phases
from the assumptions of adiabaticity. Section VIl contains  Ap(x1,x2s - - - Xn)=(x1:X2) (X2, x3) - (Xn—1,Xn)
our conclusions.

X(Xn:X1)- )

Il. GEOMETRIC PHASES AND BARGMANN INVARIANTS . . .
Here we assume in the generic case that no two successive

We review very briefly the background and ingredientsvectors in the sequence are mutually orthogonal. It is clear
that go into the definition of the quantum geometric phasghat this expression is invariant under cyclic permutations of
from the kinematic viewpoint and then the Bargmann invari-the x’s, and also under independent phase changes of the
ants and their properties in the generic case. Kebe the individual vectors. Therefore, it is actually a quantity defined
Hilbert space of states of some quantum system anf ket at the ray-space level. It turns out that the phase of

the set of unit vectors ift, An(x1,x2s - - - xn) IS the geometric phase for suitably con-
structed closed ray-space curves obtained by joining gach
B={yeH||¢|*=(¢.¢)=1}CH. (1) to the nexty;,; (and finally x, to x;) by any so-called

“nullphase curve”[6]. A null-phase curve is a continuous
The corresponding ray spadeonsisting of equivalence ray-space curve such that for any finite connected portion of
classes of unit vectors that differ from one another byijt the geometric phase vanishes. That is, “being in phase” in
phasesand projection map are written & and 7, respec-  the Pancharatnam sengks] becomes an equivalence rela-
tively, tion on such curves. Examples of null-phase curves are ray-
) space geodesicéwith respect to the well-known Fubini-
m.  B—R=(space of unit rays (2 study metric[14,15)), but the former are a much larger set

) . .. than the lattef6]. It should be emphasized that whereas the
To arrive at the concept of geometric phase, we begin W'”Bargmann invariant(7) is defined once its “vertices,”

parametrized smoottfor our purposes continuous and once namel e :
. . . X . . y, the projectionsr(x1),7(x2), - . ., m(xn) IN R, are
piecewise differentiab)ecurvesC of unit vectors, which may given, to interpret its phase as a geometric phase requires

be pictured as strings lying if, that we join eachy; to the nexty;, ; in some definite man-
ner, namely, by some null-phase curve, resulting in an
‘* n-sided” closed figure inR.

A gauge transformation is a smooth change of phase in a It can now be seen tha_t as far as phases are concerned, an
parameter-dependent manner at each point of such a curverVertex Bargmann myanant fm;d’, can be reduced to a
to lead to anothe€’ product of A; factors in the generic cag®], so we can

regard the three-vertex Bargmann invariants as the primitive
C'={y (s)=e*Oy(s)|y(s)eCs;<s<s,)CB. (4 ones. For example, we have

C={y(s) e B|s;<s<s,}CB. (3

ThenC'’ andC share a common parametrized image cu@ve As(X1,X2:X3:X4)
in ray space,
Yo = As(x1x2 X3 As(x1 xa X [ (xaxa) | (8)
7[C']=7w[C]=CCR. (5)
and more generally
In general, we permi€ and evenC to be open curves.
The total, dynamical, and geometric phases are then dex,(xq,x2, . .- .xn)
fined as follows as functionals of appropriate arguments: 5
=As(X1:X2:X3) An-1(X1, X3: ¥4 - - x| (X1, x3)|%.

Pl Cl=ard ¥(s)), ()], )
PalCl= |mf32d s( W(s) W) Thus, the geometric phases of ray-space “triangles,” each
dy 5 " ds )’ of whose sides is a null-phase curve, are primitive or irre-

ducible phases, and all others can be built up from them
®gl C1= @10l C1— ¢ayd C1. (6)  additively. The purpose in mentioning this is that in the par-
ticular situation we shall be dealing with later the primitive
While the first two phases are functionalsdodnd do change Bargmann invariants will turn out to bA,’s rather than
under a gauge transformation, the geometric pka$€] is  As's, so that situation will not be generic in the present
gauge invariant, which explains why it is written as a func-sense.



IIl. GAUGE-INVARIANT PHASES vectorsyy, . .. i, and then final ones¢,, ... ,p,. Here
FOR n-LEVEL SYSTEMS we encounter an interesting difference compared to the ge-

We now turn to a study of phases associated witvel neric _sit_uation discusse_d _in the previous _se_ction. Since any
quantum systems. Thus we have radimensional complex wo distinct ¢;’s (and similarly any two distinci;’s) are
Hilbert space,, describing the pure states of the system.orthogonal, in any Bargmann invariad(- - -) an argument
The unit sphere i, and the corresponding space of unit j must be followed by an argumenk, which must be
rays will be denoted by3, andR,,, respectively. follow_ed by some/,, and so on. Similarly, if the f|rs_t argu-

If we imagine that a time-dependent Hamiltoniamqn  Ment is somey, the last one must be somg Thus in the
Hermitian matriy is given, then at each time its complete Present context only even-order Bargmann invariakjs
orthonormal set of eigenvectors defines an orthonormal basf/rvive, a general one being
for H, . Assuming there are no degeneracies or level cross-
ings, the eigenvalues can be arranged in, say, increasing or- AZ/(¢11*¢k1’¢iz*¢kz' T "/’J/*d’k/)
der and at each time this basis fhf, is defined up to the _
freedom of phase changes in each basis vector. As time = (¥, b)) (Bi )
t)igcr)]g.)resses this basis experiences a continuous unitary rota- X (i) - (i ) (i oty ). (1D

In keeping with the approach of the previous section, . -
however, F:/vegwill adopt aplfinematic approl?ach here as weIIWe may now regard the generic case as o'bta|'n|ng. when ev-
and not assume any particular Hamiltonian to be givene.ry inner produ_ct_(_/j by 1S nonzero. I_n this S'tfjat'on we
Thus, we imagine that for each value of a paramsterthe find tha}t the pr|m|t|ve Bargmann invariants afg’s rather
range s;<sss,, we have an orthonormal basig(s), ] thanAg’s, for instance,
=1,2,...nfor H,; and ass evolves this basis experiences
a continuous unitary evolution. Thus we have

Aoty iy Uiy Pry Yo Pic)

(¥(s), ()=, J,k=1.2,...n, = Ay, buy ¥ i)

n X Ag(y,, iy iy i) | (5, 1) 1%, (19)

> (9 Y(9)T=7, s;<s<s,. (10) . _

j=1 and similarly for higher-ordeA,,’'s.

. . From this discussion, it emerges that in the present con-
For ease in writing, we shall denote these vectors at the e”@xt the basic gauge-invariant expressions arentgeomet-

pointss, ands; as follows: ric phasespy[C;] and the various four-vertex Bargmann in-

Ui(s)=1,  Pi(s)=d;. (11) variar?tsA4(zpj1,¢>k1,_¢j2,¢kz). (Here we are using quant_ities
referring to the entire parameter ranggss<s, and to its

Our aim is to obtain gauge-invariant expressions and phasesd points and not to any subrange¥ important problem

in this context. We expect to be able to construct both geothat now remains is to select out of all possillgs a maxi-

metric phaseg[ C] for variousC and Bargmann invariants. mal set of independent ones as far as phases are concerned.

For each value of the indgxass varies froms, to s,, the  For this, as a first step, we turn to an interesting analysis of
vector ¢;(s) traces out a particular continuous parametrizecthe structure of the unitary matrix groups j(
curveC; in By,

IV. A CANONICAL REPRESENTATION FOR U (n)

=1 (s Si<s<s,!Ch,, j=1,2,...n.
C={¥j(s) eBils, 2t C B, | n (12) MATRICES, COUNTING OF INVARIANT PHASES

Referring to Egs.(10) and (11), we have a parameter-
dependenh X n unitary matrix describing the transition from
the initial orthonormal basigy;} for H, at s=s; to the

?dlCi1= @0l Cj1— eayd Ci1, moving basig ;(s)} at a generas,

This curve runs fromy; to ¢;. Its image is 7[C;]
=C;CR, and we haven distinct geometric phases,

el Cil=ard ¥, é)), A(s)=aj(s)eU(n),

S2 di (s
‘der[cj]:mf ds( lﬂj(&%), i=12,...n.
S1

(13 Qjk(S1) = Sk - (16)

aj(s)= (¥, (s)), si1=S<8sy,

Each of these geometric phases is unchanged under arbitrafyf S=3s, we write A(Sy) =A,
alterations in the phase of eaalj(s) at each parameter
values. A=(ajk),
We next turn to the construction of Bargmann invariants,
the vertices of which are taken from theénitial orthonormal aj= (1}, dy)- (17)



The four-vertex Bargmann invariants of the type appearing We now present the argument leading to E2f), yield-
in Eq. (15) are expressions involving products of matrix el- ing in the process the determination&f({). Let a generic

ements ofA and their complex conjugates, matrix A,=(a;) € U(n) be given and let its lastnth) col-
umn be(,
Ay bt Se) = (05 D (S (0, S (bt d
= @%@,/ mam - (18 Qn=¢, =12,...n (21

Our problem is to determine how many algebraically i”de'MuItipIying A, by anA,_; on the right leaves this column
pendentA,’s are there in the generic case insofar as theirunchanged. We choo#g,_; so as to bring thath row of A,
phases are concerned and to find a convenient enumeratig 5 particularly simple forn{for ease in writing we keep

of them. This turns out to be a somewhat intricate problemyging A, and a;, for the U(n) element obtained at each
After some preparation in this section, the solution will be g,ccessive stagjge of the argument

developed in the next one.

In working with nXn unitary matrices it is convenient to a.=0. k=12 n—2
keep in mind the standard basis H,. Then Uf) is the kT e '
group of unitary transformations acting on aldimensions.

Form=1,2,...n—1, we will denote by Utn) the unitary ann-1=real positive= (1 |¢,|*)*2 (22
group acting on the firsin dimensions inH,,, leaving di-

mensionsm+1,m+2, ... n unaffected. Then we have the TheA,_; used here is arbitrary up to a,_, factor on its
inclusion relationgthe canonical subgroup chain right. Having simplified thenth row of A, in this way, we

can determine all the other elements in the-(1)th column
U(1)cU(2)cU(3)---CcU(n—1)CU(n). (19 by imposing orthogonality of rows 1,2..,n—1 to rown,

General matrices of W(),U(n—1), ... will be written as ann-18j0-1=— 8¢, i=12,...n-1. (23
Ap A1, - .. . In a matrixA,,e U(m), the last i—m)
rows and columns are trivial, with ones along the diagona
and zeros elsewheré@/Nhen no confusion is likely to arise,
A, will also denote an unborderadxX m unitary matrix)

IAt this point the last two columns and the last row/Aqf are
known in terms of¢.

We will now show by a recursive argument thatmost We next use the freedom in choice &f,—; mentioned
all) elementsA, e U(n) can be expressed uniquelymagold ~ above and multiplyA, on the right by a suitable\,_,
products, (unigue up to am\,_ 5 onitsright) to bring the o —1)th row

of A, to a particularly simple form,
An=An(DAN-1(MAR-2(E) - - Az(B)Ax(a)As(X), (20
- - - - a,-1x=0, k=12,...n-3,
where A,(¢{) is a special Uf) element determined by an
n-component complex unit vectdre B,,; A,_1(7) is a spe- a,_1,_o=real positive. (24)
cial U(n—1) element determined by am{ 1)-component
complex unit vectom € B,_1; and so on down té\,(a) that  Normalizing this row gives,_1,_»,

is a special U(2) element determined by a two-component

complex unit vector € B, andA;(x) is a phase factor be- ann-18n-1n-2=(1=[Ln|*={n-1|HM2 (25
longing to U1). We are led texpect such a representation

for A, by the following argument. Any vectafe 3, can be  Next we determine all the remaining elements in time (

carried by a suitable W) element into theath vector of the ~ —2)th column of A, by imposing orthogonality of rows
standard basis, (0,0. .,0,1)" and the stability group of this 1.2, ...n—2 to row (n—1),

vector is the subgroup WE1)CU(n) acting on the first

(n—1) dimensions irf{, . Thus U(n) acts transitively o3, aﬁ’n_lan,lin,zaj,nﬂ: —§;‘_1§j . J=12,...n=-2.

and this is just the coset spacerl)(U(n—1). Each coset is (26)
thus uniquely labeled by somie= B,,. We, therefore, expect

that a generalA,eU(n) is expressible as the product At this point the last three columns and last two rowsAqf
An(O)An_; Where{ is the last column i, andA,(¢) isa  are known in terms of.

suitably chosen coset representative. Repeating this argu- ThiS argument can be repeated all the way until we obtain
ment (1—1) times we are led to expect the representatior MatrixAn(¢) € U(n), all of whose elements are determined
(20). The counting of parameters is also just right. Rememby the nth column{, namely, it serves as a coset represen-

bering thate, 8, ... .¢,7,{ are complex unit vectors of di- tative in the coset space b)/U(n—1). (In particular, the
mensions 2,3... ,n—2n—1n and adding the U(1) phase last U(1) elemenf(x) is used to makey,, real positive.
x, the number of real independent parameters adds np,to After some algebra, we obtain the result that the matrix

the dimension of Ug). An(g):ajk(g) is uniquely determined by the conditions



a(£)=0, j=k+2,
aj,j,1(§)=real positive, j=2,3,...n,
1,2,...n.

an()=ln, j= (27)

An:An(é/;Z]uga s ,§.Q,X)=An(§)An_1,
An—l:An—l( Z]!?! s !E:gv)()' (31)

We are now interested in the following operation: suppose
we premultiply and post multiplyA,, by two independent

ThusAn(g) has vanishing matrix elements in the lower left diagonal elements of W) (a “gauge transformation” of
hand triangular portion up to two steps below the main diagA,),
onal, nonzero matrix elements appear only one step below

the main diagonal, and beyond. The explicit expressions for

the nonzero matrix elements are
ajj-1(H=pj-1lp;, 1=23,...n,

aj k(§)= =1l prprrr,  <ks=n—1,

an()=¢n, i=12,...0,

pi=(GlP+] L+ -+ 512

=(1=1galP=1gal? = =DM (29
Since the quantitiep; obey
p1=|l1l<po<ps<---<p,1=p,=1, (29

it is evident that this determination @&,({) goes through

with no problems as long a§; is nonzero, i.e.p;>0.
It may be helpful to give the expressions fén(a)

An—A'=D (01,05, ... ,00)ADN6], 05, ....00),

Dp(01,05, ...,0,)=diage'%,e'% . . ¢e%) (32

We would like to know: how many independent invariants
can we construct out &k, under these transformations, how
many of them are phases, and how can they be captured
through four-vertex Bargmann invariants? In the case of the
matrix A of Eqg. (17) the transformation(32) amounts to

changing the phase of eagh and eachg, independently,
l//], — e*i (‘}j IJIJ ,
dp=ekey,

aj,k: ei(ej + Gli)ajk , (33)

and we seek an independent set of invariant expressions of

e U(2),A3(B) e U(3) determined in this way, so as to see the form(18).

the general pattern,

—a;al
@1 2 2
Aya)=| el . lag*+]az*=1, (309
|a1| ap
-B3B1 —B3B1
B1
P1P2 P2
As(B) = -B3B ,
o8 p1/p2 372 B,
p2
0 P2 B3

| B1l?+|Bal?+ B3| ?=1,

p1=|B1l, p2=(1-1B3HY2 (30b)

First we count the expected numbers of invariants of each
kind. The real dimension of W) is n?. The number of in-
dependen®¥’s and #'’s in [Eq. (32)] is (2n—1) because an
overall constant phase can be attributed to either the left or
the right diagonal factor. Therefore, the number of real in-
variants is 6—1)2. In the description(31) of a generalA,

e U(n), it is clear that undefEq. (32)] every component of
each of ¢,8, ..., just undergoes a phase change, so

the quantities|ay|,[B1],1Bal, - - - [{al\| o, - - - | dn-a] are
in(n—1) real independent modulus-type invariants. Thus

there must be a balance §tn—1)(n—2) real independent
phase-type invariants. This is in agreement with known re-
sults[16].

We shall describe in the next section a recursive proce-
dure by which we can pick odt(n—1)(n—2) algebraically
independent four-vector Bargmann invariants whose phases
are the expected phase invariants associated with a general
U(n) matrix.

We notice in passing that these are not elements of SU(2)

and SU(3) respectively.

Going back to the proof of Eq20), we see that it can be

recursively established, ang,«,8, ....& n,{ supply us
with exactly n? real independent pérém_eters fax, .
Of these, the 3n(n—1) independent
laal | Bal|Bal, - - [ZallEal, - .. [£a-a| are of the modulus

V. DETERMINATION OF INDEPENDENT
BARGMANN INVARIANTS

We first describe how, in a recursive manner, we can iso-

quantities late the expected3(n—1)(n—2) independent gauge-

invariant phases for a geneig, e U(n) using the parametri-

type and then there aen(n+1) independent phases. We zation(20), and then turn to the choice of an equal number of

can display a general elemef e U(n) [in particular,A of
Eqg. (17)] in the self-evident forms

independent primitive Bargmann invariamis.
We begin with Eqs(20) and (31),



An:An(g)An—li

An-1= A 4( ?)Anfz(:é) - Ax(a)Aq(x)

:An*l( Z?l?! e !g!X)v (34)

apply diagonal matrices on the left and on the right as in Eq.

(32), and trace the changes that occurliand inA,_ 1,

A;]:Dn(el,az, ..
=An(£’)Ar'1_l.

O0)ADL(61,65, . ...,0))

(39

Our aim is to computé’ andA/ _; . Since theD, factors are
quite elementary, this can be carried through as follows:

A=D(01,6, ... ﬁn)An(g)An—an(ailgéa 6p)
=Dn(01,02, . .. ,00)An(§)An-1Dn(0,0, . .. ,06;)
XD,(01,605, ...,0,_1,0
=Dy(61,62, .- - ,60)ANLDA(O, . .. 000 A, 1
XDy_1(01,05, ....,00_1). (36
The product of the first three factors simplifies as
D,(61,05, ... ,Hn)An(g)Dn(O, ...,00))
=Dn(61,62, . ...0,)(@5(£))Dn(0,0, ... gr)
=bj(2),
bin(£)=¢f =€y,
bjk(g):eiﬁiajk(g), k=1,2,...n—1. (37

Here the matrix elemenaajk(g) are given in Eq(28) and for

simplicity the 6 and 6" dependences dfj, are left implicit.
In particular, as in Eq(27),

bi({)=0, k=12,...j-2; j=34,...n, (39

while

bj,j_1(§):eigjaj’j_1(§):eiajpj_1/pj y j:2,3, R n
(39

Thus the matrixbjk(Q would have beerajk(g’) except for

the fact that the elements ;_;({) just below the main di-

agonal are not real positive but carry phases. But this can be R /21
easily taken care of by extracting a suitably chosen diagonal

matrix on the right,

bik(£)=(@jk({"))Dn( 02,03, ... ,6n,0). (40)

The point is that, according to the statement accompanying
Eq. (27), after removal of this diagonal factor what remains
is necessarilyA,({") =a;k({"). Combining the above steps

we get

Ar=AnEDAL
=(O({)AN-1Dn-1(01,65, ... .04 1)
=An({)Dn(65,05, .- . 60,0)
X An_1Dn1(6L,605, .. .0 1), (41)

so the changes induced fnand inA,_; by the gauge trans-
formation (35) are

(=W, j=12,...p, (423
[,1_1:Dn_1(02,03, e ,Hn)An_an_l(ﬁi,Gé, e ,0;1_1).
(42b

We see from the structure of this result that we can tackle our
problem recursively. The gauge transformati@) at the
U(n) level translates into the chande- ¢’ given by Eq.

(429 and a gauge transformatio!kh_1_eA,’1_1 at the U
—1) level given by Eq(42b). Therefore, all gauge-invariant
expressions that exist at tifg,_; or U(n—1) level survive
when we move from U§—1) to U(n) and in addition as the
vector { € B, becomes available, new invariant phases in-
volving ¢ can be constructed. The number of the latter can be
immediately computed: it is the difference betwegm
—1)(n—2) and3(n—2)(n—3), namely, the difference be-
tween the numbers of gauge-invariant phases at timg &iid
the U(h—1) levels, and this isn(—2). Therefore, the num-
ber of new independent phase invariants involvilig (),
i.e.,, in an essential way must ba{2). These can now be

isolated or explicitly constructed as follows.
From Eq.(42) we notice thatd; and 6, appears only in
the transformation law fo¢, not for A,,_;. Therefore, we

first form the f—1) independent combinatiorﬁ* {j+1 10
eliminate 6;, completely:

{ea—exd—i(0— 0,018 {1, j=12,...n—1.

(43
Here 6, occurs only in the transformation law fd# ¢,, be-
ing absent as we have just mentioned in the lawAgr ;.
Next, we notice that the phasés,6, ... .6, _,, involved
in A/_,, are completely absent in the transformation law
(43) of £ ¢j+1. Let us, therefore, look at then¢-1)th col-
umn, say, ofA,_4, which, as is evident from Eq34), is just
the (n—1) component complex unit vectoye B,,_;:

(44)
Tn-1

0
72 0
0
0 0 1



The “earlier” columns ofA,,_; are more complicated, as is involving some two adjacent rows and some two adjacent
clear from the structure ok,_, in Eq.(34). From Eqg.(42b  columns. This is to be understood modulo real positive defi-
we can read off the transformation law for ths under the  nite factors coming from the squared moduli of some of the
gauge transformatio(B5): matrix elements ofA,. The two “recursion formulas” that
help us achieve this simplification are
" @l (010, ) i— .. .n—1.
n=e AR n-t 49 Aj km=Aj km- 1Aj/m—1m/|aj,m—la/,m—1|21
To eliminated,,_; we form the o—2) combinationsy, nj*ﬂ :Aj/flkmA/fl/km”a/fl,ka/fl,m|2- (51)
that transform thus,
. i . . It, therefore, suffices to work with then(-1)? expressions
N7 +1—€ i(60)+2 J+1)7]j7,j+1, i=1,2,...n—2. (46
Ap=apadf 1 @111 ka1, 1,k=12,...n=1, (52
Comparing Eqgs(43) and (46) we immediately obtain the
expected 11— 2) independentphase-typginvariants involv-  and their phases. Our goal now is(&i least in principle and
ing £ € B,, in an essential manner, namely, they can be takein the generic situationexpress(the phases ofthe 3(n

to be the complex quantities —1)(n—2) complex invariant$48) in terms of(the phases
of) the (n—1)? complex invariant$52). (In this process any
001l 182, 1512, 02, (47)  humber of real positive factors may intervenklere we al-

ready have an indication that the< 1)? expressiong52)

By recursion the complete set ¢{n—1)(n—2) indepen- (more exactly their phasp€annot all be independent, the

dent phase-type invariants that can be formed from a generigumber of independent ones being oglfn—1)(n—2). It
matrix A, e U(n) can be written down in terms of the ca- Will turn out, as we indicate below, that these may be taken

nonical parametrizatiof20) for A,, and the list reads to be theAyy for j<k<n-—1. Again the proof is recursive in
nature.
ajaf, 1B 1Bjr2, J=1, Consider the f—1) invariants(47) that get added to all
previous ones when we make the transitionnt(l)
ﬁjﬁf+17r+17j+2, =12, —U(n) and bring in the vectol e B,. Instead of being

expressed in terms of and ne B,,_1, we now show that
they can be equally well expressed in terms{oand the

. % 19 _3 penultimate, i.e.,i{— 1)th column of the complet_e W) ma-
§i§ivam+ai+a, J=12,...n=3, trix A,. Let us denote this column vector hye B,; it is
) orthogonal to. As noted earlier, it is easily determined in
i1l 1o, 1=1,2,...n—2. (49 = . .
P+ L5I+1=] terms of¢ and » or, more conveniently for our purposs,is
While here we have an explicit solution to our problem, expressible in terms ok and{. Starting with
the difficulty is that these invariants are not directly ex-
pressed in terms of the matrix elements Af=(aj) S e W g
U(n). It is true that in our parametrizatiof is the last,
e U(n) p 0@ A=l o o Wy G =An(§)An—1(Z])An—2a

nth, column ofA,; but the previous, {—1)t column in- Wy ¢
volves bothy and{; the (n—2)th column involves, », and no=n (53)

£, and so on. The task that remains is to see how to translate

the expressiong48), as far as their phases are concerned@nd transposing,({) we get
into an algebraically equivalent set é{n—1)(n—2) ex-

pressions formed as simply as possible out of the matrix An-1(mAL2=An({) A, (54)
elements ofA,. We turn to this now, bringing in the four-
vertex Bargmann invariants &, . Since the factoA,,_,, does not affect the last two columns

As indicated in Eq(18), a general four-vertex Bargmann on both sides, we can use the matrix eleméd® and (28)
invariant requires the choice of some two rows, saypd/  of Ay({) to obtain
with j </, and some two columns, s&yandm with k<m,

and use of the four matrix elements at their intersections, if1 pi
”i:k:;z ayj(9)*wy= o Wi
Ajkm= 2@,/ mly - (49) 2,... i1
) j
ot 5 ganraA e o et of taciors ot the SEELS pw, j=12,..0-10 69
that a general; ., reduces to a product of factors of the PjPj+1 k=1

simpler form, . . .
The gauge transformation laws dfand » are given in Egs.

A=A 1kkr1 (50) (429 and(45), while that ofw is seen from Eq(35) to be



wi—eGith-dw,,  j=1,2,...p. (56)

Naturally the relationg55) are consistent with these trans-

formation laws. The combinations af and{ needed in47)
are 7;{f,, for j=1,2,...n—1. We see from Eq(55)

that they are real linear combinations  of
W1§I 1W2§§ 3 e an—1§:—1!Wn§: ’
|§'+1|2 j Pj
* J * J *
UISTe Gwit === Wiealfer. (57)
I pipy e &0y IR

Using both the orthogonality off and ¢, and the reduction

procesg51) for A,'s formed out of the last two columns of

A, itis now clear that the set of complex invariafdg) can
be replaced by the following set oh{2)A,’s:

A]Yn,]_:WJé’TWTJrlZJJrl, J:1,2,n_2 (58)
The known algebraic independence of the (@& implies a
similar independence of thegg,’s.

To tackle the next set of n-3) invariants
gjnj*ﬂgj?*ﬂnﬁz for j=1,2,...n—3 in the list (48), we
must bring in the §—2)th column of the matripd,,. Denote
this by v € B,, so that

vy Wi 4
vy W2 >
A= S (59
Un Wn &n
Analogous to Eq(54) we now have
An-2(E)An-3=An_ 1) AL A, (60)

from where we get expressions f§rin terms of{, 5, and v
This is naturally more complicated than E&5) at the pre-
vious stage. In place of the real positive factpysiefined in

terms of{ in Eq. (28), we now have similarly defined factors

aj in terms of» occurring in the elements &, (7). The

result of comparing then—2)th columns of both sides of

Eq. (60) is
j+1

§j+22 g”’/‘v/
/=1

__TiPi+1 o

+2
Jj+1Pj+2 ]

Tj+1Pj+1Pj+2

i
L S
Oj0j+1 k=1 Pk+1 KTkt
* k
Mj+1 7 Lk+1 S o .
v, =1,2,...n—2.
Tj0j+1 k=1 PkPk+1 /=1 svse
(61)

Here next we can use E5) to go from z to w. Then we

form the expressions; 77]-*+1 and step by step work our way
up to the invariantstj 7", 1€, 17+ 2. We can then see that

apart from various real factors we encoundgfs involving

v’s, andw’s, v's and{’s, andw’s and{’s. Using the reduc-
tion rules(51) the v — ¢ combinations can be eliminated in
favor of the other two types. It is now clear that apart from
theA; ,_, in Eq. (58) that appeared at the previous stage, the
new quantities that come in now afg , ,. But we know in
advance that at this stage onlg-{3) new independent in-
variants are available. As all the rows Af, are on equal
footing, we conclude that the ne,’s to be added now to
the previousd; ,_; may be taken to be

— * _ %
Ajn-2= VWi Ui Wi,

i=12,...(n=3). (62

In this manner, one sees recursively that #e—1)(n
—2) independent gauge-invariant phases in a general matrix
Ane U(n) are the Bargmann invariantsy for j <ks=n-1.

In any case such a choice is permitted. However, the actual
algebraic expression of a generg| in terms of this special
subset may be rather involved, so one may freely usA;ll

in constructing interesting gauge-invariant expressions with
various properties.

The upshot of these considerations is that the naturally
available gauge-invariant phases for the continuous unitary
evolution of ann-level quantum system, barring degenera-
cies and level crossings, aregeometric phasegy[C;] as
defined in Eq.(13), and the —1)? primitive four-vertex
Bargmann invariantd; of Eq. (52); of the latter, only the
%(n—l)(n—Z)Ajk’s for j<k=n—1 are independent. Any
composite expression formed out of these ingredients is, of
course, also invariant.

VI. OFF-DIAGONAL GEOMETRIC PHASES

It is evident from the definitiong6) that while the dy-
namical phasepy,C] is always numerically well defined
once the parametrized curwe is given, the total phase
¢t C] is only defined modulo 2 and, moreover, is unde-
fined if the vectors/(s;) and (s,) at the end points of
are orthogonal. These properties naturally carry over to the
geometric phasegy[ C]: only defined modulo z, undefined
when ¢ C] is undefined. The Bargmann invariai® too
share these problems of definition as far as their phases are
concerned, which explains the limitation to generic situa-
tions.

Recently a very interesting attempt to define so-called off-
diagonal geometric phases has been made to cover just these
exceptional or problematic situatiof$l]. Specifically, the
idea is to set up gauge-invariant phases associated with the
unitary evolution of am-level quantum system, which re-
main well defined even when one of the eigenvectors of the
Hamiltonian at a final timeé,, say thekth one, happens to
coincide with thejth eigenvector at the initial timg;, with
j#k. In this situation, asj;(t,) and i, (t,) are the same up
to a phase, both the geometric phaggfC;] and ¢4 Cy]
become undefined since the inner produafs(t,), #;(t,)]
and[ ¥, (tq), ¥ (t,)] vanish. We shall now briefly recall the
basic quantities introduced in this new approach and then
show that the usual geometric phases and Bargmann invari-
ants as defined earlier can completely handle the new situa-
tion. It is just that they must be put together in such combi-



nations so that the potentially undefined factors in eachhere are compensating factors fraxn(; , bk, ., p;) that

precisely cancel one another in exceptional situations.
The notation for the evolution of amlevel quantum sys-

precisely cancel these parts of the individual geometric
phases, so thag;, remains unambiguous. The mechanism is

tem is as given in Sec. lll. The quantities defined in thesimilar in the case of the higher-order expreSSi¢p§2.“j/-

off-diagonal geometric phases method, when expressed
our notations, are

li=exp{—iegd Gl j=12,...n, (639
oic=expli arg ¥; , ¢) —iead G}, j#Kk, (63b
Yik=0T0kj, JFK, (630
yi=expligg[C;l}, j=1.2,...n. (63d

Of these,l; and oy are not gauge invariant, by, and vy;
are gauge invariant. In case for sometk we have
[(¢;,¢)|=1, it is clear that bothpy[C;] and ¢4[ Ci] be-
come undefined, but the “off-diagonal” quantity;, remains
well defined.

The two-state or two-index quantity;, has been gener-
alized to a multi-index quantity of ordef as follows:
(64)

Yidig i, = 9iada%iaia™ " i i T

and this again is gauge invariant.

in It has been shown that"ljzu.j/ for /=4 can be reduced

to the expressions with’'=2 and /=3, so these are the
primitive ones. Among these, we can limit ourselves to
choices obeying,<j, when/'=2 andj;=1<j,<j; when
/=3, in counting independent quantities. However, the up-
shot of our analysis is that we can always work with just the
geometric phasegy[ C;] and the independeX,’s listed in

the previous sectioftbut for convenience employ all thi,

if necessary. All gauge-invariant quantities can be built up
out of them, so that conceptually the off-diagonal geometric
phases are constructed out of previously known familiar
building blocks.

VII. CONCLUDING REMARKS

We have carried out a complete analysis of the gauge-
invariant objects fom-level quantum systems. This entails
introduction of Bargmann invariants defined over two sets of
orthonormal basis vectors, demonstration that the primitive
Bargmann invariants are four-vertex Bargmann invariants,
and finally the identification of an algebraically independent

We can now see that all these newly introduced gaugeset of four-vertex Bargmann invariants that turn out to be

invariant off-diagonal quantities/jk,yjljz__.j/ are actually

(n—=1)(n—2)/2 in number. In the process of achieving this

expressible completely in terms of the geometric phases antédsk we developed a canonical form for ij(matrices in

Bargmann invariants for the-level system, in carefully cho-
sen combinations,

Yik=expli argA4 (¥, by, i, ¢j) Tieg Cil1+i@g[ Cil },
Vigiy i, = EXP AQAL (b Uy, iy Uiy - - ¥ )
+i¢g[Cj1]+icpg[Cj2]+ e +i<pg[cj/]}.
(65)

In the case ofy;, for example, we see that when
[(¢;,¢)|=1 and ¢4[Cj], @4[Ck] become undefined be-
cause the total phases,{C;] and ¢{C,] are undefined,

terms of a sequence of complex unit vectors of dimensions
n,n—1, ... ,lwhich may be useful in other contexts as well.
Indeed, this form has already found application in param-
etrizing the CKM matrices that arise in the context@P
violation in particle physics. The gauge-invariant building
blocks constructed here are shown to provide a complete
quantum kinematic picture of the recently discovered off-
diagonal phases. The usefulness of the off-diagonal phases is
thus extended far beyond the restrictive framework of adia-
batic evolution. This reinforces the view that the Bargmann
invariants and the traditional geometric phases, and suitably
constructed combinations of them, suffice in answering all
interesting questions in this domain.
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