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We investigate the geometric phases and the Bargmann invariants associated with multilevel quantum
systems. In particular, we show that a full set of ‘‘gauge-invariant’’ objects for ann-level system consists ofn
geometric phases and12 (n21)(n22) algebraically independent four-vertex Bargmann invariants. In the pro-
cess of establishing this result, we develop a canonical form for U(n) matrices that is useful in its own right.
We show that the recently discovered ‘‘off-diagonal’’ geometric phases@N. Manini and F. Pistolesi, Phys. Rev.
Lett. 8, 3067~2000!# can be completely analyzed in terms of the basic building blocks developed in this work.
This result liberates the off-diagonal phases from the assumption of adiabaticity used in arriving at them.
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I. INTRODUCTION

The notion of geometric phase, though defined origina
in the context of adiabatic, unitary, and cyclic evolution@1#,
has now come to be recognized as a direct consequenc
the geometry of the complex Hilbert space and that of
associated ray space@2#. The quantum kinematic@2# picture,
which has thus emerged, provides a much wider setting
the notion of the geometric phase by rendering superflu
the various assumptions that attended its original discov
@1# and subsequent development@3–5#. In particular, the re-
quirement of cyclic evolution is no longer necessary and
becomes possible to ascribe a geometric phase to any
curve in the Hilbert space that has nonorthogonal unit v
tors as its end points. Further, following the quantum kin
matic approach@6#, one is led in a natural way to the intima
relationship that exists between the geometric phase and
n-vertex Bargmann invariants@7# and that between the geo
metric phase and Hamilton’s theory of turns@8#. As an ap-
plication of this approach, the Gouy phase~the phase jump
experienced by a focused light beam as it crosses the foc!,
discovered over a hundred years ago, has been shown to
four-vertex Bargmann invariant@9#.

In the present work, we develop the quantum kinema
approach for the special case of unitary evolution of
n-level system. It turns out that, in the present context
becomes necessary to introduce Bargmann invariants
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structed out of two sets of orthonormal basis vectors.
investigate, in detail, their properties and identify and co
struct a full set of gauge-invariant building blocks for th
n-level system. We also develop a canonical representa
of U(n) matrices and bring out its relation to the Bargma
invariants. This representation has recently been shown t
extremely useful in parametrizing the Cabibbo-Kobayas
Maskawa matrix that arises in the context ofCP violation in
particle physics@10#.

As noted above, the geometric phase becomes undefi
for those open curves in the Hilbert space that have ortho
nal vectors at their ends. A recent work by Manini and P
tolesi @11# addresses itself precisely to such exceptio
cases. Employing the original Berry setting of adiabatic e
lution for ann-level quantum system, they introduce the co
cept of off-diagonal geometric phases that can be mean
fully defined in such cases, and showed that these
diagonal geometric phases play an essential role in
interpretation of the findings of a recent experiment@12#.

We study the off-diagonal phases of Manini and Pistol
within the framework of the quantum kinematic approa
and show that, in actual fact, this approach, if suitably a
mented, is robust enough to accommodate the off-diago
phases as well. A brief outline of this work is as follows.
Sec. II, we quickly recapitulate the basic ingredients of
quantum kinematic approach to geometric phases in a g
eral setting. In Sec. III, we specialize the discussion
n-level systems and construct the gauge-invariant objects
this case. These turn out to ben geometric phases and
collection of four-vertex Bargmann invariants. Next we co
sider the problem of counting, leading to identification of
set of independent Bargmann invariants. This necessitat
detailed analysis of the structure of the U(n) matrix group.
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In Sec. IV, we develop a canonical representation for Un)
matrices that is then used in Sec. V for isolating the indep
dent four-vertex Bargmann invariants. In Sec. IV, we ap
the machinery developed in the previous sections to the
diagonal geometric phases and show how they can be
pressed in terms of the ordinary geometric phases and
four-vertex Bargmann invariants, thus liberating these pha
from the assumptions of adiabaticity. Section VII conta
our conclusions.

II. GEOMETRIC PHASES AND BARGMANN INVARIANTS

We review very briefly the background and ingredien
that go into the definition of the quantum geometric pha
from the kinematic viewpoint and then the Bargmann inva
ants and their properties in the generic case. LetH be the
Hilbert space of states of some quantum system and letB be
the set of unit vectors inH,

B5$cPHuici25~c,c!51%,H. ~1!

The corresponding ray space~consisting of equivalence
classes of unit vectors that differ from one another
phases! and projection map are written asR andp, respec-
tively,

p:#B→R5~space of unit rays!. ~2!

To arrive at the concept of geometric phase, we begin w
parametrized smooth~for our purposes continuous and on
piecewise differentiable! curvesC of unit vectors, which may
be pictured as strings lying inB,

C5$c~s!PBus1<s<s2%,B. ~3!

A gauge transformation is a smooth change of phase
parameter-dependent manner at each point of such a cuC
to lead to anotherC 8,

C 85$c8~s!5eia(s)c~s!uc~s!PC,s1<s<s2%,B. ~4!

ThenC 8 andC share a common parametrized image curveC
in ray space,

p@C 8#5p@C#5C,R. ~5!

In general, we permitC and evenC to be open curves.
The total, dynamical, and geometric phases are then

fined as follows as functionals of appropriate arguments:

w tot@C#5arg@c~s1!,c~s2!#,

wdyn@C#5ImE
s1

s2
dsS c~s!,

dc~s!

ds D ,

wg@C#5w tot@C#2wdyn@C#. ~6!

While the first two phases are functionals ofC and do change
under a gauge transformation, the geometric phasewg@C# is
gauge invariant, which explains why it is written as a fun
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tional of the ray-space curveC. All three phases are, how
ever, individually reparametrization invariant.

Now we turn to the Bargmann invariants and their co
nection to geometric phases. Given any sequence ofn vec-
tors x1 ,x2 , . . . ,xn in B, the correspondingn-vertex Barg-
mann invariant is

Dn~x1 ,x2 , . . . ,xn![~x1 ,x2!~x2 ,x3!•••~xn21 ,xn!

3~xn ,x1!. ~7!

Here we assume in the generic case that no two succes
vectors in the sequence are mutually orthogonal. It is cl
that this expression is invariant under cyclic permutations
the x ’s, and also under independent phase changes of
individual vectors. Therefore, it is actually a quantity defin
at the ray-space level. It turns out that the phase
Dn(x1 ,x2 , . . . ,xn) is the geometric phase for suitably co
structed closed ray-space curves obtained by joining eacx j
to the nextx j 11 ~and finally xn to x1) by any so-called
‘‘nullphase curve’’ @6#. A null-phase curve is a continuou
ray-space curve such that for any finite connected portion
it the geometric phase vanishes. That is, ‘‘being in phase
the Pancharatnam sense@13# becomes an equivalence rel
tion on such curves. Examples of null-phase curves are
space geodesics~with respect to the well-known Fubini
study metric@14,15#!, but the former are a much larger s
than the latter@6#. It should be emphasized that whereas t
Bargmann invariant~7! is defined once its ‘‘vertices,’’
namely, the projectionsp(x1),p(x2), . . . ,p(xn) in R, are
given, to interpret its phase as a geometric phase requ
that we join eachx j to the nextx j 11 in some definite man-
ner, namely, by some null-phase curve, resulting in
‘‘ n-sided’’ closed figure inR.

It can now be seen that as far as phases are concerne
n-vertex Bargmann invariant forn>4 can be reduced to a
product of D3 factors in the generic case@2#, so we can
regard the three-vertex Bargmann invariants as the primi
ones. For example, we have

D4~x1 ,x2 ,x3 ,x4!

5D3~x1 ,x2 ,x3!D3~x1 ,x3 ,x4!/u~x1 ,x3!u2, ~8!

and more generally

Dn~x1 ,x2 , . . . ,xn!

5D3~x1 ,x2 ,x3!Dn21~x1 ,x3 ,c4 , . . . ,xn!/u~x1 ,x3!u2.

~9!

Thus, the geometric phases of ray-space ‘‘triangles,’’ e
of whose sides is a null-phase curve, are primitive or ir
ducible phases, and all others can be built up from th
additively. The purpose in mentioning this is that in the p
ticular situation we shall be dealing with later the primitiv
Bargmann invariants will turn out to beD4’s rather than
D3’s, so that situation will not be generic in the prese
sense.
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III. GAUGE-INVARIANT PHASES
FOR n-LEVEL SYSTEMS

We now turn to a study of phases associated withn-level
quantum systems. Thus we have ann-dimensional complex
Hilbert spaceHn describing the pure states of the syste
The unit sphere inHn and the corresponding space of un
rays will be denoted byBn andRn , respectively.

If we imagine that a time-dependent Hamiltonian (n3n
Hermitian matrix! is given, then at each time its comple
orthonormal set of eigenvectors defines an orthonormal b
for Hn . Assuming there are no degeneracies or level cro
ings, the eigenvalues can be arranged in, say, increasin
der and at each time this basis forHn is defined up to the
freedom of phase changes in each basis vector. As
progresses this basis experiences a continuous unitary
tion.

In keeping with the approach of the previous sectio
however, we will adopt a kinematic approach here as w
and not assume any particular Hamiltonian to be giv
Thus, we imagine that for each value of a parameters in the
range s1<s<s2, we have an orthonormal basisc j (s), j
51,2, . . . ,n for Hn ; and ass evolves this basis experience
a continuous unitary evolution. Thus we have

„c j~s!,ck~s!…5d jk , j ,k51,2, . . . ,n,

(
j 51

n

c j~s!c j~s!†5I, s1<s<s2 . ~10!

For ease in writing, we shall denote these vectors at the
pointss1 ands2 as follows:

c j~s1!5c j , c j~s2!5f j . ~11!

Our aim is to obtain gauge-invariant expressions and ph
in this context. We expect to be able to construct both g
metric phaseswg@C# for variousC and Bargmann invariants

For each value of the indexj, ass varies froms1 to s2, the
vectorc j (s) traces out a particular continuous parametriz
curveCj in Bn ,

Cj5$c j~s!PBnus1<s<s2%,Bn , j 51,2, . . . ,n.
~12!

This curve runs fromc j to f j . Its image is p@Cj #
5Cj,Rn and we haven distinct geometric phases,

wg@Cj #5w tot@Cj #2wdyn@Cj #,

w tot@Cj #5arg~c j ,f j !,

wdyn@Cj #5ImE
s1

s2
dsS c j~s!,

dc j~s!

ds D , j 51,2, . . . ,n.

~13!

Each of these geometric phases is unchanged under arb
alterations in the phase of eachc j (s) at each paramete
values.

We next turn to the construction of Bargmann invarian
the vertices of which are taken from then initial orthonormal
.
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vectorsc1 , . . . ,cn and then final onesf1 , . . . ,fn . Here
we encounter an interesting difference compared to the
neric situation discussed in the previous section. Since
two distinct c j ’s ~and similarly any two distinctf j ’s! are
orthogonal, in any Bargmann invariantDn(•••) an argument
c j must be followed by an argumentfk , which must be
followed by somec l , and so on. Similarly, if the first argu
ment is somec, the last one must be somef. Thus in the
present context only even-order Bargmann invariantsD2l

survive, a general one being

D2l ~c j 1
,fk1

,c j 2
,fk2

, . . . ,c j l
,fkl

!

5~c j 1
,fk1

!~fk1
,c j 2

!

3~c j 2
,fk2

!•••~c j l
,fkl

!~fkl
,c j 1

!. ~14!

We may now regard the generic case as obtaining when
ery inner product (c j ,fk) is nonzero. In this situation we
find that the primitive Bargmann invariants areD4’s rather
thanD3’s, for instance,

D6~c j 1
,fk1

,c j 2
,fk2

,c j 3
,fk3

!

5D4~c j 1
,fk1

,c j 2
,fk2

!

3D4~c j 1
,fk2

,c j 3
,fk3

!/u~c j 1
,fk2

!u2, ~15!

and similarly for higher-orderD2l ’s.
From this discussion, it emerges that in the present c

text the basic gauge-invariant expressions are then geomet-
ric phaseswg@Cj # and the various four-vertex Bargmann in
variantsD4(c j 1

,fk1
,c j 2

,fk2
). ~Here we are using quantitie

referring to the entire parameter ranges1<s<s2 and to its
end points and not to any subranges.! An important problem
that now remains is to select out of all possibleD4’s a maxi-
mal set of independent ones as far as phases are conce
For this, as a first step, we turn to an interesting analysis
the structure of the unitary matrix groups U(n).

IV. A CANONICAL REPRESENTATION FOR U „n…
MATRICES, COUNTING OF INVARIANT PHASES

Referring to Eqs.~10! and ~11!, we have a parameter
dependentn3n unitary matrix describing the transition from
the initial orthonormal basis$c j% for Hn at s5s1 to the
moving basis$c j (s)% at a generals,

A~s!5ajk~s!PU~n!,

ajk~s!5„c j ,ck~s!…, s1<s<s2 ,

ajk~s1!5d jk . ~16!

At s5s2 we write A(s2)5A,

A5~ajk!,

ajk5~c j ,fk!. ~17!
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The four-vertex Bargmann invariants of the type appear
in Eq. ~15! are expressions involving products of matrix e
ements ofA and their complex conjugates,

D4~c j ,fk ,c l ,fm!5~c j ,fk!~fk ,c l !~c l ,fm!~fm ,c j !

5ajkal k* al majm* . ~18!

Our problem is to determine how many algebraically ind
pendentD4’s are there in the generic case insofar as th
phases are concerned and to find a convenient enumer
of them. This turns out to be a somewhat intricate proble
After some preparation in this section, the solution will
developed in the next one.

In working with n3n unitary matrices it is convenient t
keep in mind the standard basis inHn . Then U(n) is the
group of unitary transformations acting on alln dimensions.
For m51,2, . . . ,n21, we will denote by U(m) the unitary
group acting on the firstm dimensions inHn , leaving di-
mensionsm11,m12, . . . ,n unaffected. Then we have th
inclusion relations~the canonical subgroup chain!

U~1!,U~2!,U~3!•••,U~n21!,U~n!. ~19!

General matrices of U(n),U(n21), . . . will be written as
An ,An21 , . . . . In a matrix AmPU(m), the last (n2m)
rows and columns are trivial, with ones along the diago
and zeros elsewhere.~When no confusion is likely to arise
Am will also denote an unborderedm3m unitary matrix.!

We will now show by a recursive argument that~almost
all! elementsAnPU(n) can be expressed uniquely asn-fold
products,

An5An~z!An21~h!An22~j!•••A3~b!A2~a!A1~x!, ~20!

where An(z) is a special U(n) element determined by a
n-component complex unit vectorzI PBn ; An21(hI ) is a spe-

cial U(n21) element determined by an (n21)-component
complex unit vectorhI PBn21; and so on down toA2(aI ) that

is a special U(2) element determined by a two-compon
complex unit vectoraI PB2 andA1(x) is a phase factor be
longing to U(1). We are led toexpect such a representatio
for An by the following argument. Any vectorzI PBn can be

carried by a suitable U(n) element into thenth vector of the
standard basis, (0,0, . . . ,0,1)T and the stability group of this
vector is the subgroup U(n21),U(n) acting on the first
(n21) dimensions inHn . Thus U(n) acts transitively onBn
and this is just the coset space U(n)/U(n21). Each coset is
thus uniquely labeled by somezI PBn . We, therefore, expec

that a generalAnPU(n) is expressible as the produ
An(zI )An21 wherezI is the last column inAn andAn(zI ) is a

suitably chosen coset representative. Repeating this a
ment (n21) times we are led to expect the representat
~20!. The counting of parameters is also just right. Reme
bering thataI ,bI , . . . ,jI ,hI ,zI are complex unit vectors of di

mensions 2,3, . . . ,n22,n21,n and adding the U(1) phas
x, the number of real independent parameters adds up ton2,
the dimension of U(n).
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We now present the argument leading to Eq.~20!, yield-
ing in the process the determination ofAn(zI ). Let a generic

matrix An5(ajk)PU(n) be given and let its last (nth! col-
umn bezI ,

ajn5z j , j 51,2, . . . ,n. ~21!

Multiplying An by anAn21 on the right leaves this column
unchanged. We chooseAn21 so as to bring thenth row of An
to a particularly simple form~for ease in writing we keep
using An and ajk for the U(n) element obtained at eac
successive stage of the argument!,

ank50, k51,2, . . . ,n22,

an,n215real positive5~12uznu2!1/2. ~22!

The An21 used here is arbitrary up to anAn22 factor on its
right. Having simplified thenth row of An in this way, we
can determine all the other elements in the (n21)th column
by imposing orthogonality of rows 1,2, . . . ,n21 to row n,

an,n21aj ,n2152zn* z j , j 51,2, . . . ,n21. ~23!

At this point the last two columns and the last row ofAn are
known in terms ofzI .

We next use the freedom in choice ofAn21 mentioned
above and multiplyAn on the right by a suitableAn22
~unique up to anAn23 on its right! to bring the (n21)th row
of An to a particularly simple form,

an21,k50, k51,2, . . . ,n23,

an21,n225real positive. ~24!

Normalizing this row givesan21,n22,

an,n21an21,n225~12uznu22uzn21u2!1/2. ~25!

Next we determine all the remaining elements in then
22)th column of An by imposing orthogonality of rows
1,2, . . . ,n22 to row (n21),

an,n21
2 an21,n22aj ,n2252zn21* z j , j 51,2, . . . ,n22.

~26!

At this point the last three columns and last two rows ofAn
are known in terms ofzI .

This argument can be repeated all the way until we obt
a matrixAn(zI )PU(n), all of whose elements are determine

by the nth columnzI , namely, it serves as a coset represe

tative in the coset space U(n)/U(n21). ~In particular, the
last U(1) elementA1(x) is used to makea21 real positive!.
After some algebra, we obtain the result that the ma
An(zI )5ajk(zI ) is uniquely determined by the conditions
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of
ajk~zI !50, j >k12,

aj , j 21~zI !5real positive, j 52,3, . . . ,n,

ajn~zI !5zn , j 51,2, . . . ,n. ~27!

ThusAn(zI ) has vanishing matrix elements in the lower le

hand triangular portion up to two steps below the main di
onal, nonzero matrix elements appear only one step be
the main diagonal, and beyond. The explicit expressions
the nonzero matrix elements are

aj , j 21~zI !5r j 21 /r j , j 52,3, . . . ,n,

aj ,k~zI !52zk11* z j /rkrk11 , j <k<n21,

ajn~zI !5zn , j 51,2, . . . ,n,

r j5~ uz1u21uz2u21•••1uz j u2!1/2

5~12uz j 11u22uz j 12u22•••2uznu2!1/2. ~28!

Since the quantitiesr j obey

r15uz1u<r2<r3<•••<rn21<rn51, ~29!

it is evident that this determination ofAn(zI ) goes through

with no problems as long asz1 is nonzero, i.e.,r1.0.
It may be helpful to give the expressions forA2(aI )

PU(2),A3(bI )PU(3) determined in this way, so as to se
the general pattern,

A2~aI !5S 2a2* a1

ua1u
a1

ua1u a2

D , ua1u21ua2u251, ~30a!

A3~bI !5S 2b2* b1

r1r2

2b3* b1

r2

b1

r1 /r2
2b3* b2

r2

b2

0 r2 b3

D ,

ub1u21ub2u21ub3u251,

r15ub1u, r25~12ub3u2!1/2. ~30b!

We notice in passing that these are not elements of SU
and SU(3),respectively.

Going back to the proof of Eq.~20!, we see that it can be
recursively established, andx,aI ,bI , . . . ,jI ,hI ,zI supply us

with exactly n2 real independent parameters forAn .
Of these, the 1

2 n(n21) independent quantitie
ua1u,ub1u,ub2u, . . . ,uz1u,uz2u, . . . ,uzn21u are of the modulus
type and then there are12 n(n11) independent phases. W
can display a general elementAnPU(n) @in particular,A of
Eq. ~17!# in the self-evident forms
-
w
r

2)

An5An~zI ,hI ,jI , . . . ,bI ,aI ,x!5An~zI !An21 ,

An215An21~hI ,jI , . . . ,bI ,aI ,x!. ~31!

We are now interested in the following operation: suppo
we premultiply and post multiplyAn by two independent
diagonal elements of U(n) ~a ‘‘gauge transformation’’ of
An),

An→An85Dn~u1 ,u2 , . . . ,un!AnDn~u18 ,u28 , . . . ,un8!,

Dn~u1 ,u2 , . . . ,un!5diag~eiu1,eiu2, . . . ,eiun!. ~32!

We would like to know: how many independent invarian
can we construct out ofAn under these transformations, ho
many of them are phases, and how can they be capt
through four-vertex Bargmann invariants? In the case of
matrix A of Eq. ~17! the transformation~32! amounts to
changing the phase of eachc j and eachfk independently,

c j85e2 iu jc j ,

fk85eiuk8fk ,

ajk8 5ei (u j 1uk8)ajk , ~33!

and we seek an independent set of invariant expression
the form ~18!.

First we count the expected numbers of invariants of e
kind. The real dimension of U(n) is n2. The number of in-
dependentu ’s andu8’s in @Eq. ~32!# is (2n21) because an
overall constant phase can be attributed to either the lef
the right diagonal factor. Therefore, the number of real
variants is (n21)2. In the description~31! of a generalAn
PU(n), it is clear that under@Eq. ~32!# every component of
each of aI ,bI , . . . ,zI just undergoes a phase change,

the quantitiesua1u,ub1u,ub2u, . . . ,uz1u,uz2u, . . . ,uzn21u are
1
2 n(n21) real independent modulus-type invariants. Th
there must be a balance of1

2 (n21)(n22) real independen
phase-type invariants. This is in agreement with known
sults @16#.

We shall describe in the next section a recursive pro
dure by which we can pick out12 (n21)(n22) algebraically
independent four-vector Bargmann invariants whose pha
are the expected phase invariants associated with a ge
U(n) matrix.

V. DETERMINATION OF INDEPENDENT
BARGMANN INVARIANTS

We first describe how, in a recursive manner, we can i
late the expected 1

2 (n21)(n22) independent gauge
invariant phases for a genericAnPU(n) using the parametri-
zation~20!, and then turn to the choice of an equal number
independent primitive Bargmann invariantsD4.

We begin with Eqs.~20! and ~31!,
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An5An~zI !An21 ,

An215An21~hI !An22~jI !•••A2~aI !A1~x!

5An21~hI ,jI , . . . ,aI ,x!, ~34!

apply diagonal matrices on the left and on the right as in
~32!, and trace the changes that occur inzI and inAn21,

An85Dn~u1 ,u2 , . . . ,un!AnDn~u18 ,u28 , . . . ,un8!

5An~z8!An218 . ~35!

Our aim is to computezI 8 andAn218 . Since theDn factors are

quite elementary, this can be carried through as follows:

An85Dn~u1 ,u2 , . . . ,un!An~zI !An21Dn~u18 ,u28 , . . . ,un8!

5Dn~u1 ,u2 , . . . ,un!An~zI !An21Dn~0,0, . . . ,0,un8!

3Dn~u18 ,u28 , . . . ,un218 ,0!

5Dn~u1 ,u2 , . . . ,un!An~zI !Dn~0, . . . ,0,un8!An21

3Dn21~u18 ,u28 , . . . ,un218 !. ~36!

The product of the first three factors simplifies as

Dn~u1 ,u2 , . . . ,un!An~zI !Dn~0, . . . ,0,un8!

5Dn~u1 ,u2 , . . . ,un!„ajk~zI !…Dn~0,0, . . . ,un8!

5bjk~zI !,

bjn~zI !5z j85ei (u j 1un8)z j ,

bjk~zI !5eiu jajk~zI !, k51,2, . . . ,n21. ~37!

Here the matrix elementsajk(zI ) are given in Eq.~28! and for

simplicity theu andu8 dependences ofbjk are left implicit.
In particular, as in Eq.~27!,

bjk~zI !50, k51,2, . . . ,j 22; j 53,4, . . . ,n, ~38!

while

bj , j 21~zI !5eiu jaj , j 21~zI !5eiu jr j 21 /r j , j 52,3, . . . ,n.

~39!

Thus the matrixbjk(zI ) would have beenajk(zI 8) except for

the fact that the elementsbj , j 21(zI ) just below the main di-

agonal are not real positive but carry phases. But this ca
easily taken care of by extracting a suitably chosen diago
matrix on the right,

bjk~zI !5„ajk~zI 8!…Dn~u2 ,u3 , . . . ,un,0!. ~40!
.

be
al

The point is that, according to the statement accompany
Eq. ~27!, after removal of this diagonal factor what remai
is necessarilyAn(zI 8)5ajk(zI 8). Combining the above step

we get

An85An~zI 8!An218

5„bjk~zI !…An21Dn21~u18 ,u28 , . . . ,un218 !

5An~zI 8!Dn~u2 ,u3 , . . . ,un,0!

3An21Dn21~u18 ,u28 , . . . ,un218 !, ~41!

so the changes induced inzI and inAn21 by the gauge trans

formation ~35! are

z j85ei (u j 1un8)z j , j 51,2, . . . ,n, ~42a!

An218 5Dn21~u2 ,u3 , . . . ,un!An21Dn21~u18 ,u28 , . . . ,un218 !.

~42b!

We see from the structure of this result that we can tackle
problem recursively. The gauge transformation~35! at the
U(n) level translates into the changezI→zI 8 given by Eq.

~42a! and a gauge transformationAn21→An218 at the U(n
21) level given by Eq.~42b!. Therefore, all gauge-invarian
expressions that exist at theAn21 or U(n21) level survive
when we move from U(n21) to U(n) and in addition as the
vector zI PBn becomes available, new invariant phases

volving zI can be constructed. The number of the latter can

immediately computed: it is the difference between1
2 (n

21)(n22) and 1
2 (n22)(n23), namely, the difference be

tween the numbers of gauge-invariant phases at the U(n) and
the U(n21) levels, and this is (n22). Therefore, the num-
ber of new independent phase invariants involvingAn(zI ),

i.e.,zI , in an essential way must be (n22). These can now be

isolated or explicitly constructed as follows.
From Eq.~42! we notice thatu1 and un8 appears only in

the transformation law forzI , not for An21. Therefore, we

first form the (n21) independent combinationsz j* z j 11 to
eliminateun8 completely:

z j* z j 11→exp@2 i ~u j2u j 11!#z j* z j 11 , j 51,2, . . . ,n21.

~43!

Hereu1 occurs only in the transformation law forz1* z2, be-
ing absent as we have just mentioned in the law forAn21.
Next, we notice that the phasesu18 ,u28 , . . . ,un218 , involved
in An218 , are completely absent in the transformation la
~43! of z j* z j 11. Let us, therefore, look at the (n21)th col-
umn, say, ofAn21, which, as is evident from Eq.~34!, is just
the (n21) component complex unit vectorhI PBn21:

An215S . . . . . . h1 0

. . . . . . h2 0

. . . . . . hn21 0

0 . . . 0 1

D . ~44!
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The ‘‘earlier’’ columns ofAn21 are more complicated, as i
clear from the structure ofAn21 in Eq. ~34!. From Eq.~42b!
we can read off the transformation law for theh ’s under the
gauge transformation~35!:

h j85ei (u j 111un218 )h j , j 51,2, . . . ,n21. ~45!

To eliminateun218 we form the (n22) combinationsh jh j 11*
that transform thus,

h jh j 11* →e2 i (u j 122u j 11)h jh j 11* , j 51,2, . . . ,n22. ~46!

Comparing Eqs.~43! and ~46! we immediately obtain the
expected (n22) independent~phase-type! invariants involv-
ing zI PBn in an essential manner, namely, they can be ta

to be the complex quantities

h jh j 11* z j 11* z j 12 , j 51,2, . . . ,n22. ~47!

By recursion the complete set of1
2 (n21)(n22) indepen-

dent phase-type invariants that can be formed from a gen
matrix AnP U(n) can be written down in terms of the ca
nonical parametrization~20! for An , and the list reads

a ja j 11* b j 11* b j 12 , j 51,

b jb j 11* g j 11* g j 12 , j 51,2,

]

j jj j 11* h j 11* h j 12 , j 51,2, . . . ,n23,

h jh j 11* z j 11* z j 12 , j 51,2, . . . ,n22. ~48!

While here we have an explicit solution to our proble
the difficulty is that these invariants are not directly e
pressed in terms of the matrix elements ofAn5(ajk)
PU(n). It is true that in our parametrizationzI is the last,

nth, column of An ; but the previous, (n21)t column in-
volves bothhI andzI ; the (n22)th column involvesjI ,hI , and

zI , and so on. The task that remains is to see how to trans

the expressions~48!, as far as their phases are concern
into an algebraically equivalent set of1

2 (n21)(n22) ex-
pressions formed as simply as possible out of the ma
elements ofAn . We turn to this now, bringing in the four
vertex Bargmann invariants ofAn .

As indicated in Eq.~18!, a general four-vertex Bargman
invariant requires the choice of some two rows, sayj and l
with j ,l , and some two columns, sayk andm with k,m,
and use of the four matrix elements at their intersections

Dj l km[ajkal k* al majm* . ~49!

But as far as phases go, we can see in a step by step ma
that a generalDj l km reduces to a product of factors of th
simpler form,

Djk[Dj , j 11,k,k11 , ~50!
n
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involving some two adjacent rows and some two adjac
columns. This is to be understood modulo real positive d
nite factors coming from the squared moduli of some of
matrix elements ofAn . The two ‘‘recursion formulas’’ that
help us achieve this simplification are

Dj l km5Dj l km21Dj l m21m /uaj ,m21al ,m21u2,

5Dj l 21kmDl 21l km /ual 21,kal 21,mu2. ~51!

It, therefore, suffices to work with the (n21)2 expressions

Djk5ajkaj 11,k* aj 11,k11aj ,k11* , j ,k51,2, . . . ,n21, ~52!

and their phases. Our goal now is to~at least in principle and
in the generic situation! express~the phases of! the 1

2 (n
21)(n22) complex invariants~48! in terms of~the phases
of! the (n21)2 complex invariants~52!. ~In this process any
number of real positive factors may intervene!. Here we al-
ready have an indication that the (n21)2 expressions~52!
~more exactly their phases! cannot all be independent, th
number of independent ones being only1

2 (n21)(n22). It
will turn out, as we indicate below, that these may be tak
to be theDjk for j ,k<n21. Again the proof is recursive in
nature.

Consider the (n21) invariants~47! that get added to al
previous ones when we make the transition U(n21)
→U(n) and bring in the vectorzI PBn . Instead of being

expressed in terms ofzI and hI PBn21, we now show that

they can be equally well expressed in terms ofzI and the

penultimate, i.e., (n21)th column of the complete U(n) ma-
trix An . Let us denote this column vector bywI PBn ; it is
orthogonal tozI . As noted earlier, it is easily determined

terms ofzI andhI or, more conveniently for our purpose,hI is

expressible in terms ofwI andzI . Starting with

An5S ••• ••• w1 z1

••• ••• w2 z2

••• ••• wn zn

D 5An~zI !An21~hI !An22 ,

~53!

and transposingAn(zI ) we get

An21~hI !An225An~zI !†An . ~54!

Since the factorAn22, does not affect the last two column
on both sides, we can use the matrix elements~27! and~28!
of An(zI ) to obtain

h j5 (
k51,2, . . .

j 11

ak j~zI !* wk5
r j

r j 11
wj 11

2
z j 11

r jr j 11
(
k51

j

z j* wj , j 51,2, . . . ,n21. ~55!

The gauge transformation laws ofzI andhI are given in Eqs.

~42a! and ~45!, while that ofwI is seen from Eq.~35! to be
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wj→ei (u j 1un218 )wj , j 51,2, . . . ,n. ~56!

Naturally the relations~55! are consistent with these tran
formation laws. The combinations ofhI andzI needed in~47!

are h jz j 11* for j 51,2, . . . ,n21. We see from Eq.~55!
that they are real linear combinations
w1z1* ,w2z2* , . . . ,wn21zn21* ,wnzn* ,

h jz j 11* 52
uz j 11u2

r jr j 11
(
k51

j

z j* wj1
r j

r j 11
wj 11z j 11* . ~57!

Using both the orthogonality ofwI and zI , and the reduction

process~51! for D4’s formed out of the last two columns o
An , it is now clear that the set of complex invariants~47! can
be replaced by the following set of (n22)D4’s:

Dj ,n215wj •z j* wj 11* z j 11 , j 51,2, . . . ,n22. ~58!

The known algebraic independence of the set~47! implies a
similar independence of theseD4’s.

To tackle the next set of (n23) invariants
j jh j 11* j j 11* h j 12 for j 51,2, . . . ,n23 in the list ~48!, we
must bring in the (n22)th column of the matrixAn . Denote
this by vI PBn so that

An5S • • • v1 w1 z1

• • • v2 w2 z2

• • • ] ] ]

• • • vn wn zn

D . ~59!

Analogous to Eq.~54! we now have

An22~jI !An235An21~hI !†An~zI !†An , ~60!

from where we get expressions forj j in terms ofz, h, and vI.
This is naturally more complicated than Eq.~55! at the pre-
vious stage. In place of the real positive factorsr j defined in
terms ofzI in Eq. ~28!, we now have similarly defined factor

s j in terms ofhI occurring in the elements ofAn21(hI ). The

result of comparing the (n22)th columns of both sides o
Eq. ~60! is

j j5
s jr j 11

s j 11r j 12
v j 122

s j

s j 11r j 11r j 12
z j 12 (

l 51

j 11

z l* v l

2
h j 11

s js j 11
(
k51

j
rk

rk11
hk* vk11

1
h j 11

s js j 11
(
k51

j hk* zk11

rkrk11
(

l 51

k

z l* v l , j 51,2, . . . ,n22.

~61!

Here next we can use Eq.~55! to go fromhI to wI . Then we

form the expressionsj jh j 11* and step by step work our wa
up to the invariantsj jh j 11* j j 11* h j 12. We can then see tha
apart from various real factors we encounterD4’s involving
v ’s, andw’s, v ’s andz ’s, andw’s andz ’s. Using the reduc-
tion rules ~51! the v2z combinations can be eliminated i
favor of the other two types. It is now clear that apart fro
theDj ,n21 in Eq. ~58! that appeared at the previous stage,
new quantities that come in now areDj ,n22. But we know in
advance that at this stage only (n23) new independent in-
variants are available. As all the rows ofDn are on equal
footing, we conclude that the newD4’s to be added now to
the previousDj ,n21 may be taken to be

Dj ,n225v jwj* v j 11* wj 11 , j 51,2, . . . ,~n23!. ~62!

In this manner, one sees recursively that the1
2 (n21)(n

22) independent gauge-invariant phases in a general m
AnPU(n) are the Bargmann invariantsDjk for j ,k<n21.
In any case such a choice is permitted. However, the ac
algebraic expression of a generalDjk in terms of this special
subset may be rather involved, so one may freely use allDjk
in constructing interesting gauge-invariant expressions w
various properties.

The upshot of these considerations is that the natur
available gauge-invariant phases for the continuous uni
evolution of ann-level quantum system, barring degener
cies and level crossings, aren geometric phaseswg@Cj # as
defined in Eq.~13!, and the (n21)2 primitive four-vertex
Bargmann invariantsDjk of Eq. ~52!; of the latter, only the
1
2 (n21)(n22)Djk’s for j ,k<n21 are independent. Any
composite expression formed out of these ingredients is
course, also invariant.

VI. OFF-DIAGONAL GEOMETRIC PHASES

It is evident from the definitions~6! that while the dy-
namical phasewdyn@C# is always numerically well defined
once the parametrized curveC is given, the total phase
w tot@C# is only defined modulo 2p and, moreover, is unde
fined if the vectorsc(s1) and c(s2) at the end points ofC
are orthogonal. These properties naturally carry over to
geometric phasewg@C#: only defined modulo 2p, undefined
whenw tot@C# is undefined. The Bargmann invariants~7! too
share these problems of definition as far as their phases
concerned, which explains the limitation to generic situ
tions.

Recently a very interesting attempt to define so-called o
diagonal geometric phases has been made to cover just
exceptional or problematic situations@11#. Specifically, the
idea is to set up gauge-invariant phases associated with
unitary evolution of ann-level quantum system, which re
main well defined even when one of the eigenvectors of
Hamiltonian at a final timet2, say thekth one, happens to
coincide with thej th eigenvector at the initial timet1, with
j Þk. In this situation, asc j (t1) andck(t2) are the same up
to a phase, both the geometric phaseswg@Cj # and wg@Ck#
become undefined since the inner products@c j (t1),c j (t2)#
and @ck(t1),ck(t2)# vanish. We shall now briefly recall the
basic quantities introduced in this new approach and t
show that the usual geometric phases and Bargmann in
ants as defined earlier can completely handle the new s
tion. It is just that they must be put together in such com
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nations so that the potentially undefined factors in e
precisely cancel one another in exceptional situations.

The notation for the evolution of ann-level quantum sys-
tem is as given in Sec. III. The quantities defined in t
off-diagonal geometric phases method, when expresse
our notations, are

I j5exp$2 iwdyn@Cj #%, j 51,2, . . . ,n, ~63a!

s jk5exp$ i arg~c j ,fk!2 iwdyn@Ck#%, j Þk, ~63b!

g jk5s jksk j , j Þk, ~63c!

g j5exp$ iwg@Cj #%, j 51,2, . . . ,n. ~63d!

Of these,I j ands jk are not gauge invariant, butg jk andg j
are gauge invariant. In case for somej Þk we have
u(c j ,fk)u51, it is clear that bothwg@Cj # and wg@Ck# be-
come undefined, but the ‘‘off-diagonal’’ quantityg jk remains
well defined.

The two-state or two-index quantityg jk has been gener
alized to a multi-index quantity of orderl as follows:

g j 1 j 2••• j l
5s j 1 j 2

s j 2 j 3
•••s j l 21 j l

s j l j 1
, ~64!

and this again is gauge invariant.
We can now see that all these newly introduced gau

invariant off-diagonal quantitiesg jk ,g j 1 j 2••• j l
are actually

expressible completely in terms of the geometric phases
Bargmann invariants for then-level system, in carefully cho
sen combinations,

g jk5exp$ i argD4~c j ,fk ,ck ,f j !1 iwg@Cj #1 iwg@Ck# %,

g j 1 j 2 . . . j l
5exp$ i argD2l ~f j 1

,c j 1
,f j 2

,c j 2
, . . . ,f j l

,c j l
!

1 iwg@Cj 1
#1 iwg@Cj 2

#1•••1 iwg@Cj l
#%.

~65!

In the case of g jk , for example, we see that whe
u(c j ,fk)u51 and wg@Cj #, wg@Ck# become undefined be
cause the total phasesw tot@Cj # and w tot@Ck# are undefined,
r
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there are compensating factors fromD4(c j ,fk ,ck ,f j ) that
precisely cancel these parts of the individual geome
phases, so thatg jk remains unambiguous. The mechanism
similar in the case of the higher-order expressionsg j 1 j 2••• j l

.

It has been shown thatg j 1 j 2••• j l
for l >4 can be reduced

to the expressions withl 52 and l 53, so these are the
primitive ones. Among these, we can limit ourselves
choices obeyingj 1, j 2 whenl 52 andj 151, j 2, j 3 when
l 53, in counting independent quantities. However, the u
shot of our analysis is that we can always work with just t
geometric phaseswg@Cj # and the independentD4’s listed in
the previous section~but for convenience employ all theDjk
if necessary!. All gauge-invariant quantities can be built u
out of them, so that conceptually the off-diagonal geome
phases are constructed out of previously known fami
building blocks.

VII. CONCLUDING REMARKS

We have carried out a complete analysis of the gau
invariant objects forn-level quantum systems. This entai
introduction of Bargmann invariants defined over two sets
orthonormal basis vectors, demonstration that the primit
Bargmann invariants are four-vertex Bargmann invarian
and finally the identification of an algebraically independe
set of four-vertex Bargmann invariants that turn out to
(n21)(n22)/2 in number. In the process of achieving th
task we developed a canonical form for U(n) matrices in
terms of a sequence of complex unit vectors of dimensi
n,n21, . . . ,1which may be useful in other contexts as we
Indeed, this form has already found application in para
etrizing the CKM matrices that arise in the context ofCP
violation in particle physics. The gauge-invariant buildin
blocks constructed here are shown to provide a comp
quantum kinematic picture of the recently discovered o
diagonal phases. The usefulness of the off-diagonal phas
thus extended far beyond the restrictive framework of ad
batic evolution. This reinforces the view that the Bargma
invariants and the traditional geometric phases, and suita
constructed combinations of them, suffice in answering
interesting questions in this domain.
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