
Ravi S. Nanjundiah* and U. N. Sinha†

*Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India

†Flosolver Unit, National Aerospace Laboratories, Kodihalli Campus, Bangalore 560 017, India

In this note, we discuss the relevance and impact of a software engineering effort at NAL on the forecast
model in operation at the National Centre for Medium Range Weather Forecasting (NCMRWF). The code
has been re-written exploiting the features of Fortran 90. As a direct consequence of appropriate
reengineering efforts on the code, it is both easy to comprehend and modify. The reengineered code is
appreciably shorter (number of lines in the code reduced by 55%) and can run on a variety of computing
platforms including a PC, without the need for any further modifications to the code.

A General Circulation Model (GCM) used for numerical weather prediction is among the most
complex computer codes from the view-point of mathematics as well as software engineering.
Mathematically, a GCM encompasses an ensemble of sub-models to describe various physical
processes (as different as radiation and turbulence) that occur simultaneously within the
atmosphere. From the view-point of software engineering, all these diverse sub-models need
to be integrated correctly and perform in unison to generate a forecast. Therefore, numerical
weather prediction (with the associated atmospheric modelling) has been considered as one of
the grand challenge problems for high performance computing. Hence it is not surprising that
all over the world, the most powerful computers have always been used by weather
forecasting centres. Most weather forecasting software codes presently in use were originally
developed in the mid 1980s when memory and computational power were at a premium,
compilers were not as highly developed as the present day ones and software engineering
(with emphasis on ease of usage) was not considered a major issue. The emphasis therefore
was on exploiting the power of the then available high performance computing platforms. Most
present-day weather forecasting codes have evolved from those developed in the 1980s and
still retain most features of their original codes from a software engineering view-point. In the
process, such codes used for weather forecasting lack transparency and are very cryptic and
difficult to comprehend, thus making modification and experimentation extremely difficult. This
has resulted in numerical modelling of the atmosphere to become the exclusive domain of a
few select centres worldwide (and even fewer within the country). However, with the improved
power of microprocessors, the evolution of more powerful programming languages and a
better appreciation of modern software engineering techniques, it is feasible to reengineer this
traditional high performance computing application to make the code more comprehensible,
facilitate research and development and to exploit the burgeoning power of microprocessors.
In this note we discuss the impact of applying modern software engineering practices to
GCMs, with specific reference to the GCM used by the National Centre for Medium Range
Weather Forecasting (NCMRWF), New Delhi.

The model used at NCMRWF has a spectral resolution of T-80 (eighty modes with triangular
truncation) and has 18 levels in the vertical. It integrates the equations of mass, momentum
and energy conservation (in addition to equations specifying boundary conditions) to generate

forecasts for the entire globe. Details of this model are discussed in by Kalnay et al.1. It was
provided to the National Aerospace Laboratories (NAL), Bangalore, in 1993, as part of a
national initiative on use of parallel computers for weather forecasting. The original code was

Impact of modern software engineering practices on the
capabilities of an atmospheric general circulation model

successfully implemented in the parallel mode on the Flosolver Mk3 (ref. 2). Subsequently,
another version of the model was successfully implemented on the SP2 parallel computer in
the Super computer Education and Research Centre (SERC) at the Indian Institute of Science

(IISc)3 and successfully used in a climate mode (i.e. for simulations extending over time period
of several years).

During these efforts it was strongly felt that the code lacked transparency and was very difficult
to comprehend and experiment with, and therefore not suitable as a research tool. This lead to
a major effort in re-engineering of the code exploiting features of Fortran 90 (ref. 4).

The objectives of the reengineering project were: (i) to make the code transparent and easy to
comprehend and modify; and (ii) to remove limitations of coding practices due to Fortran 77 by
rewriting it in Fortran 90.

The procedure followed to attain these objectives can be broadly summarized as follows:

1. Redundant code was removed, especially in the repetitive application of the same code
for computing different quantities.

2. Common blocks, the bane of traditional Fortran programming were eliminated. Memory
allocation for global variables was made modular.

3. For optimal memory utilization, the Fortran 90 features of dynamic allocation and
deallocation of memory, and pointers (not available with older versions of Fortran) were
exploited.

4. Iterative statements using hard-coded numbers (for specifying the range) were replaced
with statements incorporating variables/parameters as the range-specifiers.

5. Conditional statements (IF and GO TO) were simplified. An example of the differences
between old and new codes is shown in Appendix A.

6. Names of variables/routines were made transparent and comprehensible so that their
functionality becomes clear. The older version of the code used the older Fortran
standard of utilizing only seven characters to identify a variable which resulted in the
variable/procedure names to be terse and cryptic. A typical example of this is given in
Table 1.

The same array (SYN) was used for divergence, temperature and log(surface pressure). In the
new version of the code, the names have been made more descriptive. The new name
Di_Fourier clearly suggests that this variable is used for storing divergence in the Fourier–
latitude space.

As a result of this effort, the rewritten code reduced from 40,000 lines to 18,000 lines. This
reduction occurred due to the fact that similar (but not identical) computations (such as
summation of spectral coefficients, etc.) were conducted in several routines. Due to the
reengineering efforts, these could be consolidated into fewer routines and the size of the code
was thus reduced. The modular structure of memory assignment also helped in shrinking the
size of the code.

The reengineered code should have a significant impact on the atmospheric modelling. The

significant implications are:

� We have a code that is completely portable across platforms. The reengineered code
has been successfully tested on diverse platforms such as the IBM RS6000/595 (the
basic processor for the IBM SP2), the MIPS R10000 (the processor used in SGI Origin)
and a PC based on Pentium II. It is noteworthy that no changes were required in the
code to run on any of these platforms.

� Using PCs, almost any college or university can now offer training in numerical weather
modelling. Therefore, the lack of computational infrastructure will no longer be a major
bottleneck for manpower training. As a consequence a larger pool of trained manpower
can be generated.

Table 1. Comparison of names of variables in the old and new versions
of the
code

Old name New name

SYN Di_Fourier

SYN Te_Fourier

SYN Q_Fourier

� We have a powerful research tool. Unlike the older version of the NCMRWF model, the
reengineered code is easy to comprehend and modify. The resolution can be changed by
changing just three lines in a single memory module. In contrast, the original NCMRWF
model required more than hundred changes in different segments of the code (and one
could not still be sure that all the required changes had been incorporated). Additionally,
the hard-coding in spectral transform computations made it almost impossible to increase
resolution. On the contrary, the reengineered code can now be used for weather
forecasting (high resolution, short integrations), climate modelling and simulation
(medium resolution, long integrations) and can be an ideal ‘hands on’ tool in classroom
teaching (very low resolutions).

� Ease of modification can facilitate research by different groups with diverse interests and
seamlessly incorporate improvements into the code. In the Indian context, this could
mean more cost-effective research in the field of monsoon modelling and simulation.
Simulation of monsoon is considered to be one of the major challenging problems for
GCMs, as no model has been able to capture all the features of the monsoon even on

the seasonal scale5. Improving the monsoon simulation would require researchers from
diverse fields such as radiation, turbulence and boundary layer modelling and numerical
methods to incorporate their contributions to the model. The present reengineered model
would be an ideal vehicle for such experimentation.

In conclusion, it appears that, if used properly, the reengineered code holds out the prospect of

revolutionizing the way atmospheric modelling is conducted within the country.

Appendix A

An example of replacement of the old code by a more readable and transparent code is given below.

Old code:

DO 100 I = 1, IX

DW(I)=max(RWFL*SOLWT(I),0.)

DW(I)=min(DW(I),1.)

IF (SLMSK(I).NE.1.0) THEN

DW(I) = 1.0

ENDIF

IF((SLMSK(I).EQ.1.0).AND.(SNOCOV(I).GT.0.0)) THEN

DW(I) = 1.0

ENDIF

100 CONTINUE

New code:

Dw(:)=Rwfl*Solwt(:)

Where(Dw(:) < 0.0)Dw(:)=0.0

Where(Dw(:) > 1.0)Dw(:)=1.0

Where(Slmsk(:) /= 1.0)Dw(:)=1.0

Where(Slmsk(:)==1.0 .And. Snocov > 0.0)Dw(:)=1.0

Another example where GO TO statments were removed leading to a greater transparency of the code was in the
calculations of model dates (this small piece of code had 13 GO TO statements). The old and new versions of the
code are shown below.

Old code:

IYEAR=IYR

NDAY=JD-JDOR

IF(FJD.GE..5 E 0) NDAY=NDAY+1

61 IF(NDAY.LT.1462) GO TO 62

NDAY=NDAY-1461

IYEAR=IYEAR+4

GO TO 61

62 NDIY=365

IF(MOD(IYEAR,4).EQ.0) NDIY=366

IF(NDAY.LE.NDIY) GO TO 65

IYEAR=IYEAR+1

NDAY=NDAY-NDIY

GO TO 62

65 IF(NDAY.GT.INT(DY(2))) GO TO 66

IM=1

ID=NDAY

GO TO 67

66 IF(NDAY.NE.60) GO TO 68

IF(NDIY.EQ.365) GO TO 68

IM=2

ID=29

GO TO 67

68 IF(NDAY.GT.(INT(DY(3))+NDIY-365)) GO TO 69

IM=2

ID=NDAY-31

GO TO 67

69 DO 70 I=3,12

IF(NDAY.GT.(INT(DY(I+1))+NDIY-365)) GO TO 70

IM=I

ID=NDAY-INT(DY(I))-NDIY+365

GO TO 67

CONTINUE

New code:

IYEAR=IYR

NDAY=JD-JDOR

IF(FJD >= 0.5) NDAY=NDAY+1

DO

IF(NDAY < 1462) EXIT

NDAY=NDAY-1461

IYEAR=IYEAR+4

ENDDO

DO

NDIY=365

IF(MOD(IYEAR,4) == 0) NDIY=366

IF(NDAY <= NDIY) EXIT

IYEAR=IYEAR+1

NDAY=NDAY-NDIY

ENDDO

If_Block1:&

IF(NDAY <= INT(DY(2))) THEN

IM=1

ID=NDAY

ELSEIF(NDAY .EQ. 60 .AND. NDIY .NE. 365) THEN

IM=2

ID=29

ELSEIF(NDAY <= INT(DY(3)) + NDIY -365)THEN

IM=2

ID=NDAY-31

ELSE

DO I=3,12

IF(NDAY <= INT(DY(I+1))+NDIY-365)THEN

IM=I

ID=NDAY-INT(DY(I))-NDIY +365

EXIT

ENDIF

ENDDO

ENDIF &

If_Block1

1. Kalnay, E., Sela, J., Campana, K., Basu, B. K., Schwarzkopf, M., Long, P., Caplan, M. and Alpert, J., Documentation of the Research Version of the NMC
Medium Range Forecast Model, 1998.

2. Sinha, U. N., Sarasamma, V. R., Rajalakshmy, S., Subramanium, K. R., Bhardwaj, P. V. R., Chandrashekhar, C. S., Venkatesh, T. N., Sunder, R., Basu, B.
K., Gadgil, S. and Raju, A., Curr. Sci., 1994, 67, 178–184.

3. Nanjundiah, R. S. and Raju, A., Experiments in Parallel Implementation of the NCMRWF Model, Intromet ‘97, 2–5 December 1997, IIT New Delhi, 1997.
4. Flosolver Team, Status Report on Development of meteorological software at Flosolver. NAL report NAL PDFS 9816, Sept 1998.
5. Gadgil, S. and Sajani, S., Clim. Dyn., 1998, in press.

ACKNOWLEDGEMENTS. We thank Prof. R. Narasimha for his suggestions.

