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In this note, we discuss the relevance and impact of a software engineering effort at NAL on the forecast 
model in operation at the National Centre for Medium Range Weather Forecasting (NCMRWF). The code 
has been re-written exploiting the features of Fortran 90. As a direct consequence of appropriate 
reengineering efforts on the code, it is both easy to comprehend and modify. The reengineered code is 
appreciably shorter (number of lines in the code reduced by 55%) and can run on a variety of computing 
platforms including a PC, without the need for any further modifications to the code.  

A General Circulation Model (GCM) used for numerical weather prediction is among the most 
complex computer codes from the view-point of mathematics as well as software engineering. 
Mathematically, a GCM encompasses an ensemble of sub-models to describe various physical 
processes (as different as radiation and turbulence) that occur simultaneously within the 
atmosphere. From the view-point of software engineering, all these diverse sub-models need 
to be integrated correctly and perform in unison to generate a forecast. Therefore, numerical 
weather prediction (with the associated atmospheric modelling) has been considered as one of 
the grand challenge problems for high performance computing. Hence it is not surprising that 
all over the world, the most powerful computers have always been used by weather 
forecasting centres. Most weather forecasting software codes presently in use were originally 
developed in the mid 1980s when memory and computational power were at a premium, 
compilers were not as highly developed as the present day ones and software engineering 
(with emphasis on ease of usage) was not considered a major issue. The emphasis therefore 
was on exploiting the power of the then available high performance computing platforms. Most 
present-day weather forecasting codes have evolved from those developed in the 1980s and 
still retain most features of their original codes from a software engineering view-point. In the 
process, such codes used for weather forecasting lack transparency and are very cryptic and 
difficult to comprehend, thus making modification and experimentation extremely difficult. This 
has resulted in numerical modelling of the atmosphere to become the exclusive domain of a 
few select centres worldwide (and even fewer within the country). However, with the improved 
power of microprocessors, the evolution of more powerful programming languages and a 
better appreciation of modern software engineering techniques, it is feasible to reengineer this 
traditional high performance computing application to make the code more comprehensible, 
facilitate research and development and to exploit the burgeoning power of microprocessors. 
In this note we discuss the impact of applying modern software engineering practices to 
GCMs, with specific reference to the GCM used by the National Centre for Medium Range 
Weather Forecasting (NCMRWF), New Delhi.  

The model used at NCMRWF has a spectral resolution of T-80 (eighty modes with triangular 
truncation) and has 18 levels in the vertical. It integrates the equations of mass, momentum 
and energy conservation (in addition to equations specifying boundary conditions) to generate 

forecasts for the entire globe. Details of this model are discussed in by Kalnay et al.1. It was 
provided to the National Aerospace Laboratories (NAL), Bangalore, in 1993, as part of a 
national initiative on use of parallel computers for weather forecasting. The original code was 
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successfully implemented in the parallel mode on the Flosolver Mk3 (ref. 2). Subsequently, 
another version of the model was successfully implemented on the SP2 parallel computer in 
the Super computer Education and Research Centre (SERC) at the Indian Institute of Science 

(IISc)3 and successfully used in a climate mode (i.e. for simulations extending over time period 
of several years). 

During these efforts it was strongly felt that the code lacked transparency and was very difficult 
to comprehend and experiment with, and therefore not suitable as a research tool. This lead to 
a major effort in re-engineering of the code exploiting features of Fortran 90 (ref. 4). 

The objectives of the reengineering project were: (i) to make the code transparent and easy to 
comprehend and modify; and (ii) to remove limitations of coding practices due to Fortran 77 by 
rewriting it in Fortran 90. 

The procedure followed to attain these objectives can be broadly summarized as follows: 

  

1. Redundant code was removed, especially in the repetitive application of the same code 
for computing different quantities.  

2. Common blocks, the bane of traditional Fortran programming were eliminated. Memory 
allocation for global variables was made modular.  

3. For optimal memory utilization, the Fortran 90 features of dynamic allocation and 
deallocation of memory, and pointers (not available with older versions of Fortran) were 
exploited.  

4. Iterative statements using hard-coded numbers (for specifying the range) were replaced 
with statements incorporating variables/parameters as the range-specifiers.  

5. Conditional statements (IF and GO TO) were simplified. An example of the differences 
between old and new codes is shown in Appendix A.  

6. Names of variables/routines were made transparent and comprehensible so that their 
functionality becomes clear. The older version of the code used the older Fortran 
standard of utilizing only seven characters to identify a variable which resulted in the 
variable/procedure names to be terse and cryptic. A typical example of this is given in 
Table 1.  

  

The same array (SYN) was used for divergence, temperature and log(surface pressure). In the 
new version of the code, the names have been made more descriptive. The new name 
Di_Fourier clearly suggests that this variable is used for storing divergence in the Fourier–
latitude space. 

As a result of this effort, the rewritten code reduced from 40,000 lines to 18,000 lines. This 
reduction occurred due to the fact that similar (but not identical) computations (such as 
summation of spectral coefficients, etc.) were conducted in several routines. Due to the 
reengineering efforts, these could be consolidated into fewer routines and the size of the code 
was thus reduced. The modular structure of memory assignment also helped in shrinking the 
size of the code. 

The reengineered code should have a significant impact on the atmospheric modelling. The 



significant implications are: 

� We have a code that is completely portable across platforms. The reengineered code 
has been successfully tested on diverse platforms such as the IBM RS6000/595 (the 
basic processor for the IBM SP2), the MIPS R10000 (the processor used in SGI Origin) 
and a PC based on Pentium II. It is noteworthy that no changes were required in the 
code to run on any of these platforms.  

� Using PCs, almost any college or university can now offer training in numerical weather 
modelling. Therefore, the lack of computational infrastructure will no longer be a major 
bottleneck for manpower training. As a consequence a larger pool of trained manpower 
can be generated.  

  

Table 1.  Comparison of names of variables in the old and new versions 
of the  
code 

Old name New name 

SYN Di_Fourier 

SYN Te_Fourier 

SYN Q_Fourier 

� We have a powerful research tool. Unlike the older version of the NCMRWF model, the 
reengineered code is easy to comprehend and modify. The resolution can be changed by 
changing just three lines in a single memory module. In contrast, the original NCMRWF 
model required more than hundred changes in different segments of the code (and one 
could not still be sure that all the required changes had been incorporated). Additionally, 
the hard-coding in spectral transform computations made it almost impossible to increase 
resolution. On the contrary, the reengineered code can now be used for weather 
forecasting (high resolution, short integrations), climate modelling and simulation 
(medium resolution, long integrations) and can be an ideal ‘hands on’ tool in classroom 
teaching (very low resolutions).  

� Ease of modification can facilitate research by different groups with diverse interests and 
seamlessly incorporate improvements into the code. In the Indian context, this could 
mean more cost-effective research in the field of monsoon modelling and simulation. 
Simulation of monsoon is considered to be one of the major challenging problems for 
GCMs, as no model has been able to capture all the features of the monsoon even on 

the seasonal scale5. Improving the monsoon simulation would require researchers from 
diverse fields such as radiation, turbulence and boundary layer modelling and numerical 
methods to incorporate their contributions to the model. The present reengineered model 
would be an ideal vehicle for such experimentation.  

  

In conclusion, it appears that, if used properly, the reengineered code holds out the prospect of 



revolutionizing the way atmospheric modelling is conducted within the country.  

  

Appendix A 

  

An example of replacement of the old code by a more readable and transparent code is given below. 

  

Old code: 

  

DO 100 I = 1, IX  

DW(I)=max(RWFL*SOLWT(I),0.)  

DW(I)=min(DW(I),1.)  

  

IF (SLMSK(I).NE.1.0) THEN  

DW(I) = 1.0  

ENDIF 

  

IF((SLMSK(I).EQ.1.0).AND.(SNOCOV(I).GT.0.0)) THEN 

DW(I) = 1.0  

ENDIF 

100 CONTINUE 

New code: 

  

Dw(:)=Rwfl*Solwt(:) 

Where(Dw(:) < 0.0 )Dw(:)=0.0 

Where(Dw(:) > 1.0 )Dw(:)=1.0 

Where(Slmsk(:) /= 1.0)Dw(:)=1.0 

Where(Slmsk(:)==1.0 .And. Snocov > 0.0 )Dw(:)=1.0 



  

Another example where GO TO statments were removed leading to a greater transparency of the code was in the 
calculations of model dates (this small piece of code had 13 GO TO statements). The old and new versions of the 
code are shown below. 

  

Old code: 

  

IYEAR=IYR  

NDAY=JD-JDOR 

IF(FJD.GE..5 E 0) NDAY=NDAY+1  

61 IF(NDAY.LT.1462) GO TO 62  

NDAY=NDAY-1461  

IYEAR=IYEAR+4  

GO TO 61  

62 NDIY=365  

IF(MOD(IYEAR,4).EQ.0) NDIY=366  

  

IF(NDAY.LE.NDIY) GO TO 65  

IYEAR=IYEAR+1  

NDAY=NDAY-NDIY  

  

GO TO 62 

65 IF(NDAY.GT.INT(DY(2))) GO TO 66 

IM=1  

ID=NDAY  

  

GO TO 67  

66 IF(NDAY.NE.60) GO TO 68  



IF(NDIY.EQ.365) GO TO 68  

IM=2  

ID=29  

  

GO TO 67  

68 IF(NDAY.GT.(INT(DY(3))+NDIY-365)) GO TO 69  

IM=2  

  

ID=NDAY-31  

GO TO 67  

69 DO 70 I=3,12  

  

IF(NDAY.GT.(INT(DY(I+1))+NDIY-365)) GO TO 70  

IM=I  

ID=NDAY-INT(DY(I))-NDIY+365  

GO TO 67  

  

CONTINUE  

  

New code: 

  

IYEAR=IYR 

  

NDAY=JD-JDOR 

  

IF(FJD >= 0.5) NDAY=NDAY+1 

  



DO 

IF(NDAY < 1462) EXIT 

NDAY=NDAY-1461 

IYEAR=IYEAR+4 

ENDDO 

  

DO 

NDIY=365 

IF(MOD(IYEAR,4) == 0) NDIY=366 

IF(NDAY <= NDIY) EXIT 

IYEAR=IYEAR+1 

NDAY=NDAY-NDIY 

ENDDO 

  

If_Block1:& 

IF(NDAY <= INT(DY(2)) ) THEN 

IM=1 

ID=NDAY 

ELSEIF( NDAY .EQ. 60 .AND. NDIY .NE. 365) THEN 

IM=2 

ID=29 

ELSEIF( NDAY <= INT( DY(3) ) + NDIY -365)THEN 

IM=2 

ID=NDAY-31 

ELSE 

  

DO I=3,12 



IF( NDAY <= INT(DY(I+1))+NDIY-365)THEN 

IM=I 

ID=NDAY-INT(DY(I))-NDIY +365 

EXIT 

ENDIF 

ENDDO 

  

ENDIF & 

If_Block1 
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