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A method of quantum-state tomography for quantum-information processing is described. The method is
based on the use of the Fourier-transform technique and involves detection of all the diagonal elements of the
density matrix in a one-dimensional experiment and all the off-diagonal elements by a two-dimensional
experiment. The method is efficient for a large number of qubit§). The proposed method is outlined using
a two-qubit system and demonstrated using simulations by tomographing arbitrary complex density matrices of
two- and four-qubit systems.

[. INTRODUCTION transform technique, where all the off-diagonal elements of a
density matrix, both observable and unobservable, are mea-
Quantum computation offers exciting possibilities for sured in a two-dimensional experiment. All the diagonal el-
solving complex computational problems using algorithmsements are measured in another one-dimensional experiment.
which exploit the quantum nature of the system. The idea, It has been pointed out that the earlier method of tomog-
first proposed by Feynmai], is being feverishly pursued raphy involving a large number of different measurements
by many[2-6]. Several algorithms, such as Shor’s factoriza-works well for a small number of qubits, while it becomes
tion algorithm, Grover’s search algorithm, the Deutsch-Jozsarohibitively complex for a large number of qubit$0,25.
algorithm, quantum Fourier transform, quantum countingSuch large systems can be easily tomographed using the
and quantum error-correction codes have been developedethod proposed here. However, the proposed method uses a
and have clearly established the premige-24]. The last two-dimensional experiment and requires a minimum num-
step in quantum-information processing and quantum simuber oft; increments(of the order of 512 In principle, the
lations is the measurement of the output quantum state. Igize of a two-dimensional dataset is independent of the num-
the case of ensemble systems this amounts to measuring ther of qubits and all the off-diagonal elements can be de-
output density matrix. The output state of a quantum algotected by a fixed data size and experimental time. However,
rithm normally corresponds to some classical informationas the number of qubits increases, the number of highest
and therefore, it is sufficient to measure all the diagonal elquantum increases linearly. This causes a corresponding in-
ements of the density matrix which corresponds to the proberease in spectral width in domain, requiring a correspond-
abilities of various eigenstates. However, full quantum-staténg increase in number @f increments to maintain the same
tomography is generally carried out wherever possible besdligital resolution. The maximuny, value is, however, de-
cause of the following reasonsi) knowledge of the full cided by the total coherence time. While the number of tran-
output density matrix allows one to find out the experimentalkitions rapidly increase with the number of qubits, the coher-
errors and to calculate the fidelity of the implementationence time is a function of inherent linewidths. Thus, the total
[5,10-14 and(ii) if one wishes to monitor the flow of the experimental time of the proposed experimental scheme is
implementation of an algorithm at any intermediate stepmore than the earlier method for small number of qubits but
then the best option is to measure the full intermediate derbecomes less for larger number of qubitsY). The earlier
sity matrix [11]. method needs independent experiments of the ordev,of
For ann-qubit ensemble system, the size of the Hilbertwhich increases exponentially with number of qubitsr
space increases a$ and the number of density-matrix ele- four qubitsM =135 and for five qubitdl =527). The pro-
ments increases as"22". Of these there areM posed method can also be used for tomography in a wider
=(2"-1)(2""'+1) independent elements, of which range of spin systems, such as quadrupolar or strongly
(n2""1) elements are single-qubit single-quantum observcoupled systemf19—23. Furthermore, the present method
able elements. To measure the remaining elements, a seriggjuires nonselective rf pulses that are devoid of errors
of one-dimensional experiments with readout pulses to rotateaused by the selective pulses used in the earlier method
the unobservables into observables have been proposed efrd]. The method is explained here using a two-qubit system
lier [10,11,13,14 Here, we propose a method for quantum-and demonstrated on the two- and four-qubit systems using
state tomography based on the two-dimensional Fouriersimulations.
It may be recalled that the above mentioned advantage of
the two-dimensional Fourier transform technique has been
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Il. THE METHOD wherel j, (j=1,2) are the spin operators. A selective rf pulse
The method is based on the technique of indirect detec(-)f angl_ea and phasaj on-resonance on spincorresponds
. . . to a unitary transform
tion of multiple quantum coherences in NMR spectroscopy
by the_ two—dlmen5|_onal Fourier-transform techn|q[L_1§], Uja’(ﬁ:exp{—i0(Ijxsin¢+ljycos¢)}. 3)
wherein all the off-diagonal elements are measured in a two-

dimensional experimerfpulse sequence AJ]. The diago-  All quantum algorithms are implemented in NMR by a spe-
nal elements of the density matrix are measured in anotheiific pulse sequence involving the evolutions under system

one-dimensional experimerfpulse sequence B)]. The  Hamiltonian and rf pulses. A general Hermitian complex

NMR pulse sequences for the two experiments are traceless deviation density matrix for two qubits has 15 in-
dependent elements, is spanned by 15 product opefars
(A)o(0)—t;—(m/2)y= G~ a_y—ty, and can be expressed as
1)
(B)7(0)=G, =Byt 7(0)=3 daluda, 4)
R

wheret, andt, are the variable time periods of system evo- )
lution, (/2),, «_, and B, are the rf pulses, an@, is the wherek andl can take values 0, 1, 2, 3 corresponding;s,
field-gradient pulse. Yy, z, respectively, but not simultaneously IQ,=1,,=1 is a

In experiment 1A), a given density matrixr(0) is al-  Unit matrix andgy, are real coefficients. All the elements of
lowed to evolve for a time, at the end of which a#/2),  the density matrix(0) can be classified into two groups)
pulse transform every element into all other elements of théliagonal elements involving deviation populatich® (de-
density matrix, including diagonal elements. TBe pulse  Viations from an average populatjoof various eigenstates
dephases the off-diagonal elements, averaging them to zernd (ii) off-diagonal elements involving one-qubit coher-
and retains only the diagonal elementsaA, pulse trans- ences(single quantum elementand multiqubit cohgrences
forms the diagonal elements into all elements of the densityZ€ro- and double-quantum elements for a two qubit system
matrix including single-qubit single-quantum coherences./Ne density matrix can be depicted as
These single-quantum coherences are then detected as a AP S S, D
function of time variabld,. A series of experiments are per- L 1

formed by systematic increment of thi¢ period and the ST AP, Z S

collected two-dimensional time-domain datasét, ,t,) is o(0)=| * : 5
) o i ; s Z AP; S,

double Fourier transformed yielding a two-dimensional fre-

quency domain spectrurB(Q,,Q,). S(Q;,,) contains D* S5 S5 AP,

along Q, all single-qubit single-quantum coherences and . ) _

alongQ),, contribution of every off-diagonal element of the The trace conditior®, AP, =0 yields 15 independeritl2
density matrix to these transitions, dispersed and displaye@ff-diagonal and three diagonatlements in this case. Each
by their specific frequency of evolution in the time domain single-quantum element corresponds to linear combinations
t,. Cross sections parallel t®, at each single-quantum Of Operators of the typés,, l1y, I1.d2z, I1yl2z, @ndlyy,
resonance frequency can be fittedat¢0), yielding all the  '2y» l2xl1z, @andlzyls,. Each two-quantum element, known
off-diagonal elements in single two-dimensional experiment@S Zero- or double-quantum elemedt D), corresponds to
The diagonal elements af(0) do not contribute to this lin€ar combinations of product operatotg oy, I1xl2y,

spectrum. l1ylox, andlyylyy .
Experiment 1B) measures the diagonal elements. The
given experiment begins by destroying all the off-diagonal A. Measurement of the off-diagonal elements

elements ofr(0) by a gradient pulse, and uses a small-angle the evolution ofo(0) during the pulse sequenceA)(
pulse to convert, within linear response, difference in diagows pe described 426,27

nal elements into observable single-qubit single-quantum co-

herences which are detected during the petiadd Fourier t . .
analyzed. The amplitudes of the coherences allow calculatioff(0)— o (t1) = e g (0)eh
of all the diagonal elements. The above protocol is explained  (7/2)y

in the following by explicit calculations on a two-qubit sys- — oty =e 1220 (t))e! iy T2 ™2
tem. G,
—o3(ty) =Poy(ty)
1. TWO-QUBIT SYSTEM “y (ot 1o0) it e
— o4(ty) =€V %og(ty ) e Ty Ty
Consider a two-qubit system consisting of two spinu- t,(measure
clei of Larmor frequencies; and w,, coupled by a weak — gty ty)=e Mg, (t)e M, (6)

indirect couplingd. The Hamiltonian for the system is

Here, the operatoP projects and retains only the diagonal
H= w1l 1,F @0l 5, + I 1,155, (2 part of o,(t;). The complex time domain signalt,,t,)



obtained on measurement as a functiontgf is s(t;,t,) the errors. It may also be noted that the diagonal elements do
=TH (17 +13)os(ty,t,)], which after double Fourier trans- NOt interfere with the two-dimensional spectrum obtained by
pulse sequence Aj. Similarly the undesired “axial peaks”

(having zero frequency during period arising due to the
longitudinal relaxations during; period[26] are also sup-
pressed by the present scheme.

In the two-qubit case, the one-qubit and two-qubit coher-
ences have different conversion ratios in the detected signal,

form gives two-dimensional(2D) spectrum S(Q,(,)
which is a function of the two frequency variabl€s and
0, [26,27. The ), axis of this spectrum has only the single-
quantum (1) elements(four transitions in the two-qubit
system. Along the (), axis of the 2D spectrum all the off-
diagonal elements af(0) yield peaks corresponding to their . : ) i .
amplitudesqy, and individual evolution frequencies during respectively, sinv and zsin 2x. To optimize both these S19-
the time period;. nals = m/4 has been used here. In .the back calculatpn of
Cross sections of the signal after Fourier transform with? (0). these factors have to be taken into account. For higher

respect td,, but beforet, , [S(t;,Q,)] taken parallel td; at qubit systems having higher quantum coherences, appropri-
0,=0; andQ,=w; , respectively, correspond to ate values ofr should be used that optimize the intensities of
—w; — Wy, )

various orderg31].

B. Measurement of the diagonal elements

) = ety /Togi +
oa(wr)=€ 27esinal (it dig)Cogwr ty) The evolution ofo(0) during the pulse sequenceBl)(

+ (010~ 01308 w7 t1) = (Qaot O2g) SIN( @7 t1) can be written as

— (020~ 023)siN(wy ty) G

+3c08a{ (11— 02p)c08 w°ty) ‘T(O)_ifflzpa'(o)

+( 0117+ 022)COS 7ty) + (Q1p+ 1) SIN( wPt) iy> o,=e (lyTl2)B g eilly*l2y)B

— (012~ U0 SiN(@?t1)}1/4, t(me_a)sureo_gz e Mg eitt ®)

o4(wy)=e""1"T2sinal (goy+ gs)cog w; ty) where
+ (o1~ 31 COS @, t1) — (ot Ga2) SiN(w; ty)
—(Goz— dz2)siN(w; ty)
+3c0sa{(q11~ G22)c08 wPty)
+ (011t G22)c08 07ty) + (qrot o) sin(wPty)
— (92— Qo) SiN(w?ty)}]/4, (7

01=030l 1, doal 22+ 33l 171 27,

and

02=30( 11,088+ 11,8 B) + dog( 12,088+ I 5,siN B)
+ Q33(11,€08B8+ 11,8 B) (15,088 +158INB).  (9)

wherewf=wjtJ/2, wP=wit+w,, W=w;—w,, qy are
the coefficients of expansion of(0) as in Eq.(4), andT, is
the transverse relaxation time of various coherentgsan
be different for each coherence but is for simplicity, taken to
be identical here. Oty Fourier transformation of expression
(7), one obtains the two-dimensional spectrg(f),,(,) in
which the cosine terms give absorptive and the sine terms
dispersive Lorenztian lines. All the coefficients of the off-
diagonal elements of(0) can be obtained by fitting the
cross sections from the two-dimensional spectru
S(Q4,Q0,) (taken parallel toQ,;) to the absorptive-
dispersive Lorentzians obtained from expressions similar to

To measure the coefficients under linear respogsshould
be small[26]. The measured one-qubit coherences then are

02(B—0)= B[ A30l 1xF sl 2x T a3l 1xd 22+ 1121 200 1
(10

Muhich can be rearranged as

Eq. (7). Two cross sections, one at each qubit, are sufficient 02(B8—0)=B[(dz0+ q35/2) (I 15+ 21 141 2,)
to calculate all the off-diagonal elements of the two-qubit

density matrixa(0) of Eq.(4). For ann-qubit system, there + (30~ A3d/2) (11— 21 1l 22)
are 22~ cross sections per qubit. While only one cross- + (o3t A392) (1 o5+ 21 1,1 5y)

section per qubit is required to map all the off-diagonal ele-
ments, the remaining cross sections can be used to minimize + (03— 9392) (1o =21 15l 5) /2. (1)
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FIG. 1. Tomography of a complex density matrix in a two-qubit syst@nis the 2D spectrum generated by experimeni)l {or
tomography of all the off-diagonal elemen(b) is the cross section parallel fo, taken at(),=1300 Hz (@4+ J/2) (a transition frequency
of first qubif, (c) is the cross section parallel fd, taken at(2,=1900 Hz (,+ J/2) (a transition frequency of the second qupénd (d)
is the 1D spectrum obtained by experiment oB) for mapping all diagonal elements 6{0). (1, and(), are in units of hertz for all the
spectra(e) and(f) are the real and imaginary parts of the tomographed density matrixx @&hdy axes are indices of the elements of the
density matrix and their respective intensities are alongzthais. The calculated values of the tomographed matrixogre= 3.32501,
01,=1.8625-5.1385, 013=3.0001-3.375, 0,,=2.6501-2.1624, 0,,=1.8625+5.1385, 0,,=—2.3251, 053=3.8750+ 1.4374, 0,
=—2.000%-1.625, 03,=3.0001+3.375, 03,=3.8750-1.4374, 033=—1.025, 03,=0.1376-1.7618, 0,4,=2.6501+2.1624, o0,,
=—2.00011.625, 0,43=0.1376+1.7618, ando4,=0.025.

The coefficients of the four terms in the above expression arg.UCIear zero-guantgm coherer@b]. In exp_enment 1B.)’
signal averaging using a few randomly varigg along with

proportional to the intensities of the corresponding four tran-
sitions of a two-qubit system. After calculatiogy, qgs, and G, would suppress the homonuclear zero-quantum coher-

Gss, all the diagonal elements of the density matrg0) can ~ €Nces 261 _
be calculated, since the diagonal part is equalgig ;, The above schemes Al and 1B) assume ideal rf
+ Qogl 25+ Gl 141 22 pulses. To correct for errors due to imperfection of rf pulses,

It should be noted that the gradient puBeused in pulse @ direct measuremerone dimensionalof o-(0) yields the
sequence 14) to destroy the off-diagonal elements, does not@Mplitudes of all single-quantum  single-qubit coherences.
destroy homonuclear zero-quantum coherences. In suchhese amplitudes can then be used to normalize all elements
cases, an extra small delay, along with G,, randomly  of the density matrix measured by experiments\)L @nd
varied between eacty experiment can suppress the homo-1(B).
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FIG. 2. Tomography of a complex density matrix in a four-qubit system. An arbitrary complex density mé@)x0.81,,+1,,
+ 0.9 o+ 1oy + 0.9 g5+ LU 5+ L+ 1.2 4+ 6.3 1l ol 3l ax+ 3.9 15 oyl gyl ay + Tixl ol 3ol 4z + L3 ol gl ax + 1.9 14l ol 3y + L8 14 5,0 5l ax
+0.60 4+ 1ol 4,1+ 1.3 5,1 3,1 4,7+ 21 1,1 5,1 351 4, IS rECONStructed with the 2D Fourier-transform technique. The frequencies and couplings used
in the simulation arew;=600 Hz, w,=750 Hz, w3=1000 Hz, w,=1400 Hz, J;,=20 Hz, J;3=10 Hz, J,4,=70 Hz, J,3=35 Hz, Jy,
=24 Hz, andl;,= 16 Hz.(a) Real andb) imaginary parts otr(0). (c) and(d) are the real and imaginary parts of the reconstructed density
matrix. (e) is the differencémagnified by 18) between the matrices &) and(c), while () is the difference betwee() and(d). Thex and
y axes are indices of the elements of the density matrix and their respective intensities are alagish&he 256 complex elements of
a(0) were tomographed with 99.7% accuracy.

IV. SIMULATION

To demonstrate the protocol, we tomograph an arbitrary complex density matrix with simulations. In a two-qubit system, an
instance of general density matrix is of the form

0(0)=11,+2.3 5,4+ 6.7 1,1 5, + 11, + 100 1,1 5,+ 511+ 3.5 115, + 2.9 11 5y

+7.2 3 1+ 131 1l ot 188 1,05+ 21 5, + 348 1,1 5, + 6.9 5, + 6.753 1,15y

3.325 1.86255.1383 3-3.75 2.65-2.1625
1.8625+5.1383 —2.325 3.875-1.4375 —2—-1.625
a 3+3.375 3.875+1.4375 —1.025 0.13751.7618 | (12

2.65+2.1625 —2+1.625 0.1375+1.7618 0.025



We assume the Larmor frequencies of the two qubits to bef qubits[16]. However, the method proposed here is aptly
w1=1200 Hz, w,=1800 Hz and the indirect coupling be- suited for tomography of a large number of qubitsg). It
tween the qubits to b&=200 Hz. Experiment 14) is per- may also be mentioned that the proposed method is not sys-
formed to obtain all the off-diagonal elemengswas chosen tem specific and can be set up easily for any number of
as 45°. 512, increments were performed yielding the 2D qubits in any configuration. The earlier method uses spin-
spectrum shown in Fig.(&). Cross sections parallel @, selective rf pulses, which requires long-duration irradiation
taken at one transition of each qubit, are shown in Figs). 1 of particular spins. During such pulses, the unperturbed spins
and Xc). These cross sections were fitted to get all the comevolve under the Zeeman and coupling interactions, intro-
plex off-diagonal elements of the density matrik, was ducing errors due to measuremé¢mb,16. The method de-
taken as 10 ms for all coherences. The diagonal elemengsribed here requires nonselective short-duration rf pulses
were mapped using experimentB)(with 8=10°, Fig. Xd).  that do not introduce such errors. Search of more qubits has
The real and imaginary parts of the tomographed densitjed researchers to use strongly coupled spinuclei and
matrix are shown, respectively, in Figs(el and if). The quadrupolar nuclei (spi3) oriented in liquid crystalline
calculated density matrix matches the input density matrixnatrices/19—-23. For such systems the notion of spin selec-
better than 0.01% for all complex elements. We have alsdivity does not apply, but the proposed method based on non-
carried out the simulations on a four-qubit system and tomoselective pulses can be used for tomography. Recently, the
graphed an arbitrary complex density matrix with 99.7% fi-method has been used to tomograph the states during
delity (Fig. 2). quantum-information processing in weakly and strongly
coupled spin system3,24]. This method can also be ex-
V. CONCLUSION tended to a three-dimensional experiment in which quantas
of various orders are displaced in different planes of the 3D

The two-dimensional nuclear-magnetic-resonance spexperiment, increasing the detectibility and the resolution of
troscopy provides an efficient method for the quantum-statghe quanta$3?2].

tomography. Only a one-dimensional and a two-dimensional

experiment are required for measuring all the elements of the ACKNOWLEDGMENTS

density matrix. The earlier method requires a series of one-
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