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A method of quantum-state tomography for quantum-information processing is described. The method is
based on the use of the Fourier-transform technique and involves detection of all the diagonal elements of the
density matrix in a one-dimensional experiment and all the off-diagonal elements by a two-dimensional
experiment. The method is efficient for a large number of qubits (>5). The proposed method is outlined using
a two-qubit system and demonstrated using simulations by tomographing arbitrary complex density matrices of
two- and four-qubit systems.
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I. INTRODUCTION

Quantum computation offers exciting possibilities f
solving complex computational problems using algorith
which exploit the quantum nature of the system. The id
first proposed by Feynman@1#, is being feverishly pursued
by many@2–6#. Several algorithms, such as Shor’s factoriz
tion algorithm, Grover’s search algorithm, the Deutsch-Jo
algorithm, quantum Fourier transform, quantum count
and quantum error-correction codes have been develo
and have clearly established the premise@7–24#. The last
step in quantum-information processing and quantum si
lations is the measurement of the output quantum state
the case of ensemble systems this amounts to measurin
output density matrix. The output state of a quantum al
rithm normally corresponds to some classical informat
and therefore, it is sufficient to measure all the diagonal
ements of the density matrix which corresponds to the pr
abilities of various eigenstates. However, full quantum-st
tomography is generally carried out wherever possible
cause of the following reasons:~i! knowledge of the full
output density matrix allows one to find out the experimen
errors and to calculate the fidelity of the implementati
@5,10–14# and ~ii ! if one wishes to monitor the flow of the
implementation of an algorithm at any intermediate st
then the best option is to measure the full intermediate d
sity matrix @11#.

For ann-qubit ensemble system, the size of the Hilb
space increases as 2n and the number of density-matrix ele
ments increases as 2n32n. Of these there areM
5(2n21)(2n2111) independent elements, of whic
(n2n21) elements are single-qubit single-quantum obse
able elements. To measure the remaining elements, a s
of one-dimensional experiments with readout pulses to ro
the unobservables into observables have been proposed
lier @10,11,13,14#. Here, we propose a method for quantu
state tomography based on the two-dimensional Four
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transform technique, where all the off-diagonal elements o
density matrix, both observable and unobservable, are m
sured in a two-dimensional experiment. All the diagonal
ements are measured in another one-dimensional experim

It has been pointed out that the earlier method of tom
raphy involving a large number of different measureme
works well for a small number of qubits, while it become
prohibitively complex for a large number of qubits@10,25#.
Such large systems can be easily tomographed using
method proposed here. However, the proposed method u
two-dimensional experiment and requires a minimum nu
ber of t1 increments~of the order of 512!. In principle, the
size of a two-dimensional dataset is independent of the n
ber of qubits and all the off-diagonal elements can be
tected by a fixed data size and experimental time. Howe
as the number of qubits increases, the number of high
quantum increases linearly. This causes a corresponding
crease in spectral width int1 domain, requiring a correspond
ing increase in number oft1 increments to maintain the sam
digital resolution. The maximumt1 value is, however, de-
cided by the total coherence time. While the number of tr
sitions rapidly increase with the number of qubits, the coh
ence time is a function of inherent linewidths. Thus, the to
experimental time of the proposed experimental schem
more than the earlier method for small number of qubits
becomes less for larger number of qubits (>5). The earlier
method needs independent experiments of the order oM,
which increases exponentially with number of qubits~for
four qubitsM5135 and for five qubitsM5527). The pro-
posed method can also be used for tomography in a w
range of spin systems, such as quadrupolar or stron
coupled systems@19–23#. Furthermore, the present metho
requires nonselective rf pulses that are devoid of err
caused by the selective pulses used in the earlier me
@10#. The method is explained here using a two-qubit syst
and demonstrated on the two- and four-qubit systems u
simulations.

It may be recalled that the above mentioned advantag
the two-dimensional Fourier transform technique has b
successfully utilized in structure determination of biomo
ecules by NMR@26–30#.
d-
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II. THE METHOD

The method is based on the technique of indirect de
tion of multiple quantum coherences in NMR spectrosco
by the two-dimensional Fourier-transform technique@27#,
wherein all the off-diagonal elements are measured in a t
dimensional experiment@pulse sequence 1(A)]. The diago-
nal elements of the density matrix are measured in ano
one-dimensional experiment@pulse sequence 1(B)]. The
NMR pulse sequences for the two experiments are

~A!s~0!2t12~p/2!y2Gz2a2y2t2,
~1!

~B!s~0!2Gz2by2t,

wheret1 and t2 are the variable time periods of system ev
lution, (p/2)y , a2y andby are the rf pulses, andGz is the
field-gradient pulse.

In experiment 1~A!, a given density matrixs(0) is al-
lowed to evolve for a timet1, at the end of which a (p/2)y
pulse transform every element into all other elements of
density matrix, including diagonal elements. TheGz pulse
dephases the off-diagonal elements, averaging them to z
and retains only the diagonal elements. Aa2y pulse trans-
forms the diagonal elements into all elements of the den
matrix including single-qubit single-quantum coherenc
These single-quantum coherences are then detected
function of time variablet2. A series of experiments are pe
formed by systematic increment of thet1 period and the
collected two-dimensional time-domain datasets(t1 ,t2) is
double Fourier transformed yielding a two-dimensional f
quency domain spectrumS(V1 ,V2). S(V1 ,V2) contains
along V2 all single-qubit single-quantum coherences a
alongV1, contribution of every off-diagonal element of th
density matrix to these transitions, dispersed and displa
by their specific frequency of evolution in the time doma
t1. Cross sections parallel toV1 at each single-quantum
resonance frequency can be fitted tos(0), yielding all the
off-diagonal elements in single two-dimensional experime
The diagonal elements ofs(0) do not contribute to this
spectrum.

Experiment 1(B) measures the diagonal elements. T
given experiment begins by destroying all the off-diago
elements ofs(0) by a gradient pulse, and uses a small-an
pulse to convert, within linear response, difference in dia
nal elements into observable single-qubit single-quantum
herences which are detected during the periodt and Fourier
analyzed. The amplitudes of the coherences allow calcula
of all the diagonal elements. The above protocol is explai
in the following by explicit calculations on a two-qubit sy
tem.

III. TWO-QUBIT SYSTEM

Consider a two-qubit system consisting of two spin-1
2 nu-

clei of Larmor frequenciesv1 and v2, coupled by a weak
indirect couplingJ. The Hamiltonian for the system is

H5v1I 1z1v2I 2z1JI1zI 2z , ~2!
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whereI jz ( j 51,2) are the spin operators. A selective rf pul
of angleu and phasef on-resonance on spinj corresponds
to a unitary transform

Uu,f
j 5exp$2 iu~ I jxsinf1I jycosf!%. ~3!

All quantum algorithms are implemented in NMR by a sp
cific pulse sequence involving the evolutions under syst
Hamiltonian and rf pulses. A general Hermitian compl
traceless deviation density matrix for two qubits has 15
dependent elements, is spanned by 15 product operators@26#,
and can be expressed as

s~0!5(
k,l

qklI 1kI 2l , ~4!

wherek andl can take values 0, 1, 2, 3 corresponding too, x,
y, z, respectively, but not simultaneously 0.I 1o5I 2o5I is a
unit matrix andqkl are real coefficients. All the elements o
the density matrixs(0) can be classified into two groups;~i!
diagonal elements involving deviation populationsDPk ~de-
viations from an average population! of various eigenstates
and ~ii ! off-diagonal elements involving one-qubit cohe
ences~single quantum elements! and multiqubit coherence
~zero- and double-quantum elements for a two qubit syste!.
The density matrix can be depicted as

s~0!5S DP1 S1 S2 D

S1* DP2 Z S3

S2* Z* DP3 S4

D* S3* S4* DP4

D . ~5!

The trace condition(kDPk50 yields 15 independent~12
off-diagonal and three diagonal! elements in this case. Eac
single-quantum element corresponds to linear combinat
of operators of the typeI 1x , I 1y , I 1xI 2z , I 1yI 2z , and I 2x ,
I 2y , I 2xI 1z , and I 2yI 1z . Each two-quantum element, know
as zero- or double-quantum element (Z,D), corresponds to
linear combinations of product operatorsI 1xI 2x , I 1xI 2y ,
I 1yI 2x , andI 1yI 2y .

A. Measurement of the off-diagonal elements

The evolution ofs(0) during the pulse sequence 1(A)
can be described as@26,27#,

s~0!→
t1

s1~ t1!5e2 iHt1s~0!eiHt1

→
~p/2!y

s2~ t1!5e2 i (I 1y1I 2y)p/2s1~ t1!ei (I 1y1I 2y)p/2

→
Gz

s3~ t1!5Ps2~ t1!

→
a2y

s4~ t1!5ei (I 1y1I 2y)as3~ t1!e2 i (I 1y1I 2y)a

→
t2~measure!

s5~ t1 ,t2!5e2 iHt2s4~ t1!eiHt2. ~6!

Here, the operatorP projects and retains only the diagon
part of s2(t1). The complex time domain signals(t1 ,t2)
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obtained on measurement as a function oft2, is s(t1 ,t2)
5Tr@(I 1

11I 2
1)s5(t1 ,t2)#, which after double Fourier trans

form gives two-dimensional~2D! spectrum S(V1 ,V2)
which is a function of the two frequency variablesV1 and
V2 @26,27#. TheV2 axis of this spectrum has only the singl
quantum (1Q) elements~four transitions in the two-qubi
system!. Along theV1 axis of the 2D spectrum all the off
diagonal elements ofs(0) yield peaks corresponding to the
amplitudesqkl and individual evolution frequencies durin
the time periodt1.

Cross sections of the signal after Fourier transform w
respect tot2, but beforet1 , @S(t1 ,V1)# taken parallel tot1 at
V25v1

1 andV25v2
1 , respectively, correspond to

s4~v1
1!5e2t1 /T2sina@~q101q13!cos~v1

1t1!

1~q102q13!cos~v1
2t1!2~q201q23!sin~v1

1t1!

2~q202q23!sin~v1
2t1!

1 1
2 cosa$~q112q22!cos~vDt1!

1~q111q22!cos~vZt1!1~q121q21!sin~vDt1!

2~q122q21!sin~vZt1!%#/4,

s4~v2
1!5e2t1 /T2sina@~q011q31!cos~v2

1t1!

1~q012q31!cos~v2
2t1!2~q021q32!sin~v2

1t1!

2~q022q32!sin~v2
2t1!

1 1
2 cosa$~q112q22!cos~vDt1!

1~q111q22!cos~vZt1!1~q121q21!sin~vDt1!

2~q122q21!sin~vZt1!%#/4, ~7!

where v j
65v j6J/2, vD5v11v2 , vZ5v12v2 , qkl are

the coefficients of expansion ofs(0) as in Eq.~4!, andT2 is
the transverse relaxation time of various coherences.T2 can
be different for each coherence but is for simplicity, taken
be identical here. Ont1 Fourier transformation of expressio
~7!, one obtains the two-dimensional spectrumS(V1 ,V2) in
which the cosine terms give absorptive and the sine te
dispersive Lorenztian lines. All the coefficients of the o
diagonal elements ofs(0) can be obtained by fitting th
cross sections from the two-dimensional spectr
S(V1 ,V2) ~taken parallel to V1) to the absorptive-
dispersive Lorentzians obtained from expressions simila
Eq. ~7!. Two cross sections, one at each qubit, are suffic
to calculate all the off-diagonal elements of the two-qu
density matrixs(0) of Eq. ~4!. For ann-qubit system, there
are 2n21 cross sections per qubit. While only one cros
section per qubit is required to map all the off-diagonal e
ments, the remaining cross sections can be used to minim
h

o
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ize

the errors. It may also be noted that the diagonal element
not interfere with the two-dimensional spectrum obtained
pulse sequence 1(A). Similarly the undesired ‘‘axial peaks’
~having zero frequency duringt1 period! arising due to the
longitudinal relaxations duringt1 period @26# are also sup-
pressed by the present scheme.

In the two-qubit case, the one-qubit and two-qubit coh
ences have different conversion ratios in the detected sig
respectively, sina and 1

4 sin 2a. To optimize both these sig
nals a5p/4 has been used here. In the back calculation
s(0), these factors have to be taken into account. For hig
qubit systems having higher quantum coherences, appro
ate values ofa should be used that optimize the intensities
various orders@31#.

B. Measurement of the diagonal elements

The evolution ofs(0) during the pulse sequence 1(B)
can be written as

s~0!→
Gz

s15Ps~0!

→
by

s25e2 i (I 1y1I 2y)bs1ei (I 1y1I 2y)b

→
t~measure!

s35e2 iHts2eiHt, ~8!

where

s15q30I 1z1q03I 2z1q33I 1zI 2z ,

and

s25q30~ I 1zcosb1I 1xsinb!1q03~ I 2zcosb1I 2xsinb!

1q33~ I 1zcosb1I 1xsinb!~ I 2zcosb1I 2xsinb!. ~9!

To measure the coefficients under linear response,b should
be small@26#. The measured one-qubit coherences then a

s2~b→0!5b@q30I 1x1q03I 2x1q33~ I 1xI 2z1I 1zI 2x!#,
~10!

which can be rearranged as

s2~b→0!5b@~q301q33/2!~ I 1x12I 1xI 2z!

1~q302q33/2!~ I 1x22I 1xI 2z!

1~q031q33/2!~ I 2x12I 1zI 2x!

1~q032q33/2!~ I 2x22I 1zI 2x!#/2. ~11!



e

FIG. 1. Tomography of a complex density matrix in a two-qubit system.~a! is the 2D spectrum generated by experiment 1(A) for
tomography of all the off-diagonal elements,~b! is the cross section parallel toV1 taken atV251300 Hz (v11J/2) ~a transition frequency
of first qubit!, ~c! is the cross section parallel toV1 taken atV251900 Hz (v21J/2) ~a transition frequency of the second qubit!, and~d!
is the 1D spectrum obtained by experiment of 1(B) for mapping all diagonal elements ofs(0). V1 andV2 are in units of hertz for all the
spectra.~e! and~f! are the real and imaginary parts of the tomographed density matrix. Thex andy axes are indices of the elements of th
density matrix and their respective intensities are along thez axis. The calculated values of the tomographed matrix ares1153.32501,
s1251.862525.1385i , s1353.000123.375i , s1452.650122.1624i , s2151.862515.1385i , s22522.3251, s2353.875011.4374i , s24

522.000121.625i , s3153.000113.375i , s3253.875021.4374i , s33521.025, s3450.137621.7618i , s4152.650112.1624i , s42

522.000111.625i , s4350.137611.7618i , ands4450.025.
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The coefficients of the four terms in the above expression
proportional to the intensities of the corresponding four tr
sitions of a two-qubit system. After calculatingq30, q03, and
q33, all the diagonal elements of the density matrixs(0) can
be calculated, since the diagonal part is equal toq30I 1z
1q03I 2z1q33I 1zI 2z .

It should be noted that the gradient pulseGz used in pulse
sequence 1(A) to destroy the off-diagonal elements, does n
destroy homonuclear zero-quantum coherences. In s
cases, an extra small delaytm along with Gz , randomly
varied between eacht1 experiment can suppress the hom
re
-

t
ch

-

nuclear zero-quantum coherence@26#. In experiment 1(B),
signal averaging using a few randomly variedtm along with
Gz would suppress the homonuclear zero-quantum co
ences@26#.

The above schemes 1(A) and 1(B) assume ideal rf
pulses. To correct for errors due to imperfection of rf puls
a direct measurement~one dimensional! of s(0) yields the
amplitudes of all single-quantum single-qubit coherenc
These amplitudes can then be used to normalize all elem
of the density matrix measured by experiments 1(A) and
1(B).
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IV. SIMULATION

To demonstrate the protocol, we tomograph an arbitrary complex density matrix with simulations. In a two-qubit sys
instance of general density matrix is of the form

s~0!5I 1z12.3I 2z16.7I 1zI 2z1I 1x110I 1xI 2z15I 1y13.5I 1yI 2z12.5I 1yI 2y

17.2I 1yI 1x113I 1xI 2x11.45I 1xI 2y12I 2x13.45I 1zI 2x16.9I 2y16.753I 1zI 2y

5S 3.325 1.862525.1383i 323.75i 2.6522.1625i

1.862515.1383i 22.325 3.87521.4375i 2221.625i

313.375i 3.87511.4375i 21.025 0.137521.7618i

2.6512.1625i 2211.625i 0.137511.7618i 0.025

D . ~12!

FIG. 2. Tomography of a complex density matrix in a four-qubit system. An arbitrary complex density matrixs(0)50.8I 1x1I 1y

10.5I 2x1I 2y10.9I 3x11.1I 3y1I 4x11.2I 4y16.3I 1xI 2xI 3xI 4x13.9I 1xI 2yI 3yI 4y 1 I 1xI 2xI 3zI 4z 1 1.3I 2xI 3xI 4x 1 1.9I 1xI 2xI 3y 1 1.5I 1xI 2zI 3yI 4x

10.6I 4z1I 2zI 4z11.3I 2zI 3zI 4z12I 1zI 2zI 3zI 4z is reconstructed with the 2D Fourier-transform technique. The frequencies and coupling
in the simulation arev15600 Hz, v25750 Hz, v351000 Hz, v451400 Hz, J12520 Hz, J13510 Hz, J14570 Hz, J23535 Hz, J24

524 Hz, andJ34516 Hz. ~a! Real and~b! imaginary parts ofs(0). ~c! and~d! are the real and imaginary parts of the reconstructed den
matrix. ~e! is the difference~magnified by 103) between the matrices of~a! and~c!, while ~f! is the difference between~b! and~d!. Thex and
y axes are indices of the elements of the density matrix and their respective intensities are along thez axis. The 256 complex elements o
s(0) were tomographed with 99.7% accuracy.
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We assume the Larmor frequencies of the two qubits to
v151200 Hz, v251800 Hz and the indirect coupling be
tween the qubits to beJ5200 Hz. Experiment 1(A) is per-
formed to obtain all the off-diagonal elements.a was chosen
as 45°. 512t1 increments were performed yielding the 2
spectrum shown in Fig. 1~a!. Cross sections parallel toV1,
taken at one transition of each qubit, are shown in Figs. 1~b!
and 1~c!. These cross sections were fitted to get all the co
plex off-diagonal elements of the density matrix.T2 was
taken as 10 ms for all coherences. The diagonal elem
were mapped using experiment 1(B) with b510°, Fig. 1~d!.
The real and imaginary parts of the tomographed den
matrix are shown, respectively, in Figs. 1~e! and 1~f!. The
calculated density matrix matches the input density ma
better than 0.01% for all complex elements. We have a
carried out the simulations on a four-qubit system and tom
graphed an arbitrary complex density matrix with 99.7%
delity ~Fig. 2!.

V. CONCLUSION

The two-dimensional nuclear-magnetic-resonance sp
troscopy provides an efficient method for the quantum-s
tomography. Only a one-dimensional and a two-dimensio
experiment are required for measuring all the elements of
density matrix. The earlier method requires a series of o
dimensional experiments with different readout pulses. T
approach becomes enormously complex for a large num
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of qubits @16#. However, the method proposed here is ap
suited for tomography of a large number of qubits (>5). It
may also be mentioned that the proposed method is not
tem specific and can be set up easily for any number
qubits in any configuration. The earlier method uses sp
selective rf pulses, which requires long-duration irradiati
of particular spins. During such pulses, the unperturbed s
evolve under the Zeeman and coupling interactions, in
ducing errors due to measurement@15,16#. The method de-
scribed here requires nonselective short-duration rf pu
that do not introduce such errors. Search of more qubits
led researchers to use strongly coupled spin-1

2 nuclei and
quadrupolar nuclei (spin. 1

2 ) oriented in liquid crystalline
matrices@19–23#. For such systems the notion of spin sele
tivity does not apply, but the proposed method based on n
selective pulses can be used for tomography. Recently,
method has been used to tomograph the states du
quantum-information processing in weakly and strong
coupled spin systems@23,24#. This method can also be ex
tended to a three-dimensional experiment in which quan
of various orders are displaced in different planes of the
experiment, increasing the detectibility and the resolution
the quantas@32#.
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