ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: Implementation of a quantum algorithm

Das, Ranabir and Kumar, Anil (2003) Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: Implementation of a quantum algorithm. In: Physical Review A (Atomic, Molecular, and Optical Physics), 68 (3). pp. 32304-1.

[img]
Preview
PDF
quantum_algorithm.pdf

Download (108kB)

Abstract

Physical implementation of quantum-information processing by liquid-state nuclear magnetic resonance, using weakly coupled spin- 1/2 nuclei of a molecule, is well established. Nuclei with spin.1/2 oriented in liquid-crystalline matrices is another possibility. Such systems have multiple qubits per nuclei and large quadrupolar couplings resulting in well separated lines in the spectrum. So far, creation of pseudopure states and logic gates has been demonstrated in such systems using transition selective radio-frequency pulses. In this paper we report two developments. First, we implement a quantum algorithm that needs coherent superposition of states. Second, we use evolution under quadrupolar coupling to implement multiqubit gates. We implement the Deutsch-Jozsa algorithm on a spin- 3/2 (2 qubit) system. The controlled-NOT operation needed to implement this algorithm has been implemented here by evolution under the quadrupolar Hamiltonian. To the best of our knowledge, this method has been implemented for the first time in quadrupolar systems. Since the quadrupolar coupling is several orders of magnitude greater than the coupling in weakly coupled spin- 1/2 nuclei, the gate time decreases, increasing the clock speed of the quantum computer.

Item Type: Journal Article
Publication: Physical Review A (Atomic, Molecular, and Optical Physics)
Publisher: American Physical Society (APS)
Additional Information: Copyright for this article belongs to American Physical Society (APS).
Department/Centre: Division of Chemical Sciences > Sophisticated Instruments Facility (Continued as NMR Research Centre)
Division of Physical & Mathematical Sciences > Physics
Date Deposited: 10 Dec 2004
Last Modified: 19 Sep 2010 04:12
URI: http://eprints.iisc.ac.in/id/eprint/287

Actions (login required)

View Item View Item