
Can Streaming Of Stored Playback Video Be Supported On Peer to Peer Infrastructure ?

K.Kalapriya,S.K.Nandy
Indian Institute of Science

{kalapriya,nandy}@cadl.iisc.ernet.in

K.Venkatesh Babu
Centre for Quantifiable QoS in Communication Systems,

Trondheim, Norway
venkat@Q2S.ntnu.no

Abstract

Streaming live video over peers in the Internet is gaining popu-
larity since it has the advantage of reducing the load on the server
and enable the server to perform other specialized services more
effectively It also helps reduce the server bandwidth and is there-
fore no more a limiting factor for the number of clients served. In
this paper we propose a architecture for ’streaming stored video’
over peer-to-peer network. While a given peer continues to receive
segments of the stream, simultaneously caching these segments lo-
cally renders this peer to inturn act as a source for other peers.
These peers are highly transient in nature and the exit of a peer
from the network results in loss of video segments. We overcome
this in our architecture by exploiting the inherent redundancy of
FEC encoding of video streams. Through simulations we establish
the novelty of our architecture and show that our proposed solu-
tion incurs minimum overhead on the peers and does not increase
the playback latency much more than the jitter buffer latency.

1 Introduction

Applications like Internet video broadcasts, corporate telecast,
distance learning etc., requires transmission of streaming video to
multiple users over the Internet simultaneously. Streaming video
uses a small buffer at the end-system that allows viewing of video
while simultaneously downloading segments of the video into the
buffer. Streaming of video helps reduce the startup time of play-
back video as opposed to the traditional download and play sys-
tem. Streaming video can be further differentiated as ‘Stream-
ing Live Video’ and ‘Streaming Stored Playback video’. In Live
streaming video the clients receive the streams from the time of
request whereas in stored playback streaming the server starts a
new stream for every request.

Moreover, video streaming is a bandwidth intensive task and
is likely to exhaust the available bandwidth at the source in sat-
isfying a meager set of clients. Such systems can benefit largely
from highly available network resources at the end system/clients.
These entities called peers co-operate to share storage and band-
width. End Systems while receiving these streams act as routable
components and distribute streams to other end systems.

Streaming playback video, which aims at minimizing the
startup delay has been addressed in the past [5][6][7].Padmanab-
han et al., [4] uses a scheme of co-operative networking for down-
loading video. This is the traditional ‘download and play’ in which
the startup delay is equal to the time taken to download the video.

Significant work has been done to extend application layer mul-
ticast to streaming live video [1][2][3]. The proposed solutions use
the peer-to- peer architecture to stream video. The end-systems
form a network of arbitrary topology referred to as ad-hoc net-
works and contribute resources such as storage and bandwidth to
the community. Extending application layer multicast to stream-
ing stored playback video has not been addressed in the past. We
address the problem of extending application layer multicast us-
ing peer-to-peer architecture for streaming stored video for flash
crowds. We provide architecture considerations for storing the ini-
tial segments among the peers to mimic a request of stored stream-
ing video.

One of the main issues of such systems is the transient na-
ture of the peers that cache the initial segments of video stream.

Decompressed

Error Resilient

Compressed Video

Error Resilient
Encoder

Network

Monitor

Video

Decoder

Network
Monitor

Video

Display

Server Client/Peer

Peer−to−Peer
Ad−hoc

Network

Figure 1. Architecture for Streaming Stored Video

This introduces additional constraint from the traditional stream-
ing video systems that use peer-to-peer architecture to distribute
media. Transience of peers is specifically considered in [8] for live
streaming video. Proposed solution consists of a peering layer to
handle the transience of peers. They indicate that under homoge-
neous unicast edge and node characteristics, an almost-complete
spanning tree is the optimal overlay tree for packet loss, packet
delay and time to first packet metrics. In this paper we propose a
technique to reduce the packet loss during the transience of peers
by exploiting the inherent redundancy of channel coding.

In this paper we propose a distributed and temporal caching
scheme of the initial segments of the stream among the peers. This
helps maintain the initial segments of a playback video after which
the stream can be treated as near live stream. Transience of peers
can lead to loss of cached segments leading to non-availability of
continuous video segments and is said to form a ‘gap’. It also con-
tributes to break in connectivity to the stream due to loss of seg-
ments. A new stream will be requested whenever a gap is formed
as opposed to live video streaming. This problem can be overcome
by exploiting redundancy introduced in the video segments. Our
proposed scheme imposes minimum overhead on end-systems in
terms of buffer requirements, caching and protocol overhead.

2 Architecture for Streaming Stored Video System on
Peer-to-Peer network

In case of streaming stored video the server will serve every
individual request as a new stream. In such systems the number of
streams served is directly proportional to the bandwidth available
at the server. Network resources like bandwidth and storage avail-
able in abundance at the end systems can be used to overcome the
problem of bandwidth saturation at the server. These end-systems
or peers while receiving the stream also help in distributing the
stream to other peers. Transmitting video over the peers is chal-
lenging due to the following reasons, firstly peers do not exhibit
server like characteristics. Secondly they are highly transient in
nature. The transience of peers will lead to loss of video packets.

Figure 1 shows architecture for streaming stored video over
peers. Compressed video is passed through the error resilient en-
coder that increases robustness of the video by using coding tech-
niques. On a client request, the video segments are packetized and
transported over the network formed by the peers. Such a network
formed by the peers is called as overlay network. For the rest of the
paper, all references to network is to be viwed in terms of overlay
network. Three components are identified that needs significant

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

attention for streaming stored video (i) caching (initial segments)
by the peers in the networks (ii) Error resilient encoder (iii) Buffer
requirement at the end-system/peer. Caching of initial segments
helps to mimic a new request to the stream. Error resilience en-
coding enhances robustness of compressed video to packet loss.

2.1 Distributed caching among Peer

Transmission of video segments is modeled as a discrete time
model (T) at the granularity of video packets. Every peer receiving
the stream contributes buffer of size Cpsize in accordance with the
availability of its memory. It can also serve the stream it receives
to other peers. We define two sets of peers, those that participate
as transit node for video stream called as serving peer and those
that contribute buffer for temporary caching called as helper peers.
When a helper peer exits it leads to formation of ‘gap’ due to the
non-availability of continuous cache segments. When a serving
peer exits it leads to loss of connectivity to the streams for a re-
ceiving peer due to loss of video segments. A serving peer can be
helping peer. We adhere to the following notation in our analytical
study of streaming stored video using peer-to-peer architecture.

• Ctot : Total amount of cache buffer/blocks available

• Ccurr : Total amount of cache buffer/blocks currently available

• Cpsize : cache size contributed by each peer

• Stot : Total number of individual streams originating from the server

• Scache : Total number of streams requested when caching scheme is used

• Treq : Request /Arrival Time of a request, or joining time of a peer

• Tcmax : Total time units equivalent to cached blocks.

• Tdur : Total duration of the stream.

On arrival of a peer the total cache (Ctot) increases by the size
of the cache contributed by the peer and is expressed as

Ctot = Ccurr + Cpsize

Without loss of generality Ctot can be mapped to the discrete
time scale T as Tcmax. We use Tcmax and Ctot interchangeable
and its meaning will be implicit in the context it is being used.

These cache blocks (Ctot) are used to store the initial segments
of video up to time given by Ctot. Request arriving for the stream
the stream at time Treq and less than Tcmax can be served by same
stream after obtaining the initial segments up to Treq from the
peers that had cached them. This leads to the formation of cluster
consisting of a set of peers that had cached the initial segments and
a stream serving the peers.

A new stream is requested when either Treq > Tcmax or one
of the caching peer that contributed significantly exited. Request
for a new stream creates a new cluster. Our intention is to find how
many such clusters can be formed expressed as Scache/Stot and
the average size of the cluster. It should be noted that the cached
blocks remain untill all the peers in that cluster have downloaded
the segments and do not stay through the duration of the stream.

Figure 2(a) gives a logical view of peers being served by a
stream. The total available cache blocks (Ctot) is 8. Peers 1,2,3
and 4 at intervals T1, T2, T6, T7, T8 are served by a single server
stream (server stream 1) forming a cluster. A ‘gap’ is formed be-
tween the intervals 8 and 12. Peers 6,7 arriving at time T12 and
T15 is served by a new server stream (server stream 2) and forms a
new cluster. Figure 2(b) shows detailed view of fetching of the ini-
tial segments from the peers and being served by the stream. Peers
1,2,3,4 and 5, has cached the segments up to T10. Peer 6 arriving
at T10 could fetch the initial segments from the peers and receive
the stream continuously. This requires extra buffer on the peer to
receive the continuous stream while downloading initial segments
of the stream. A cluster is said to be in stabilized state when a gap
is formed i.e., the same stream can serve no more peers.

A helper peer or a server peer can exit abruptly. ‘Gap’ will
be formed on the exit of the helper peer. For a helper peer,
Cpsize/Ctot gives the contribution of the peer in terms of cached
segments. This leads to the formation of gap with probability.

Pgap =
Cpsize

Ctot

(1)

where Pgap is the probability of formation of the gap. This
implies that probability of formation of ‘gap’ is proportional to
the contribution of peer to the total cache size. This will lead to

T1
1 2Peer

Time T6 T7 T8T2 T12 T15

1

2

3

7

4

5
6

Time of Arrival Treq
Peer ID3 4 5 6 7

Se
rv

er
St

rea
m

1

Server Stream 2

(a)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 576 8 9 10

2 3 4 5

Server Stream

6

1

Time

(b)

Figure 2. (a) Video stream from the server serving multiple peers
(b) Initial segments of video being served by peers to a single
request at time T10

Y X X Y Z X Y’Y X’

K+n K+n 2(K+n)

Loss of
Packets

Loss of
Packets

Loss of
Packets

T T T T T TExit Exit ExitRejoin Rejoin Rejoin

Case(a) Case(b) Case(c)

Figure 3. Transience of peers and loss of video segment

a new stream request to the server for the subsequent peers who
request the same stream.

On exit of a serving peer, the peers that were receiving the
stream from that serving peer finds another equivalent peer and
continue to receive the stream. It takes time for the receiving peer
to find an equivalent peer. During this transience there will be loss
of video segments. In the next section we propose a redundancy
technique to overcome this problem.

2.2 Redundancy Requirement on exit of a serving peer

We exploit the FEC (Forward Error Code) channel coding tech-
nique to introduce redundancy of video packet in peers. During
transience of peers this redundancy can be used to reconstruct the
lost frames. Let n denote the number of redundant segments re-
quired, npexit the number of helper peers that exit k the number of
segments required to decode a video segments, npeer the number
of helper peers

In case of exit of serving peer, n is bounded by the time taken
to repair the partition created by the transience of peers.

n = C(Texit − Trejoin) (2)

where (Texit −Trejoin) gives the time taken to repair the partition
and C(Texit − Trejoin) is simply the mapping of discrete time
intervals to video segments.

Figure 3 shows the various cases for loss of segments during
the transience of peers.

Case (a) : Consider a peer exiting while transmitting the start
of video segments containing (k + n) packets. Let Y be the num-
ber of packets lost due to the transience of peers and X packets
received after repair of the partition. We know that the total num-
ber of packets transmitted in a group is k + n.

Therefore, X + Y = k + n. To decode the group it has to
receive at least ‘k’ packets. This implies that X = k; Y = n.

2

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

Case (b) : Consider a peer exiting during the middle of trans-
mitting the k + n packets. Let X and Z packets be the number
of segments received before and after the repair of partition. We
know that the total number of segments transmitted in a group is
k + n.

Therefore, X + Y + Z = k + n. To decode the group it has to
receive at least ‘k’ segments. This implies that X+Z = k; Y = n

Case (c) : Consider a peer exiting during the transition be-
tween two contiguous segments. Let X and Y represent the re-
ceived and lost packets of the first group and X’ and Y’ denote the
lost packets of the second group.

X + Y = k + n
X ′ + Y ′ = k + n
X + Y + X ′ + Y ′ = 2(k + n)
Using case (a) and case (b) it can be shown that X ′ + Y = n
In all the three cases it can be seen that the total number of

packets lost during the process of repairing the partition is ‘n’. In
other words ‘n’ should capture the time taken to repair the partition
and is given by equation (2). This implies peer discovery protocols
have to be designed so as to minimize the time taken to find an
equivalent peer.

2.3 Redundancy Requirement on exit of a helper peer

In case of exit of helping peer, ‘n’ is bounded by the

n <= npexit.(k/npeer) (3)

to avoid forming a gap.
In equation (3) when k = npeer , n = npexit

when k < npeer , n < npexit

when k > npeer , nis bounded by(k/npeer).
This implies that ‘k’ plays an important role in determining the

cluster size(number of peers that form the cluster). Large value of
k increases the probability of forming a gap and reduces the size
of the cluster.

Combining equations (2) and (3) we obtain

n = max [C(Texit − Trejoin), (npexit ∗ (k/npeer))] (4)

Thus adding redundancy equivalent to n given by the above ex-
pression decreases the formation of gaps,thereby reducing the
number of new stream request to the server. Consequently in equa-
tion (1) if

Cpsize < n, Pgap ≈ 0. (5)
This implies that when a peer has contributed cache blocks less
than the size of n, the probability of formation of gap is nearly
zero. Intuitively it can be seen that larger the value of ‘n’, i.e.,
more redundancy is added to the stream, less is the probability
of formation of gap. But increasing ‘n’ increases the bandwidth
requirement by a factor of n/k limiting the value of n to the band-
width available.

To maintain connectivity while downloading the initial seg-
ments of the stream, we provide extra buffer at the peer to receive
the continuously flowing stream. This is discussed in detail in the
next section.

2.4 Buffer feasibility on the Peer

This scheme requires additional buffer to receive the already
flowing stream while downloading the initial segments cached at
the peers. This buffer is in addition to the jitter buffer maintained
by the peers to reduce the variation in the available bandwidth.
This additional buffer acts as a repository for video segments till
all the initial segments are downloaded.

We give minimum and maximum bounds on this buffer size.
Let Bs be the buffer of size s required to store the flowing stream.
Let Tstart be the time the stream started. A request at time Treq <
Tcmax fetches the initial segments from the peers. The amount
of initial segments is given by Treq − Tstart. Buffer size Bs is
required for the duration of the time it takes to download the initial
segments.

Bs = Buffer(Treq − Tstart). (6)

Total peer buffer to receive and display video is Bs + Bj =
Buffer(Treq − Tstart) + Bj .

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Max cache size/Peer

N
o

of
 S

tr
ea

m
s

Peer duration of 100 secs
Peer duration of 500 secs
Peer duration of 1000 secs

Total Number of Individual Streams 9044

(a)

0 10 20 30 40 50 60 70 80 90 100
500

1000

1500

2000

2500

3000

3500

4000

Max cache size /Peer

N
o

of
 S

tr
ea

m
s

Mean Rate 0.1
Mean Rate 0.25
Mean Rate 0.5

Total Number of Peers
Mean Rate 0.1 =3654
Mean Rate 0.25 =9044
Mean Rate 0.5 =17989

(b)

Figure 4. (a)streams requested by the peers for different request
rates (b) streams from the server for different duration of peers

In equation (6) when Treq = Tstart, Bs = 0 gives the lower
bound on the buffer size Bs and is an upper bound on Bs when
Treq = Tcmax gives the upper bound on the buffer size.

Jitter buffer can be used to download the initial frames while si-
multaneously receiving the flowing stream in this additional buffer.
Without loss of generality it can be assumed that it takes the same
time to download an initial segment and a flowing segment. Once
the jitter buffer is full the decoding process can be started and the
jitter buffer can be reused to download further cached segments
if any. After all the initial segments have been downloaded the
data can be taken from the additional buffer. The startup delay
is always bounded by the size of the jitter buffer. The additional
buffer complements the jitter buffer in reducing the variations of
available bandwidth.

3 Simulation Results

We use discrete time based simulation for studying effects of
varying cache sizes and duration of the peers. Unless otherwise
stated we assume that the server has infinite resources for the pur-
pose of simulation. We measure the following performance pa-
rameters (1) The number of satisfied request (2) The load of the
server (3)Buffer (Bs)at the peer to maintain connectivity.

To simulate a flash crowd we had considered high request
rates about 9 requests/minute, 15 requests/minute and 30 re-
quests/minutes. To consider the transient nature of peers we sim-
ulated peer groups of different durations or (100secs, 500secs
and 1000secs) ,lifetime of the peers. Data sets were collected
for varying cache size contributed by the peers. (Maximum of
5,10,15,20,25,30,35,40,45,50,55,60,70,80,90,100 cache blocks)

Graph 4(a) and 4(b) plots the number of streams requested from
the server for different duration of peers and mean rates respec-
tively. It can be observed that even when contribution of client
is small(orders of 5 to 20 units)the number of streams requested
is reduced by 65 % approximately. Also the number of requests
to the server falls steeply when the client cache size is increased
from 5 to 20 after which the number of requests remains constant.
This is due to the fact that high contribution of cache by the peer
penalizes the scheme on exit of such peers by forming gaps. It can
be seen that longer the number the duration of peers , less is the
number of streams requested (graph 4(a)) and when the interarrival
time is small the number of streams requested is less (graph 4(b)).

Simulations were carried out to find the contribution of insuf-
ficient cache blocks to cache initial segments and penalty incurred
by the exit of a peer that has contributed to caching. Both the situ-
ations lead to formation of gap , thereby increasing the number of
requests to the server.

Graphs 5(a) and 5(b)plots the number of streams requested due
to insufficient blocks to cache the intial segments. A small in-
crease in cache size from 5 to 10 (≤ 20) hides forming of gap
significantly (about 33% reduction in the number of streams re-
quested). It can be seen that increase in cache size leads (more
availability of cache to store intial segments) to less number of
requests to the server.

Graphs6(a) and 6(b)plots the penalty incurred due to exit of a
peer that has contributed significantly for caching. It is observed
that higher the contribution of the peer, greater is the penalty in-
curred on exit of such peer(more requests to the server).

3

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Max cache size/Peer

N
o

of
 S

tr
ea

m
s

du
e

to
 g

ap
s

Duration of a Peer less 100 secs
Duration of a Peer less than 200 secs
Duration of a Peer less than 400 secs

Total numbef of peers =9044
Mean Rate =0.25

(a)

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Max cache size/Peer

N
o

of
 S

tr
ea

m
s

du
e

to
 g

ap

Mean Rate 0.1
Mean Rate 0.25
Mean Rate 0.5

Duration of Peers = 50 secs

(b)

Figure 5. (a) Total number of streams requested due to insuf-
ficient cache size for all durations (b) Total number of streams
requested due to insufficient cache size for all arrivals.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Max cache size /Peer

N
o

of
 S

tr
ea

m
s

du
e

to
 e

xi
t o

f P
ee

r

Duration of a Peer less than 100 secs
Duration of a Peer less than 500 secs
Duration of Peer less than 1000 secs

(a)

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

Max cache size/peer

N
o

of
 S

tr
ea

m
s

du
e

to
 e

xi
t o

f p
ee

r

Mean Rate 0.1
Mean Rate 0.25
Mean Rate 0.5

(b)

Figure 6. Cache size per client Versus No. of streams due to exit
of peer (a) for different duration of peers (b) for different arrival
rates

From graphs 5(a) and 5(b)it can be seen that increasing cache
blocks hides the formation of gap due to insufficient cache blocks
drastically. But higher the contribution of cache by a peer in-
creases the penalty on exit of that peer Graphs5(c) and 5(d). This
shows that small values of cache size by itself would greatly com-
plement the system.

Graphs 7(a) and 7(b) plots the effect of increasing values of ′k
and ′n′. it can be seen that increasing k increases the number of
requests to the server, since any loss in k packets would lead to
a new request. This implies that k gives a bound on the cluster
size i.e., number of peers in the cluster. Increase in n (graph 7(b))
reduces the number of streams requested from the server.

Graph 7(c) shows the buffer requirement at the peer to capture
the flowing stream while downloading the initial segments for var-
ious cache sizes. It can be seen that the average size of the buffer
is about 5 units(of about few KBs).

From the results above it can be concluded that contribution
of small size (≤ 20units) of cache by peers leads to reduction
in number of streams from the server while serving large number
peers . This leads to conservation of bandwidth at the server where
the bandwidth is limited. Our scheme also incurs minimum over-
head interms of buffer requirements (about 5 units) on the peers to
maintain connectivity .

4 Conclusions and future Work

We have considered the issue of streaming stored playback
video and differentiate it from live streaming video by the re-
quirement of storing the initial segments. Peer-to-peer architec-
ture helps to effectively use the end system resources. Initial seg-
ments are temporarily cahed among a set of peers who co-operate
share their storage and form a network. It can be shown that with
minimum overhead (about 5 units of buffer)on the end-system
the number of individual stream originating from the server can be
significantly reduced(35%). This helps reduce the bandwidth over-
utilization near the server and increasing the overall throughput of
the system (increased number of peers served). Further work can
be continued with formation of clusters of similar requirements in
terms of rate and quality video. More over techniques like embed-
ded coding can be looked upon to satisfy each cluster of varying
requirements with a single stream.

2 3 4 5 6 7 8
20

21

22

23

24

25

26

27

No of Redundant packets/segment

Pe
rce

nta
ge

 of
 S

tre
am

s

k=8

(a)

8 9 10 11 12 13 14
21.5

22

22.5

23

23.5

24

24.5

25

No of packets required to decode/segment

Pe
rce

nta
ge

 of
 S

tre
am

s

n=6

(b)

0 10 20 30 40 50 60 70 80 90 100
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Max cache size/peer

Av
er

ag
e C

lie
nt

Bu
ffe

r B
s

Average Buffer size

Mean Rate 0.25

(c)

Figure 7. No. of streams due to (a) the effect of k and (b) effect
of n (c)Buffer Requirement for the peer to maintain connectivity

References

[1] H. Deshpande, M. Bawa, and H.Gracia-Molina, “Streaming
Live Media over a Peer-to-Peer Network”. Tech.Rep. CS-
2001-26, CS Dept., Stanford University, 2001

[2] Duc A. Tran, Kien Hua, Tai Do, “Peer-to-Peer Streaming
Using A Novel Hierarchical Clustering”, ICDCS 2003.

[3] D. Xu, M. Hefeeda, S. Hambrush, B. Bhargava, ”On Peer-
to-Peer Media Streaming”, In Proc. of International Confer-
ence on Distributed Computing Systems (ICDCS’02), Vi-
enna, Austria, July 2002.

[4] V.N.Padmanabhan, H.J. Wang , P.A.Chou, and
K.Sripanikulchai, ”Distributing streaming media content
using co-operative networking”, in ACM/IEEE NOSSDAV,
Miami FL,USA, May 12-14 2002.

[5] D. Wu, Y. Hou, Y. Zhang, ”Transporting real-time video over
the internet: Challenges and approaches,” Proceedings of the
IEEE, vol. 88, no. 12, pp. 1855-1875, December 2000.

[6] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha.
”Streaming Video over the Internet: Approaches and Direc-
tions”. IEEE Transactions on Circuits and Systems for Video
Technology, 11(3):1-20, March 2001.

[7] R. Rejaie, M. Handley, and D. Estrin, ”Architectural Con-
siderations for Playback of Quality Adaptive Video over the
Internet,” Tech. Rep., USC, Nov. 1998.

[8] Mayank Bawa, Hrishikesh Deshpande, and Hector Garcia-
Molina, ”Transience of Peers & Streaming Media,” Proc. of
HotNets-I, October 2002

4

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

