
Stability of Event Synchronisation in
Distributed Discrete Event Simulation

Anura,g Kuma,r and Rajeev Shorey
Dept. of Electrical Communication Engg.

Indian Institute of Science
Bangalore, 560 012, INDIA

e-mail: anurag, shoreyGece.iisc.ernet.in

Abstract
This paper is concerned with the behaviour of message
queues in distributed discrete event simulafors. We view
a logical process in a distribut4ed simulation a s com-
prising a message sequencer with associah-d message
queues, followed by an event processor. We show that,
with standard stochastic assumptions for message ar-
rival and time-stamp processes, the message queues are
unstable for conservative sequencing, and for conserva-
tive sequencing with maximum lookah,ead and hence for
optimistic resequencing, and for any resequencing algo-
rithm that does not, employ interprocessor “flow con-
trol”. These results point towards certain fundamental
limits on the performance of distributed simulation of
open queueing networks.

1 Introduction
In a distributed discrete event simulation, the simula-
tion model is partitioned into several logical processes
(LPs) which are assigned t o the various processing ele-
ments. The time evolution of the simulat.ion at the var-
ious logical processes is synchronised by means of time
stamped messages that flow between the logical pro-
cesses. We are concerned with the situation in which
the messages are not just for synchronization, but also
carry “work” which when done modifies the state of
the receiving logical process. A typical example is the
distributed simulation of a queueing network model, in
which one or more queues is assigned to each logical pro-
cess, and t,he messages indicate the motion of customers
between the queues in the various logical processes. The
simulation makes correct progress if each logical process

...
from L P ~ :

from LP2 ,
sequencer

from LP, i

...
I o g d process

Figure 1: Schematic View of a Logical Process

processes the incoming events, from all other logical pro-
cesses, in time stamp order.

Each logical process may be viewed as compris-
ing an input queue for each channel over which it
can receive messages from another logical process (i.e.,

must be processed in time-stamp order, the event pro-
cessor must be preceded by an event, sequencer. The
messages must emerge from the sequencer in time stamp
order.

I t is the event sequencer that is a t the core of much
of the research in distributed discrete event simulation.
Event sequencing algorithms fall in one of two classes:
conservative or optimistic. A conservative event se-
quencer allows a message to pass through only if it is
sure that no event with lower time-stamp can arrive
in the (real time) future [3], [15]. An optimistic event
sequencer, on the other hand, occasionally lets mes-
sages pass through without being sure that no lower
time stamped event can arrive in the future. If then a
lower time stamped event does arrive, corrective action
is taken resulting in a roll-backof the simulation [8], [6].

Considerable work appears t o have been done on per-
formance models of distributed simulation with the ob-
jective of obtaining estimates or bounds on simulation
speed-up with respect to centralised simulation [16],

LPI . LP2, LP,) (see Figure 1). Since the messages

[17], [23], [ll], [5], [18]. In these models, speed-up is
defined as the ratio of the real time rate of advance-
ment of correctly simulated virtual time in a distributed
simulation and a centr alised simulation. These analy-
ses are usually made under considerably simplifying as-
sumptions, and generally yield bounds on the expected
speedup. In particular, little attention seems to have
been paid t o the behaviour of the interprocessor mes-
sage queues in distributed discrete event simulators.
The simulation progresses by processing these messages.
Thus we can view a simulator as a queueing network
in which the customers are these interprocessor mes-
sages; the throughput of this network would correspond
to progress of the simulation.

A notable exception in the literature is a recent pa-
per [19], that was brought t o our at,tention just as we
had completed the work reported in this paper. Using
mainly simulation results and heuristic reasoning the
authors have anticipated some of the results we report
here. Our results are based on a complet,e analysis of a
formal stochastic model.

In this paper we study a particular class of stochas-
tic models for message and time-stamp arrivals at an
event sequencer in a logical process. We first show that
for this class of models, and for conservat,ive sequenc-
ing, the message queues that precede the sequencer are
essentially unstable. Next, we show that even with maz-
i m u m lookahead (i.e., prescient knowledge of the time-
stamp of the next message yet-to-arrive on the channel
with the empty message queue) these queues are still un-
stable. We then compare these instability results with
certain stability results obtained, for synchronisation in
a different context,, by Baccelli and Makowski “4. We
show the reason for the stability in their case. In this
process we also obtain an instability result for a gener-
alised version of our original model.

Maximum lookahead is an unrealisable algorithm as
it requires information that is in practice not available.
Hence messages left unsequenced by it a t any time are
at least as many as those for any realisable algorithm. I t
follows that the resequencing problem is fundamentally
unstable, and some form of interprocessor “flow control”
is necessary in order t o make the message queues stable
(without message loss).

The paper is organised as follows. In Section 2 we
prove the instability of conservative resequencing. In
Section 3 we show that even with maximum lookahead,
resequencing is unstable. In Section 4 we use a slightly
different model t o generalise the results of Sections 2
and 3. In Section 5 we discuss the implications of these
results and directions for future work.

--
event 1 :A event I

sequence II processor
n ’- IlW I -

Figure 2: A Logical Process with 2 Input Message
Streams

2 Instability of Conservative Se-
quencing

Two time stamped message streams arrive t o a logical
process. Wit,hin each stream the messages are in time-
stamp order. The messages must be processed in overall
time-stamp order by the event processor. In this section
we assume that the sequencer uses the conservative se-
quencing algorithm.

Arriving messages queue up in their respective
queues, a t the sequencer, in their order of arrival. If
both queues are nonempty then the sequencer takes the
head-of-the-line (HOL) message with the smaller time-
stamp and forwards i t t o the processor. We assume
that, the service time for doing this work is negligible
and take it to be zero. If either of the queues is empty
then the sequencer does not know the time-stamp order
of the HOL message in the nonempty queue and does
not forward any message t o the processor.

I t follows that at most one of the message queues a t
the sequencer is ever nonempty, and, in fact, exactly one
of the queues is always nonempty. The queues evolve
as follows. If, say, queue 1 is nonempty and a mes-
sage arrives in stream 1, then it simply joins the end
of queue 1, and no message is allowed to pass through
to the processor. If a message arrives t o queue 2, then
its time-stamp is compared with the HOL time-stamp in
queue 1. If the newly arriving message has smaller time-
stamp it is allowed to pass through, otherwise the HOL
message in queue 1 is passed through. In the latter case
as many messages from queue 1 pass through as have
time-stamp less than the new arrival in queue 2. If this
leaves queue 1 empty then the arrival in queue 2 must
be held until a t least the next arrival epoch in stream 1,
otherwise the arrival in queue 2 passes through leaving
some unsequenced messages in queue 1.

We study the process of the number of unsequenced
messages, embedded at the arrival epochs in the super-
position of the two message arrival streams. Let X , de-
note the number of unsequenced messages just after the
nth message arrival. If there are k messages in queue
1 then X , = +k, whereas if there are k messages in
queue 2 then X, = -k. In this model for conservative
sequencing, X , # 0 for all n.

We assume that the two message arrival streams form

&I

-1
-1

QZ

P1

/- P2

Figure 3: A Queueing Network

Figure 4: Distributed Simulator for the Model in Figure
3

Poisson processes with rates u1 and u2 respectively, and
that the successive time-stamps in each stream are Pois-
son epochs with rates A1 and A2 respectively.
Remark: Before we proceed with the analysis of this
model, we note here that this model is not vacuous and
there exist inst,ances of distribut,ed discret,e event simu-
lation that yield such a model. Consider the queueing
model in Figure 3 with external Poisson arrivals and ex-
ponential service times, XI < p1, X2 < p2, X l + A z < pg,
and the queues Q1 and Q2 being stationary.

The model in Figure 3 is mapped onto the distribut.ed
simulater in Figure 4 in the obvious way. LPl and LP2
simulate the work in system [lo] in Q I and Q 2 , and thus
are driven by the two arrival processes. LPi (i E { 1,2})
progresses by generating an interarrival time with dis-
tribution exponential(Ai), updating the work in system
process for &i and generating a departure event corre-
sponding to the arrival. Since the queues are stationary,
the departure processes in the queueing model are Pois-
son with rates A 1 and A?, respectively. If i t takes LPi
an exponentially distributed amount of time with mean
us:' to do the work corresponding to each arrival, then
we get a model for LP3 that is exactly the same as de-
scribed above.0

Define =: CY , =: 0, and assume
Vl +v2 A1+A2

that 0 < a < 1 , 0 < D < 1.

Theorem 1 {Xn,n 2 0) is a Markov Chain on
{. . . , -3, - 2 , -1) u { 1 , 2 , 3 , 4 , . . .} with transition proba-
bilities:

for i 2 1

and

Proof: The result is intuitively clear from the memory-
less properties of the Poisson process and the exponen-
tial distribution. We present, however, a careful proof

The messages queues are found to be unstable in the
in the Appendix. 0

following sense.

Theorem 2 (i) For all u1, v2, XI, X2, ezcept those for
which 2 = 2, the Markov chain { X , } is transient.

(ii) For = 2, {X , } is null recurrent.

Proof: These conclusions follow from standard
Markov chain results. The detailed analysis is given
in the Appendix. 0

I t follows that for all instances of the problem the
message queues are unstable. In particular, we observe
from the proof of Theorem 2 that if 2 < then the
queue of messages received from LP2 will grow without
bound.

3 Instability of Sequencing with
Maximum Lookahead

An optimistic sequencer works as in the case of conser-
vative sequencing whenever both the message queues are
nonempty. When a queue is empty, however, the pro-
cessor is allowed to process messages in the nonempty
queue. Messages whose time-stamps precede that of the
next message to arrive in the empty queue, will get pro-
cessed correctly. The rest will have to be reprocessed.
Thus a t any time there are messages that cannot be
processed correctly even if the sequencer had maximum
lookahead, i.e., (somehow) knew the time-stamp of the
next message to arrive in the empty queue. These are
the messages that optimistic sequencing (in fact, any
sequencing algorithm) cannot process correctly until the
next message in the empty queue is received. We show
that the number of these messages forms a transient or
null recurrent Markov chain under the same assump-
tions and conditions as before. Note that in conserva-
tive sequencing with lookahead, the best that lookahead
can do is to let the sequencer know the time stamp
of the next message to arrive t o the empty message
queue. Hence our term maxzmum lookahead. Maximum
lookahead is an unachievable algorithm, but its analysis

should yield fundamental limats on the performance of
any sequencing algorithm.

Assuming Poisson arrivals and Poisson time-stamps
we model the sequencer with maximum lookahead as
follows. When a number of messages is waiting at a
queue, it is known that the next message to arrive in
the other queue has time-stamp smaller than the HOL
queued message. So when this message arrives it im-
mediately passes through to the processor. Synchro-
nisation is now complete until the time-stamp of this
message. A time-stamp is sampled for the next message
to arrive in the empty queue and this lookahead infor-
mation is provided to the sequencer. This time-stamp is
compared with the time-stamps of the messages in the
nonempty queue and as many messages as precede this
time-stamp are allowed to pass through. The “residual”
time-stamps of the remaining messages in the queue are
again distributed ati epochs of a Poisson process. (see
Lemma in the proof of Theorem 1). If all the mes-
sages pass through in this way then synchronisiition is
complete until the time-stamp of the last inessage to
pass through, and the residual time-stamp of the next
message to arrive in the hitherto empty queue is expo-
nentially distributed. A time-stamp is sampled for the
nezt message to arrive in the just emptied queue. Now
the sequencer has lookahead information for both empty
queues. If a message arrives in the queue with the larger
time-stamp, the message is retained, otherwise the mes-
sage passes through.

Let {X , , n 2 0) denote the number of unsequenced
messages just after nth arrival, when the sequencer has
maximum lookahead, with the same notation as before.
Observe that now X, can be 0. Again we find that the
message queues are unstable.

Theorem 3 {X,,, n 2 0) is a Markow chain on {. . . -
3, -2, -1,O, 1 , 2 , 3 , 4 , 9 . .} with transition probabilities:

for i 2 I

Pi,i+l = a
Pij-3 = (1 - a>aj (l - a) 0 5 j 5 i - 1

pi,o = (1 - a) d
P - i , - (i + l) = 1 -a!

P - % , - (i - j) = &(1- a) G O l j l i - 1

p-a,o = a(1- a)i

P0,l = a(l - .)
P0,-1 = (1 -a)u

Po0 = 1 - (P0,l + PO,-l)

Proof: Similar to Theorem 2. 0

Theorem 4 (i) { X , , n 2 0) is transient except when

(ii){x, , n 2 o} is null recurrent when A l v 2 = A224

A1v2 = A 2 v 1

disordered
sequencer

Figure 5: Ordering a Sequence Numbered Stream

Proof: Exactly the same as for Theorem 2. 0
It follows that the resequencing problem is fundamen-

tally unstable, and no sequencing algorithm, that does
not exercise some form of interprocessor “flow control” ,
will yield stable message queues.

4 A Generalisation: Sequence
Numbered Streams

Consider the model of Figure 2, with the variation that,
instead of carrying a time-stamp, each message carries a
sequence number, which is unique across both streams,
and within a stream the messages arrive in sequence
number order. Obviously time-stamps imply such a se-
quence numbering, but sequence numbers provide more
information to the sequencer than time-stamps alone.
In fact, it is clear that, in the distributed simulation
context, being provided with sequence numbered mes-
sages is equivalent to maximum lookahead.

The superposition of the two sequence numbered
streams yields a message stream with all sequence num-
bers but the messages disordered. The reordering prob-
lem is depicted in Figure 5.

Let t,, be the arrival epoch of the message with se-
quence number n. Let rn be the resequencing delay of
this message. It follows that

Tn+1 = (~ n - (t n + l - t n))+ (1)

We will assume that t o = 0 and hence ro = 0. Then it
is easily seen that

T, = inax(O,rnax(to,tl,...t,_l)-t,)

Case 1 : (Baccelli and Makowski [2], and Baccelli &
Robert [l])

The disordered stream is obtained by passing an or-
dered stream (arrival epochs s,, , n > 0) through a disor-
dering network that introduces random delays S,, n 2 0,
i.e., t , = s, + 6,, where SO s1 5 sg . . . 5 s, 5
. . . and 6, 2 0. Hence, by Equation (l),

Tn+l = (rn - (6n+1- 6,) - (sn+1- sn)>+

Hence
for stationary, ergodic {(6,+1 - 6,) , (s,+1 - Sn)} with
E (&,+I - 6,) + E (s,+1 - s,) > 0 , r , converges in dis-
tribution to a proper random variable. In particular if

E6, = E6,+1, it follows that {r,} converges and the
resequencing system is stable (see [2]).
Case 2 :

The disordered stream is obtained by superposing two
independent message streams, each message carrying a
sequence number that is unique across both streams,
and within each stream the messages are in time-stamp
order.

Now (assuming t o = 0)

Pn = max(O,max(to,tl,...,t,-l) - t n)

Let the interarrival times in stream 1 be a i l) , a?),

It follows that, for n 2 1,
and in stream 2 be a?), a?), . . . ,.

+ (g=l a p - x;r; a p)
if t , is in stream 1 and k of the
messages in { 1, . . . n} arrive in stream 2

. .

i f t , is in stream 2 and k‘of the
messages in { 1, - . . , n } arrive in stream 1

Theorem 5 If
(i) the arrival streams are independent and renewal

wzth life-time distributions A(1)(.) and A(z) (.) , and
mean interarrival dimes and & respectively, and

(ii) each sequence number (1 ,2 ,3 , . . .) is assigned inde-
pendently to one of the two streams, with probability
61 of assigning a number to stream 1 and probabal-
ity 6 2 = (1 - 61) of assigning a number to stream
2.

Then for 2 # 2, r, converges in distribution to an
improper distribution.

Proof: Consider the message with sequence number n.
It is in stream 1 with probability 61 and in stream 2
with probability 6 2 . Using the representation of rn in
terms of {a:)} and {a‘,“)} given above.

V 1

P (V n > r) = UlP ((g xi - Y(1)) + > .)
l / n-1 \ +

where

with probability (- X i) has distribution
with probability 6 2 X i has distribution

Y (l) has distribution
Y (z) has dist,ribution

now by the Kolmogorov Strong Law of Large Numbers

- 1 ” 1 X i - E X with probability 1

i = l

6 2 61

v2 Y l
Hence if - > - then

n-cu lim P(r , > r) = 61

and if - < - then

lim P (r , > r) = 6 2

for all r 2 O

6 2 6 1

v2 v1
for all r 2 0 o

n-cu

Thus, as a summary observation, if the events to
be synchronised are triggered by some common parent
stream, then synchronisation may be a stable process,
whereas if the event streams to be synchronised are in-
dependent then synchronisation is usually unstable.

Observe that Poisson time-stamp processes, as as-
sumed in Sections 2 and 3, yield an instance of the
sequence numbering process in hypothesis (ii) of The-
orem 5. Thus Theorem 5 generalises Theorem 4 to re-
newal arrival processes. This extension is relevant since
the departure process from a sequencer can be shown
to have renewal message departure epochs and Poisson
time-stamps.

5 Conclusions and Work in
Progress

The instability results obtained in this paper are not
surprising if viewed in the light of similar results ob-
tained for other queueing models. It is easy to see that
event synchronisation is similar to the assembly prob-
lem arising in manufacturing systems. If the parts to
be assembled come from independent streams, it was
shown by Harrisson [7] and Latouche [13] that under
fairly general conditions the queues of parts to be as-
sembled are unstable. The assumption of independent
part streams may not be always appropriate in the man-
ufacturing context, as the part streams usually orig-
inate from a common order stream. This constraint
would lead to the Baccelli and Makowski [2] framework
and hence to stability. N o such “parent” stream can
be argued in the context of distributed simulation of
open queueing networks. Hence if all logical processors
(LPs) are permitted to proceed at their own rates then
message buffers will overflow. Such simulations must
be stabilized by some form of interprocessor “flow con-
trol”. For example, a buffer level based backpressure
control can be applied by downstream LPs, or various

LPs can be prevented from getting too far apart in vir-
tual time by means of a mechanism like time windows
[20] or bounded lag [14].

While such mechanisms will serve to stabilize buffers,
our approach, of modelling and analysing the message
flow processes in the simulator, point8s towards certain
fundamental limits of efficiency of distributed simula-
tion, imposed by the synchronization mechanism. With
reference to the model in Figure 4 , it is clear that the
rate of departure of messages from LP3 corresponds to
the rate of progress of the simulation. But, if, for exam-
ple, 2 < 2 then the rate of resequenced messages
from the sequencer is bounded above by v1(1 + 2)
(< (v1 +vg)), for both conservative and maximum looka-
head sequencing, and for any level of flow control of LP1
and LP2. Firstly, this implies a stability condition for
LP3, and secondly it yields a computable limit on the
efficiency of distributed simulation of such a problem.
Ongoing work indicates that such results can be ob-
tained for the simulation of more general open queueing
networks [12].

APPENDIX
Proof of Theorem 1: Let r, denote the “virtual” time
up to which synchronisation is complete just after the
nth arrival epoch. Note that 7, is the time-stamp of the
last message allowed to pass through at the nth arrival.
Time-stamps of queued messages and messages yet to
arrive are viewed relative to r,, as increments beyond
rn

The result follows from the following Lemma.
Lemma: Let X , = i, and the time-stamps of the
queued messages relative to r, are S1, S1+ S2,. . . , S1+
Sz + . . a + Si. {S l ,S2 . . . } are i.i.d., Exp (X I) . Let T
denote the time-stamp of the message arriving at the
(n + 1)5t arrival epoch relative to 7,. Let (T1,Tl +
T2,. . a } denote the time-stamps, relative to rn+l, of the
messages left in queue after the (n + ,) s t arrival.

Then

an’,., e - A l t k j = i + l (i)
(1 - a)ai--j(l- a) n”,=, e - ’ i t k 1 5 j 5 i (ii)
(1 - .$-A211 j = -1 (iii)

Proof: (i) j = i + 1 if the (n + ,) s t arrival is from
stream 1 (probability a) . In that case r,+1 = r,, and
TI = S1, T2 = SZ,...,Z = S,, T,+1 - Ecp(X1) and
is independent of the others; (here - is to be read “is
distributed as”).

(ii) Let l = i-j for 1 5 j 5 i. In this case rn+l = T+
T,, Ti = Cfzi Sk-T, Tz = Se+2, . . . , T j = Se+j = Si,

= (1 - a) P (C < T < G + S e + l l G + S e + i - T > t i l

S ~ + Z > t ~ , . ‘ 1 St+j > t j)

where G := c‘,=, s k , and which, letting g (.) be the
probability density of G ,

Ju

which, on simplification, yields

= (1 - a) a y 1 - a)

(iii)
P(X,+1= -1, Tl > t l

/ i

‘Y, = i)

letting G = CkZ1 s k , and g(.) be the probability den-
sity of G ,

00

= (1 - a) / g(u)duee-Az(tl+u)

0

= (1 - Cy)aie--Xztl 0

Thus, after each arrival epoch, the time-stamps of the
queued messages are successive epochs of a Poisson
process. Returning to the proof of Theorem 1 , let
TO = 0 , X o = io (2 l) , and let the time-stamps of these
queued messages have the same distribution as the first
io epochs of a, Poisson process of rate XI.
Consider

Pp (X,+l = j I x o = io, ’ . . , x,-1 = x, = in)

where the subscript P denotes that the initial time
stamps form a segment of a Poisson process. Now writ-
ing this out

Pp(X1 = il , . . . , x, = in, X,+l = j I xo = io)
Pp(X1 = il . . .x, = in I xo = io)

- -

Consider the numerator

Pp(X1 = i l , . . . , X n = in,Xn+l = j I X O = io)

where R+ is the nonnegative real line, and {Sil)} are
time-stamps of messages queued just after the first ar-
rival, in relation to q . Now note that since the arrival
epochs form a Poisson process, and the time-stamps of
the yet to arrive messages also form a Poisson process
independent of the past, the conditioning on XO = io in
the second term under the integral can be dropped, and
applying the lemma above we get

= Pp(X1 = il I Xo = io) Pp(X2 = i 2 , X3 = is.. . ,
Xn+l= j I x1 = il)

Proceeding this way in the numerator and demominator
we will get

P .P(Xn+l=j I XO=io,...,X,_1=i,-l,X,=i,)
= Pp(X,+1= j I x, = in)

where the transition probabilities are obtained from the
Lemma. 0
Proof of Theorem 2: (i) Let Q be the trxnsi-
tion probability matrix restricted to the ser. of statcs
{1 ,2 ,3 . . . } . We will show that whenever Xluz # ~ 1 x 2 ,

there exists a bounded, nonnegative, nonzero solution
to (see [4])

i.e., (y1,y2, ...) such that , for i 2 1,
Q g = g

i - 1

Yi = a ~ i + l + c (1 - a) u j (l - U) Y L j

j = O

Multiplying by z * , for 0 < z < 1, and summing from 1
to 00

m m

i= l i= 1

00 i-1

i= l j = O

i.e.,

from which, on simplification, we get

Case (2) Q # u (i..., # &, i.e., Y I X Z # X1vz).
Using partial fraction expansion

j=1

hence solutions to Qy = y for u # a are of the form, for - -
j 2 4

(1 -a) - (1 -a) (g)'
Y j = 1 - u/a ') Y1

It is clear that there is a bounded nonzero solution be-
tween 0 and 1 if u < a and none if u > a. Thus
for u < a there are states in { 1 , 2 , 3 , . . .} from which
there is a positive probability of never leaving this set.
Hence {X,} would be transient. It is similarly clear
that for (1 - u) < (1 - a) , i.e., > a , there are
states in { . I .-3, -2, -1) from which there is a positive
probability of never leaving {. . . , -3, -2, -1). Thus for
u # a , {X,} is transient.
Case (ii) u = a

1 - U%
G (2) = z-

(1 - %) Z Y 1
M _ _

= L- ti (i(1 - 6) + .) y1
i=l

Recalling that u < 1, there is no bounded solution to
Qy = y; hence { X , } recurrent for u = a.
Proof: (ii) From (i) we know that for 2 = R (i.e.
a = u) {X,} is recurrent. We show now that for a = u,
{X,} is not positive recurrent, and hence is null.

Consider the Markov chain {XA} on the state space
{0 ,1 ,2 ,3 , . . .} with the transition probabilities (recall
that p , , , are transition probabilities for {X,}):

- -

= pj,j f o r i 2 1, j 2 1
I - p;,o - pi,-1 for i ? 1

A,, = P-1,1 = 1 -Pb,o

Observe that {X,} positive recurrent =s- {XA} is
positive recurrent. We show that for a = u, {XA} is
not positive recurrent. To do this we use a result due
to Kaplan [9] [see also [22]).
For i 2 1,

E(Xi+ , - x; I x; = i)

a - Cj(1- a) u j (l - u) - i(1 - a)o(
i-1

=
j = O

1-a
u{ 1 - ui} -

- ff-(=)

Hence for a = u =: a , and i 2 1

E(x:+,-x; I X; = i) = ui+l > ~ f o r a > ~

Also, directly,

E(X;+,-XL I xi = O) = a (1 - a) > 0

f o r O < u < l .

Further, for i 2 1, and z E (0,1]

3 = O 053 < i

where we use the inequality

z’ - z j 2 -(i - j)+(l - z)

for z E [0, 11 (see [all). Hence for i 2 1, z E (0,1], (see
mean drift calculations above)

03

j = O

2 - a (l - 2)

Hence the required conditions in [9] are satisfied and
{ X l } is not positive recurrent, implying that { X k } is
not positive recurrent. I t follows that { X k } is null re-
current for u = a. 0

References
[l] Baccelli, F., and Robert, Ph. , “Analysis of update

response times in a distributed data base main-
tained by the conservative time stamps ordering
algorithm”. In Performance, 83, 415-436.

[2] Baccelli, F., and Makowski, A.M., “Synchroniza-
tion in queueing systems”. In Stochastic Analysis
of Computer and Communication Systems, Ed. H.
Takagi, North-Holland, 1990, 57-129.

[3] Chandy, K.M., and Misra, J . “Asynchronous dis-
tributed simulation via a sequence of parallel com-
putations”. Commun. ACM 24, 11 (November
1981), 198-205.

[4] Cinlar, E., Introduction t o Stochastic Processes,
Prentice-Hall, Inc., 1975.

[5] Felderman, R.E., and Kleinrock, L. “Bounds and
approximations for self-initiating distributed sim-
ulation without lookahead” A CM Trans. Modelzng
Comput. Simulatzon 1, 4 (October 1991), 386-406.

[6] Fujimoto, R.M. “Parallel discrete event simula-
tion”, Commun. ACM 33, 10 (October 1990), 30-
53.

[7] Harrison, J.M., “Assembly-like queues”, J . Appl.
Prob. 10 (1973), 354-367.

[S] Jefferson, D.R. “Virtual time” , ACM Trans. Prog.
Lung. and Syst., 7 , 3 (July 1985), 404-425.

[9] Kaplan, M., “A sufficient condition for nonergodic-
ity of a Markov Chain”. IEEE Trans. Inform. The-
ory, IT-25, 4 (1979), pp. 470-471.

[lo] Kleinrock, L., Queueing Systems, Volume I: The-
ory, John Wiley & Sons, 1975.

[ll] Kleinrock, L. “On distributed systems perfor-
mance”. Computer Networks and ISDN Systems 20
(1990), 209-215.

[12] Kumar, Anurag and Shorey, Rajeev, “Stability &
performance of distributed simulators for feedfor-
ward queueing networks”, in preparation.

Appl. Prob. 18 (1981), 684696.
[13] Latouche, G. “Queues with paired customers”. J .

[14] Lubachevsky, B. D., “Eficient distributed event-
driven simulations of multiple-loop networks”.
Commun. ACM 32, 1 (January 1989), 111-123.

[15] Misra, J . “Distributed discrete event simulation” ,
ACM Comput. Surv. 18, 1 (March 1986), 39-65.

[16] Mitra, D., and Mitrani, I. “Analysis and optimum
performance of two message-passing parallel pro-
cessors synchronised by rollback”. In Performance
’84, Elsevier Science Pub. , North Holland, 1984,
35-50.

[17] Nicol, D.M. “High performance parallelized dis-
crete event simulation of stochastic queueing net-
works”. In Proceedings of 1988 Winter Simulation
Conference (December 1988), 306-314.

[18] Nicol, D.M., “The cost of conservative synchroniza-
tion in parallel discrete event simulations”. JA CM,
40, 2 (April 1993), 304-333.

[19] Shanker, M.S., and Patuwo, B.E., “The effect of
synchronization requirements on the performance
of distributed simulat,ions” . In Proceedings of the
7th Workshop on Parallel and Distributed Simula-
tion (PADS), 1993, 151- 154.

[20] Sokol, L. M., Weissman, J . B., and Mutchler, P. A.,
“MTW: An empirical performance study”. In Pro-
ceedings of the 1991 Winter Simulation Conference
(WSC), 557-563.

[21] Szpankowski, W. , “Some conditions for non-
ergodicity of Marliov Chains”. J . Appl. Prob. 22
(1985), 138-147.

[22] Szpankowski, W., “Towards computable stability
criteria for some multidimensional stochastic pro-
cesses”. In Stoch.asttc An,alysis of Computer and
Communication Systems, Ed. H. Takagi, North-
Holland, 1990, 131-172.

[23] Wagner, D.B., and Lazowska, E.D., “Parallel simu-
lation of queueing networks: limitations and poten-
tials” Perf. Eval. Review, 17, 1 (May 1989), 146-
155.

