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Abstract 
This paper is concerned with the behaviour of message 
queues in distributed discrete event simulafors. We view 
a logical process in a distribut4ed simulation a s  com- 
prising a message sequencer with associah-d message 
queues, followed by an event processor. We show that,  
with standard stochastic assumptions for message ar- 
rival and time-stamp processes, the message queues are 
unstable for conservative sequencing, and for conserva- 
tive sequencing with maximum lookah,ead and hence for 
optimistic resequencing, and for any resequencing algo- 
rithm that does not, employ interprocessor “flow con- 
trol”. These results point towards certain fundamental 
limits on the performance of distributed simulation of 
open queueing networks. 

1 Introduction 
In a distributed discrete event simulation, the simula- 
tion model is partitioned into several logical processes 
(LPs) which are assigned t o  the various processing ele- 
ments. The time evolution of the simulat.ion at the var- 
ious logical processes is synchronised by means of time 
stamped messages that  flow between the logical pro- 
cesses. We are concerned with the situation in which 
the messages are not just for synchronization, but also 
carry “work” which when done modifies the state of 
the receiving logical process. A typical example is the 
distributed simulation of a queueing network model, in 
which one or more queues is assigned to  each logical pro- 
cess, and t,he messages indicate the motion of customers 
between the queues in the various logical processes. The 
simulation makes correct progress if each logical process 
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Figure 1: Schematic View of a Logical Process 

processes the incoming events, from all other logical pro- 
cesses, in time stamp order. 

Each logical process may be viewed as compris- 
ing an input queue for each channel over which it 
can receive messages from another logical process (i.e., 

must be processed in time-stamp order, the event pro- 
cessor must be preceded by an event, sequencer. The 
messages must emerge from the sequencer in time stamp 
order. 

I t  is the event sequencer that  is a t  the core of much 
of the research in distributed discrete event simulation. 
Event sequencing algorithms fall in one of two classes: 
conservative or optimistic. A conservative event se- 
quencer allows a message to  pass through only if it is 
sure that no event with lower time-stamp can arrive 
in the (real time) future [3], [15]. An optimistic event 
sequencer, on the other hand, occasionally lets mes- 
sages pass through without being sure that no lower 
time stamped event can arrive in the future. If then a 
lower time stamped event does arrive, corrective action 
is taken resulting in a roll-backof the simulation [8], [6]. 

Considerable work appears t o  have been done on per- 
formance models of distributed simulation with the ob- 
jective of obtaining estimates or bounds on simulation 
speed-up with respect to  centralised simulation [16], 

LPI . LP2, .... LP,) (see Figure 1). Since the messages 



[17], [23], [ll], [5], [18]. In these models, speed-up is 
defined as the ratio of the real time rate of advance- 
ment of correctly simulated virtual time in a distributed 
simulation and a centr alised simulation. These analy- 
ses are usually made under considerably simplifying as- 
sumptions, and generally yield bounds on the expected 
speedup. In particular, little attention seems to  have 
been paid t o  the behaviour of the interprocessor mes- 
sage queues in distributed discrete event simulators. 
The simulation progresses by processing these messages. 
Thus we can view a simulator as a queueing network 
in which the customers are these interprocessor mes- 
sages; the throughput of this network would correspond 
to  progress of the simulation. 

A notable exception in the literature is a recent pa- 
per [19], that  was brought t o  our at,tention just as we 
had completed the work reported in this paper. Using 
mainly simulation results and heuristic reasoning the 
authors have anticipated some of the results we report 
here. Our results are based on a complet,e analysis of a 
formal stochastic model. 

In this paper we study a particular class of stochas- 
tic models for message and time-stamp arrivals at an 
event sequencer in a logical process. We first show that  
for this class of models, and for conservat,ive sequenc- 
ing, the message queues that  precede the sequencer are 
essentially unstable. Next, we show that even with maz- 
i m u m  lookahead (i.e., prescient knowledge of the time- 
stamp of the next message yet-to-arrive on the channel 
with the empty message queue) these queues are still un- 
stable. We then compare these instability results with 
certain stability results obtained, for synchronisation in 
a different context,, by Baccelli and Makowski “4. We 
show the reason for the stability in their case. In this 
process we also obtain an instability result for a gener- 
alised version of our original model. 

Maximum lookahead is an unrealisable algorithm as 
it  requires information that  is in practice not available. 
Hence messages left unsequenced by it a t  any time are 
at least as many as those for any realisable algorithm. I t  
follows that  the resequencing problem is fundamentally 
unstable, and some form of interprocessor “flow control” 
is necessary in order t o  make the message queues stable 
(without message loss). 

The paper is organised as follows. In Section 2 we 
prove the instability of conservative resequencing. In 
Section 3 we show that even with maximum lookahead, 
resequencing is unstable. In Section 4 we use a slightly 
different model t o  generalise the results of Sections 2 
and 3.  In Section 5 we discuss the implications of these 
results and directions for future work. 
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Figure 2: A Logical Process with 2 Input Message 
Streams 

2 Instability of Conservative Se- 
quencing 

Two time stamped message streams arrive t o  a logical 
process. Wit,hin each stream the messages are in time- 
stamp order. The messages must be processed in overall 
time-stamp order by the event processor. In this section 
we assume that  the sequencer uses the conservative se- 
quencing algorithm. 

Arriving messages queue up in their respective 
queues, a t  the sequencer, in their order of arrival. If 
both queues are nonempty then the sequencer takes the 
head-of-the-line (HOL) message with the smaller time- 
stamp and forwards i t  t o  the processor. We assume 
that, the service time for doing this work is negligible 
and take it to  be zero. If either of the queues is empty 
then the sequencer does not know the time-stamp order 
of the HOL message in the nonempty queue and does 
not forward any message t o  the processor. 

I t  follows that  at most one of the message queues a t  
the sequencer is ever nonempty, and, in fact, exactly one 
of the queues is always nonempty. The  queues evolve 
as follows. If, say, queue 1 is nonempty and a mes- 
sage arrives in stream 1, then it simply joins the end 
of queue 1, and no message is allowed to  pass through 
to  the processor. If a message arrives t o  queue 2,  then 
its time-stamp is compared with the HOL time-stamp in 
queue 1. If the newly arriving message has smaller time- 
stamp it is allowed to  pass through, otherwise the HOL 
message in queue 1 is passed through. In the latter case 
as many messages from queue 1 pass through as have 
time-stamp less than the new arrival in queue 2. If this 
leaves queue 1 empty then the arrival in queue 2 must 
be held until a t  least the next arrival epoch in stream 1, 
otherwise the arrival in queue 2 passes through leaving 
some unsequenced messages in queue 1. 

We study the process of the number of unsequenced 
messages, embedded at the arrival epochs in the super- 
position of the two message arrival streams. Let X ,  de- 
note the number of unsequenced messages just after the 
nth message arrival. If there are k messages in queue 
1 then X ,  = +k, whereas if there are k messages in 
queue 2 then X, = -k. In this model for conservative 
sequencing, X ,  # 0 for all n. 

We assume that  the two message arrival streams form 
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Figure 3: A Queueing Network 

Figure 4: Distributed Simulator for the Model in Figure 
3 

Poisson processes with rates u1 and u2 respectively, and 
that the successive time-stamps in each stream are Pois- 
son epochs with rates A1 and A2 respectively. 
Remark: Before we proceed with the analysis of this 
model, we note here that  this model is not vacuous and 
there exist inst,ances of distribut,ed discret,e event simu- 
lation that  yield such a model. Consider the queueing 
model in Figure 3 with external Poisson arrivals and ex- 
ponential service times, XI < p1, X2 < p2, X l + A z  < pg, 
and the queues Q1 and Q2 being stationary. 

The model in Figure 3 is mapped onto the distribut.ed 
simulater in  Figure 4 in the obvious way. LPl and LP2 
simulate the work in system [lo] in Q I  and Q 2 ,  and thus 
are driven by the two arrival processes. LPi (i E { 1,2})  
progresses by generating an interarrival time with dis- 
tribution exponential(Ai), updating the work in system 
process for &i and generating a departure event corre- 
sponding to the arrival. Since the queues are stationary, 
the departure processes in the queueing model are Pois- 
son with rates A 1  and A?,  respectively. If i t  takes LPi 
an exponentially distributed amount of time with mean 
us:' to do the work corresponding to each arrival, then 
we get a model for LP3 that  is exactly the same as de- 
scribed above.0 

Define =: CY , =: 0,  and assume 
Vl +v2 A1+A2 

that 0 < a < 1 ,  0 < D < 1. 

Theorem 1 {Xn,n 2 0) is a Markov Chain on 
{. . . , -3, - 2 ,  -1) u { 1 , 2 , 3 , 4 , .  . .} with transition proba- 
bilities: 

for i 2 1 

and 

Proof: The result is intuitively clear from the memory- 
less properties of the Poisson process and the exponen- 
tial distribution. We present, however, a careful proof 

The messages queues are found to be unstable in the 
in the Appendix. 0 

following sense. 

Theorem 2 (i)  For all u1, v2, XI, X2, ezcept those for  
which 2 = 2, the Markov chain { X , }  is transient. 

(ii) For = 2, {X , }  is null recurrent. 

Proof: These conclusions follow from standard 
Markov chain results. The  detailed analysis is given 
in the Appendix. 0 

I t  follows that  for all instances of the problem the 
message queues are unstable. In particular, we observe 
from the proof of Theorem 2 that  if 2 < then the 
queue of messages received from LP2 will grow without 
bound. 

3 Instability of Sequencing with 
Maximum Lookahead 

An optimistic sequencer works as in the case of conser- 
vative sequencing whenever both the message queues are 
nonempty. When a queue is empty, however, the pro- 
cessor is allowed to  process messages in the nonempty 
queue. Messages whose time-stamps precede that of the 
next message to  arrive in the empty queue, will get pro- 
cessed correctly. The rest will have to be reprocessed. 
Thus a t  any time there are messages that  cannot be 
processed correctly even if the sequencer had maximum 
lookahead, i.e., (somehow) knew the time-stamp of the 
next message to  arrive in the empty queue. These are 
the messages that optimistic sequencing (in fact, any 
sequencing algorithm) cannot process correctly until the 
next message in the empty queue is received. We show 
that the number of these messages forms a transient or 
null recurrent Markov chain under the same assump- 
tions and conditions as before. Note that in conserva- 
tive sequencing with lookahead, the best that  lookahead 
can do is to  let the sequencer know the time stamp 
of the next message to  arrive t o  the empty message 
queue. Hence our term maxzmum lookahead. Maximum 
lookahead is an unachievable algorithm, but its analysis 



should yield fundamental limats on the performance of 
any sequencing algorithm. 

Assuming Poisson arrivals and Poisson time-stamps 
we model the sequencer with maximum lookahead as 
follows. When a number of messages is waiting at a 
queue, it is known that the next message to arrive in 
the other queue has time-stamp smaller than the HOL 
queued message. So when this message arrives it im- 
mediately passes through to the processor. Synchro- 
nisation is now complete until the time-stamp of this 
message. A time-stamp is sampled for the next message 
to arrive in the empty queue and this lookahead infor- 
mation is provided to the sequencer. This time-stamp is 
compared with the time-stamps of the messages in the 
nonempty queue and as many messages as precede this 
time-stamp are allowed to pass through. The “residual” 
time-stamps of the remaining messages in the queue are 
again distributed ati epochs of a Poisson process. (see 
Lemma in the proof of Theorem 1). If all the mes- 
sages pass through in this way then synchronisiition is 
complete until the time-stamp of the last inessage to 
pass through, and the residual time-stamp of the next 
message to arrive in the hitherto empty queue is expo- 
nentially distributed. A time-stamp is sampled for the 
nezt message to arrive in the just emptied queue. Now 
the sequencer has lookahead information for both empty 
queues. If a message arrives in the queue with the larger 
time-stamp, the message is retained, otherwise the mes- 
sage passes through. 

Let {X , ,  n 2 0) denote the number of unsequenced 
messages just after nth arrival, when the sequencer has 
maximum lookahead, with the same notation as before. 
Observe that now X, can be 0. Again we find that the 
message queues are unstable. 

Theorem 3 {X,,, n 2 0 )  is  a Markow chain on {. . . - 
3, -2, -1,O, 1 , 2 , 3 , 4 ,  9 .  .} with transition probabilities: 

for i 2 I 

Pi,i+l = a 
Pij-3 = ( 1  - a>aj ( l -  a )  0 5 j 5 i - 1 

pi,o = (1 - a ) d  
P - i , - ( i + l )  = 1 -a! 

P - % , - ( i - j )  = &(1- a ) G  O l j l i - 1  

p-a,o = a(1-  a)i 

P0,l = a( l  - .) 
P0,-1 = ( 1  -a)u 

Po0 = 1 - (P0,l + PO,-l) 

Proof: Similar to Theorem 2. 0 

Theorem 4 ( i ) { X , , n  2 0 )  is  transient except when 

(ii){x, , n 2 o} is null recurrent when A l v 2  = A224 

A1v2  = A 2 v 1  

disordered 
sequencer 

Figure 5: Ordering a Sequence Numbered Stream 

Proof: Exactly the same as for Theorem 2. 0 
It follows that the resequencing problem is fundamen- 

tally unstable, and no sequencing algorithm, that does 
not exercise some form of interprocessor “flow control” , 
will yield stable message queues. 

4 A Generalisation: Sequence 
Numbered Streams 

Consider the model of Figure 2, with the variation that, 
instead of carrying a time-stamp, each message carries a 
sequence number, which is unique across both streams, 
and within a stream the messages arrive in sequence 
number order. Obviously time-stamps imply such a se- 
quence numbering, but sequence numbers provide more 
information to the sequencer than time-stamps alone. 
In fact, it is clear that, in the distributed simulation 
context, being provided with sequence numbered mes- 
sages is  equivalent to maximum lookahead. 

The superposition of the two sequence numbered 
streams yields a message stream with all sequence num- 
bers but the messages disordered. The reordering prob- 
lem is depicted in Figure 5. 

Let t,, be the arrival epoch of the message with se- 
quence number n. Let rn be the resequencing delay of 
this message. It follows that 

Tn+1 = ( ~ n  - ( t n + l -  t n ) )+  ( 1 )  

We will assume that t o  = 0 and hence ro = 0. Then it 
is easily seen that 

T, = inax(O,rnax(to,tl,...t,_l)-t,) 

Case 1 : (Baccelli and Makowski [2], and Baccelli & 
Robert [ l ]  ) 

The disordered stream is obtained by passing an or- 
dered stream (arrival epochs s,, , n > 0 ) through a disor- 
dering network that introduces random delays S,, n 2 0, 
i.e., t ,  = s, + 6,, where SO s1 5 sg . . .  5 s, 5 
. . . and 6, 2 0. Hence, by Equation (l), 

Tn+l = (rn - (6n+1- 6,) - (sn+1- sn)>+ 

Hence 
for stationary, ergodic {(6,+1 - 6,) , (s,+1 - Sn)} with 
E (&,+I - 6,) + E (s,+1 - s,) > 0 ,  r ,  converges in dis- 
tribution to a proper random variable. In particular if 



E6, = E6,+1, it follows that {r,} converges and the 
resequencing system is stable (see [2] ). 
Case 2 : 

The disordered stream is obtained by superposing two 
independent message streams, each message carrying a 
sequence number that is unique across both streams, 
and within each stream the messages are in time-stamp 
order. 

Now (assuming t o  = 0) 

Pn = max(O,max(to,tl,...,t,-l) - t n )  

Let the interarrival times in stream 1 be a i l ) ,  a?), 

It follows that, for n 2 1, 
and in stream 2 be a?), a?), . . . ,. 

+ (g=l a p  - x;r; a p )  
if t ,  is in stream 1 and k of the 
messages in { 1, . . . n} arrive in stream 2 

. .  

i f  t ,  is in stream 2 and k‘of the 
messages in { 1, - . . , n }  arrive in stream 1 

Theorem 5 If 
(i)  the arrival streams are independent and renewal 

wzth life-time distributions A(1)( . )  and A(z ) ( . ) ,  and 
mean interarrival dimes and & respectively, and 

(ii) each sequence number (1 ,2 ,3 ,  . . .) is assigned inde- 
pendently to one of the two streams, with probability 
61 of assigning a number to stream 1 and probabal- 
ity 6 2  = (1 - 61) of assigning a number to stream 
2. 

Then for 2 # 2, r,  converges in distribution to an 
improper distribution. 

Proof: Consider the message with sequence number n. 
It is in stream 1 with probability 61 and in stream 2 
with probability 6 2 .  Using the representation of rn in 
terms of {a:)}  and {a‘,“)} given above. 

V 1  

P ( V n  > r )  = UlP ((g xi - Y(1))  + > .) 
l / n-1 \ +  

where 

with probability ( - X i )  has distribution 
with probability 6 2  X i  has distribution 

Y ( l )  has distribution 
Y ( z )  has dist,ribution 

now by the Kolmogorov Strong Law of Large Numbers 

- 1 ”  1 X i  - E X  with probability 1 

i = l  

6 2  61 

v2 Y l  
Hence if - > - then 

n-cu lim P(r ,  > r )  = 61 

and if - < - then 

lim P ( r ,  > r )  = 6 2  

for all r 2 O 

6 2  6 1  

v2 v1 
for all r 2 0 o 

n-cu 

Thus, as a summary observation, if the events to 
be synchronised are triggered by some common parent 
stream, then synchronisation may be a stable process, 
whereas if the event streams to be synchronised are in- 
dependent then synchronisation is usually unstable. 

Observe that Poisson time-stamp processes, as as- 
sumed in Sections 2 and 3, yield an instance of the 
sequence numbering process in hypothesis (ii) of The- 
orem 5. Thus Theorem 5 generalises Theorem 4 to re- 
newal arrival processes. This extension is relevant since 
the departure process from a sequencer can be shown 
to have renewal message departure epochs and Poisson 
time-stamps. 

5 Conclusions and Work in 
Progress 

The instability results obtained in this paper are not 
surprising if viewed in the light of similar results ob- 
tained for other queueing models. It is easy to see that 
event synchronisation is similar to the assembly prob- 
lem arising in manufacturing systems. If the parts to 
be assembled come from independent streams, it was 
shown by Harrisson [7] and Latouche [13] that under 
fairly general conditions the queues of parts to be as- 
sembled are unstable. The assumption of independent 
part streams may not be always appropriate in the man- 
ufacturing context, as the part streams usually orig- 
inate from a common order stream. This constraint 
would lead to the Baccelli and Makowski [2] framework 
and hence to stability. N o  such “parent” stream can 
be argued in the context of distributed simulation of 
open queueing networks. Hence if all logical processors 
(LPs) are permitted to proceed at their own rates then 
message buffers will overflow. Such simulations must 
be stabilized by some form of interprocessor “flow con- 
trol”. For example, a buffer level based backpressure 
control can be applied by downstream LPs, or various 



LPs can be prevented from getting too far apart in vir- 
tual time by means of a mechanism like time windows 
[20] or bounded lag [14]. 

While such mechanisms will serve to stabilize buffers, 
our approach, of modelling and analysing the message 
flow processes in the simulator, point8s towards certain 
fundamental limits of efficiency of distributed simula- 
tion, imposed by the synchronization mechanism. With 
reference to  the model in Figure 4 ,  it is clear that the 
rate of departure of messages from LP3 corresponds to 
the rate of progress of the simulation. But, if, for exam- 
ple, 2 < 2 then the rate of resequenced messages 
from the sequencer is bounded above by v1(1 + 2) 
(< (v1 +vg)),  for both conservative and maximum looka- 
head sequencing, and for any level of flow control of LP1 
and LP2. Firstly, this implies a stability condition for 
LP3, and secondly it yields a computable limit on the 
efficiency of distributed simulation of such a problem. 
Ongoing work indicates that such results can be ob- 
tained for the simulation of more general open queueing 
networks [12]. 

APPENDIX 
Proof of Theorem 1: Let r, denote the “virtual” time 
up to which synchronisation is complete just after the 
nth arrival epoch. Note that 7, is the time-stamp of the 
last message allowed to pass through at the nth arrival. 
Time-stamps of queued messages and messages yet to 
arrive are viewed relative to r,, as increments beyond 
rn 

The result follows from the following Lemma. 
Lemma: Let X ,  = i, and the time-stamps of the 
queued messages relative to  r, are S1, S1+ S2,. . . , S1+ 
Sz + . . a +  Si. {S l ,S2 . . . }  are i.i.d., Exp ( X I ) .  Let T 
denote the time-stamp of the message arriving at the 
( n  + 1)5t arrival epoch relative to  7,. Let (T1,Tl + 
T2,. . a }  denote the time-stamps, relative to rn+l, of the 
messages left in queue after the (n + , ) s t  arrival. 

Then 

an’,., e - A l t k  j = i + l  (i) 
(1  - a)ai--j(l- a) n”,=, e - ’ i t k  1 5 j 5 i (ii) 
( 1  - .$-A211 j = -1 (iii) 

Proof: ( i )  j = i + 1 if the ( n  + , ) s t  arrival is from 
stream 1 (probability a) .  In that case r,+1 = r,, and 
TI = S1, T2 = SZ,...,Z = S,, T,+1 - Ecp(X1) and 
is independent of the others; (here - is to  be read “is 
distributed as”). 

(ii) Let l = i-j for 1 5 j 5 i. In this case rn+l = T+ 
T,, Ti = Cfzi Sk-T,  Tz = Se+2, . . . , T j  = Se+j = Si, 

= ( 1 - a ) P ( C < T < G + S e + l l  G + S e + i - T > t i l  

S ~ + Z  > t ~ ,  . ‘ 1  St+j > t j )  

where G := c‘,=, s k ,  and which, letting g ( . )  be the 
probability density of G ,  

Ju 

which, on simplification, yields 

= ( 1  - a )  a y 1  - a )  

(iii) 
P(X,+1= -1, Tl > t l  

/ i  

‘Y, = i) 

letting G = CkZ1 s k ,  and g(.) be the probability den- 
sity of G ,  

00 

= ( 1  - a )  / g(u)duee-Az(tl+u) 

0 

= (1 - Cy)aie--Xztl 0 

Thus, after each arrival epoch, the time-stamps of the 
queued messages are successive epochs of a Poisson 
process. Returning to the proof of Theorem 1 ,  let 
TO = 0 , X o  = io (2 l ) ,  and let the time-stamps of these 
queued messages have the same distribution as the first 
io epochs of a, Poisson process of rate XI. 
Consider 

Pp (X,+l = j I x o  = io, ’ .  . , x,-1 = x, = in) 

where the subscript P denotes that the initial time 
stamps form a segment of a Poisson process. Now writ- 
ing this out 

Pp(X1 = il , . . . , x, = in, X,+l = j I xo = io) 
Pp(X1 = il . . .x, = in I xo = io) 

- - 

Consider the numerator 

Pp(X1 = i l , . . . , X n  = in,Xn+l = j  I X O  = io) 



where R+ is the nonnegative real line, and {Sil)} are 
time-stamps of messages queued just after the first ar- 
rival, in relation to q .  Now note that since the arrival 
epochs form a Poisson process, and the time-stamps of 
the yet to arrive messages also form a Poisson process 
independent of the past, the conditioning on XO = io in 
the second term under the integral can be dropped, and 
applying the lemma above we get 

= Pp(X1 = il I Xo = io) Pp(X2 = i 2 ,  X3 = is.. . , 
Xn+l= j I x1 = il) 

Proceeding this way in the numerator and demominator 
we will get 

P .P(Xn+l=j  I XO=io,...,X,_1=i,-l,X,=i,) 
= Pp(X,+1= j I x, = in) 

where the transition probabilities are obtained from the 
Lemma. 0 
Proof of Theorem 2: (i) Let Q be the trxnsi- 
tion probability matrix restricted to the ser. of statcs 
{1 ,2 ,3 . . . }  . We will show that whenever Xluz # ~ 1 x 2 ,  

there exists a bounded, nonnegative, nonzero solution 
to (see [4]) 

i.e., (y1,y2, ...) such that ,  for i 2 1, 
Q g = g  

i -  1 

Yi = a ~ i + l  + c (1 - a ) u j ( l -  U ) Y L j  

j = O  

Multiplying by z * ,  for 0 < z < 1, and summing from 1 
to 00 

m m 

i= l  i= 1 

00 i-1 

i= l  j = O  

i.e., 

from which, on simplification, we get 

Case (2) Q # u (i..., # &, i.e., Y I X Z  # X1vz). 
Using partial fraction expansion 

j=1 

hence solutions to Qy = y for u # a are of the form, for - -  
j 2 4  

(1 -a) - (1 -a) (g)' 
Y j  = 1 - u/a ') Y1 

It is clear that there is a bounded nonzero solution be- 
tween 0 and 1 if u < a and none if u > a. Thus 
for u < a there are states in { 1 , 2 , 3 , .  . .} from which 
there is a positive probability of never leaving this set. 
Hence {X,} would be transient. It is similarly clear 
that for (1 - u) < (1 - a ) ,  i.e., > a ,  there are 
states in { . I  .-3, -2, -1) from which there is a positive 
probability of never leaving {. . . , -3, -2, -1). Thus for 
u # a ,  {X,} is transient. 
Case (ii) u = a 

1 - U% 
G ( 2 )  = z- 

(1 - % ) Z Y 1  
M _ _  

= L- ti (i( 1 - 6) + .) y1 
i=l  

Recalling that u < 1, there is no bounded solution to 
Qy = y; hence { X , }  recurrent for u = a. 
Proof: (ii) From (i) we know that for 2 = R (i.e. 
a = u) {X,} is recurrent. We show now that for a = u, 
{X,} is not positive recurrent, and hence is null. 

Consider the Markov chain {XA} on the state space 
{0 ,1 ,2 ,3 , .  . .} with the transition probabilities (recall 
that p , , ,  are transition probabilities for {X,}): 

- -  

= pj,j f o r  i 2 1, j 2 1 
I -  p;,o - pi,-1 for  i ? 1 

A,, = P-1,1 = 1 -Pb,o 

Observe that {X,} positive recurrent =s- {XA} is 
positive recurrent. We show that for a = u, {XA} is 
not positive recurrent. To do this we use a result due 
to Kaplan [9] [see also [22]). 
For i 2 1, 

E(Xi+ ,  - x; I x; = i )  

a - Cj(1- a ) u j ( l -  u) - i(1 - a)o( 
i-1 

= 
j = O  

1-a  
u{ 1 - ui}  - 

- ff-(=) 

Hence for a = u =: a ,  and i 2 1 

E(x:+,-x; I X; = i )  = ui+l > ~ f o r a > ~  

Also, directly, 

E(X;+,-XL I xi = O )  = a ( 1 - a )  > 0 

f o r O < u < l .  



Further, for i 2 1, and z E (0,1] 

3 = O  053 < i  

where we use the inequality 

z’ - z j  2 -(i - j)+(l - z )  

for z E [0, 11 (see [all). Hence for i 2 1, z E (0,1], (see 
mean drift calculations above) 

03 

j = O  

2 - a ( l -  2 )  

Hence the required conditions in [9] are satisfied and 
{ X l }  is not positive recurrent, implying that { X k }  is 
not positive recurrent. I t  follows that  { X k }  is null re- 
current for u = a. 0 
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