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ABsTrRACT. A function from the exponential family is proved to have U shape
in certain interval. When one of the coefficients is negative then the functional
form will be the exact mirror image of its original function. Volume of such |J
shaped vessel is calculated.
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1. INTRODUCTION

Let

(1) fla) = eve e

define v = (—=1)**"' mu2*=1. Here k,m € N. If u = 0 then v = 0 and equation
(1) becomes simple. So I condition that u # 0. This condition became necessary
for later part of the work. Take k = 1. As z value increases from integer 1, then
the function decreases up to a point where it starts increasing and then for certain
point of abscissa the function will be exactly equal to that value when it was for
z = 1. The result is also true when u is an irrational number 7. We state and
prove a theorem below for a particular case when k = 1.

2. |J FUNCTIONS

Theorem 1. Let f is defined as in (1). Then forv = (—1)* "1 mu2*~1 and k =1,
f)=f( %) for allu e R—{0},m e N.

Proof. Given k = 1. First let us begin that 4 € R*. For m = 1, we get v = —u and
| “E2 |= 0. Therefore, f (1) = €® = f (] &£ |) = 1. For m = 2, we get v = —2u
and | % |= 1. Therefore, f (1) =e = f (] “t2 ).

Now take m =n € N, then we have

v = —nhu
| u:v | = n-1
Therefore,
F) = et
7 (] u+tv | — eu(n—l)Z—nu(n—l)
u
— eun272un+u7un2+nu
(2) — eu(lfn)

Now substitute n+ 1 for n in (2), then f (| “E2 |) = e7¥". This can be rewritten
as

(3) f | utv | — eu.12+{—(n+1)u}.1
u

Comparing (1) and (3), we see that,

v=(=1)*""mu**(for k =1) —(n+1Du
—mu = —(n+1u
Therefore, m = n + 1. Hence from (3) f (| 2 |) = f (1). Hence the statement

is true for all m € N.
Similar proof for © € R~ can be produced. O

When u € R the following three remarks holds good.
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Remark 1. f in theorem 1 attains minimum at the midpoint of the interval [1, | %2 |].
Remark 2. f (] “t2 | —8) = f (1 + ) for all real § in [1,] “E2 |].
Proof. When k = 1,m = n then v = —nu, then for all real §
F48) = x0Tm0t
(4) — eé2u+6u(2—n)+u(1—n)
f | U+v | -5 — eu(n—l—é)z—nu(n—l—é)
u

— 652u—26u(n—1)+u(n—1)2+n6u—un(n—1)

— 662u76un+25u7nu+u
(5) — 662u+6u(27n)+u(17n)
Hence the proof. O
Remark 3. f in theorem 1 resembles alphabet | in the interval [1,] “t¢ |].
Proof. See Remarks 1 & 2. a

Definition 1. ftand f~ are functions with the same property as in theorem 1
except that fTis applicable when u € Rt and f~is applicable when u € R™.

Remark 4. f~ resembles alphabet ) in the interval [1,] 2 |]. Interestingly the
curve of f~ is exactly the mirror image of f*

Remark 5. For ftand f~in definition 1 the following type of curves holds good.

Operation Type
ffefr ~ N
=~ N
o~ N
VAN
-~ U

I=
g 0
We generalise the function for all m instead of particular m = 1 and define as
below.

Definition 2. g be function such that g(z) = €%®” %% where v = (—1)** ' mu2*=1 for all u,m, k €
N.

Theorem 2. g(1) = g (| “t2|) for all u,m,k € N.
Proof. Let us consider the situation where m = k in the definition 2. Then for
m = 11it is already proved above. Take m = 2, then v = —2u® and | “t% |= 2u® - 1.

Also we have,
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g(l) — eu(1—2u2)

eu(2u271)272u3 (242-1)

)

N

IS

e |+

S

~—_
|

o)
take m = n then v = (=1)*" ' nu?"! = —nu?"! and | Y || % =
nu?n=2 — 1.
g(1) = ex(i=m™)
g (| uty |) = eulm ) e ()
= Pt 2u T by 2t g
(6) = eu(l-m®?)

Therefore g (1) = g (| 2 |) for m = n. Now substitute n =n + 1 in (6) then

u

u
(7) — e‘u{l—(n-‘rl)uZn}

when m = n + 1, then v = — (n + 1) u?"*!. Therefore,
®) g (1) = entwrenst _ e}

Comparing (7) and (8), we see that g (1) = g (| % |) for all u,m € N. Hence
the proof. The case when m # k can be similarly proved. O

Remark 6. Theorem 2 is not true for real w. This is the another difference between
theorem 1 and theorem 2 apart from generalisation of the result for all m > 1.

Remark 7. The functional values of g resembles alphabet | in the interval [1,] %2 |].
If u is a negative integer in above theorem 2 then g resembles alphabet [ in the
interval [1,| “£2 []. Various operations on these two can also be obtained as shown
for the theorem 1. Even for general integer n the curve of g~ is exactly the mirror
image of g*.

3. AREA AND VOLUME

In this section, area covered by the function g (G, say) i.e. area of the shape |
and volume of the same shaped vessel (V, say) are calculated. Area is calculated
using integration of the function between the limits 1 and | % |. Then V = G4,
where ¢ is the multiplier. Imagine a cricle whose diameter (d, say) of length | £ |
—1. ¢ is calculated as ratio of the area of the circle of diameter d and diameter d.

Let z € [1,] X2 || and m # n, then area of |J for some k =n € N is

) /lluui

When we substitute = mu®"~? in the equation (9) then

2m-2_4
2n—1

g(z)dx = / eur’—mu* e g
1
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r—=1 = u—-sm’"
- 2-2
z=mu™? -1 = u—>(n-m) "

and area of U was given as

u m (2—2n)?
G= g(l)g —-m ( )

n—m

Please note that the correct expression for above area is

¢ = g —m[in—m) e

Similarly corrected expression for volume of U type vessel is

(10) v = 28 "4

4. CONCLUSIONS

We are here dealing with properties of the function in the interval of finite length
and where functions have bounds. Applying traditional analysis methods on func-
tions defined here does not give any interesting results. Though there were useful
literature on quadratic exponential earlier ([1]), it was not explored by defining the
coefficients in a special way (definitions 1 & 2). One can also obtain the maxima
and minima values for these functions in the above intervals through traditional
differentiation method. The volume calculated using method explained in section
3 can be practically applicable. However, the traditional principles for obtaining
volumes of well known shapes can also be seen in ([2]).
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