Synthesis, Characterization and TL studies of Porous CaSiO₃ Ceramic Powders

R. P. Sreekanth Chakradhar¹, B.M. Nagabhushana², G.T. Chandrappa² H. Nagabhushana³, K.P. Ramesh¹ and J. L. Rao⁴

¹Department of Physics, Indian Institute of Science, Bangalore - 560 012, India.

²Department of Chemistry, Bangalore University, Bangalore – 560 001, India.

³Forensic Science Laboratory, Bangalore - 560 068, India.

⁴Department of Physics, Sri Venkateswara University, Tirupati – 517 502, India

Abstract

Nanocrystalline porous CaSiO₃ ceramic powders have been synthesized by a novel low temperature initiated self-propagating, gas producing solution combustion process and characterized by XRD, SEM, EDS, porosity, surface area and Thermoluminescence (TL) studies. The effect of temperature on crystalline phase formation, amount of porogens and particle size of porous CaSiO₃ has been investigated. Single phase β -CaSiO₃ and α -CaSiO₃ are formed at 950 and 1200 °C respectively. The phase transformation temperatures of combustion derived CaSiO₃ were found to be lower compare to the powders obtained via solid state reaction method. The micro structure and morphology were studied by SEM and it is interesting to note that with increase in calcination temperature, the samples becoming more porous and the pore diameter increases from 2 to 10 µm. The samples calcined at 950 °C for 3 hours has 17.5 % porosity, however the porosity increases to 31.6 % on calcination at 1200 °C for 3 hours. The surface area of as formed and calcined at 950 and 1200 °C of CaSiO₃ samples were found to be 31.93 m²/g, $0.585m^2/g$ and $3.48 m^2/g$ respectively. The TL intensity in powdered sample is more when compared to the pelletized CaSiO₃ and it is further observed that there is a shift in glow peak temperatures in pelletized sample. This is attributed to the inter particle spacing and pressure-induced defects.