ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

The homologous recombination system of phage lambda. Pairing activities of beta protein

Muniyappa‌, K and Radding, CM (1986) The homologous recombination system of phage lambda. Pairing activities of beta protein. In: The American Society for Biochemistry and Molecular Biology, 261 (16). pp. 7472-7478.

[img] PDF
7472.full.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy
Official URL: http://www.jbc.org/content/261/16/7472.abstract

Abstract

The red genes of phage lambda specify two proteins, exonuclease and beta protein, which are essential for its general genetic recombination in recA- cells. These proteins seem to occur in vivo as an equimolar complex. In addition, beta protein forms a complex with another polypeptide, probably of phage origin, of Mr 70,000. The 70-kDa protein appears to be neither a precursor nor an aggregated form of either exonuclease or beta protein, since antibodies directed against the latter two proteins failed to react with 70-kDa protein on Ouchterlony double diffusion analysis. beta protein promotes Mg2+-dependent renaturation of complementary strands (Kmiec, E., and Holloman, W. K. (1981) J. Biol. Chem. 256, 12636-12639). To look for other pairing activities of beta protein, we developed methods of purification to free it of associated exonuclease. Exonuclease-free beta protein appeared unable to cause the pairing of a single strand with duplex DNA; however, like Escherichia coli single strand binding protein (SSB), beta protein stimulated formation of joint molecules by recA protein from linear duplex DNA and homologous circular single strands. Like recA protein, but unlike SSB, beta protein promoted the joining of the complementary single-stranded ends of phage lambda DNA. beta protein specifically protected single-stranded DNA from digestion by pancreatic DNase. The half-time for renaturation catalyzed by beta protein was independent of DNA concentration, unlike renaturation promoted by SSB and spontaneous renaturation, which are second order reactions. Thus, beta protein resembles recA protein in its ability to bring single-stranded DNA molecules together and resembles SSB in its ability to reduce secondary structure in single-stranded DNA.

Item Type: Journal Article
Publication: The American Society for Biochemistry and Molecular Biology
Publisher: The American Society for Biochemistry and Molecular Biology
Additional Information: Copyright of this article belongs to The American Society for Biochemistry and Molecular Biology.
Department/Centre: Division of Biological Sciences > Biochemistry
Date Deposited: 19 Feb 2010 08:50
Last Modified: 19 Sep 2010 05:55
URI: http://eprints.iisc.ac.in/id/eprint/25680

Actions (login required)

View Item View Item