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Quantum information processing has been effectively demonstrated on a small number of qubits by
nuclear magnetic resonance. An important subroutine in any computing is the readout of the output.
‘‘Spectral implementation’’ originally suggested by Z. L. Madi, R. Bruschweiler, and R. R. Ernst@J.
Chem. Phys.109, 10603~1999!#, provides an elegant method of readout with the use of an extra
‘‘observer’’ qubit. At the end of computation, detection of the observer qubit provides the output via
the multiplet structure of its spectrum. In spectral implementation by two-dimensional experiment
the observer qubit retains the memory of input state during computation, thereby providing
correlated information on input and output, in the same spectrum. Spectral implementation of
Grover’s search algorithm, approximate quantum counting, a modified version of Berstein-Vazirani
problem, and Hogg’s algorithm are demonstrated here in three- and four-qubit systems.
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I. INTRODUCTION

In 1982 Feynmann pointed out that it would be mo
efficient to simulate the behavior of a quantum system us
a quantum, rather than a classical device.1 The idea of a
purpose-built quantum computer, which could simulate
physical behavior of a quantum system as well as perfo
certain tasks much faster than classical computer, attra
immediate attention.2,3 The theory of such quantum compu
ers is now well understood and several quantum algorith
like Deutsch-Jozsa~DJ! algorithm, Grover’s search algo
rithm, Shor’s factorization algorithm, Berstein-Vazira
problem, Hogg’s algorithm and quantum counting have b
developed.4–10

However, building a realistic large-scale quantum co
puter has been extremely challenging.11,12 Various devices
are being examined for building a quantum information p
cessing~QIP! device which is coherent and unitary.11 Among
these, nuclear magnetic resonance~NMR! has shown grea
promise by demonstrating several quantum algorithms
other QIP tasks on small-scale devices.13–28 The last step in
any quantum information processing task is the ‘‘readout’’
the output. Typically in NMR, the readout is obtained
selectively detecting spins,29 or by mapping out the full den
sity matrix.30–32 It was first pointed out by Ernst an
co-workers33 that it is advantageous from the spectrosco
viewpoint that quantum states can be assigned to individ
spectral lines, corresponding to transitions between en
levels rather than to the energy levels themselves.33 How-
ever, for such an advantage one has to use an extra q
called ‘‘observer’’ qubit. After computation the readout
obtained by detecting only the observer qubit, whose mul
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let spectrum provides the result of the computation carr
out on the work qubits. Such a ‘‘spectral implementation’’
a quantum computer was demonstrated by implementatio
some logic gates by one- and two-dimensional NMR33

Later, spectral implementation of a complete set of lo
gates and DJ-algorithm,34 Berstein-Vazirani problem,35 and
quantum Fourier transform36 have also been implemented b
NMR. In this work we extend this range by spectrally impl
menting Grover’s search algorithm, approximate quant
counting, a modified version of Berstein-Vazirani proble
and Hogg’s algorithm. All the algorithms are implement
by both one- and two-dimensional NMR.

II. THEORY

A convenient representation of the density matrices
pure states in Liouville space can be obtained by the po
ization operators for each qubit~k!,33,37

I 0
k5u0&^0u5S 1 0

0 0D , I 1
k5u1&^1u5S 0 0

0 1D ,

I 1
k 5u0&^1u5S 0 1

0 0D , I 2
k 5u1&^0u5S 0 0

1 0D ,

~1!

I x
k5

1

2
~ I 1

k 1I 2
k !5

1

2 S 0 1

1 0D ,

I y
k5

1

2i
~ I 1

k 2I 2
k !5

1

2i S 0 1

21 0D ,

I z
k5

1

2
~ I 0

k2I 1
k!5

1

2 S 1 0

0 21D .

For example, the density matrix of a pure stateu00&1u11& can
be expressed as

http://dx.doi.org/10.1063/1.1795674
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FIG. 1. Experimental protocol for spectral implement
tion of quantum algorothms~Ref. 33!. ~a! One-
dimensional experiment. The first stage is to create
subsystem pseudopure state of the typeI z

0I 0
1I 0

2
¯I 0

N ,
followed by computation onI 1

¯I N qubits. Finally the
transitions of the observer qubitI 0 are detected by a 90y

+

pulse.~b! Two-dimensional experiment. After the cre
ation of initial I z

0I 0
1I 0

2
¯I 0

N subsystem PPS, the observ
qubit is flipped by 90y

+ pulse to transverse magnetizatio
and allowed to evolve for a timet1 . During t1 , the
transitions of the observer qubit modulate with the fr
quencies characterized by the input state of the otheN
qubits. A subsequent 902y

+ brings the magnetization
back to longitudinal direction. The computation is pe
formed on theI 1

¯I N qubits. The transitions of the ob
server qubit are finally detected by a 90y

+ pulse. A series
of experiments are performed with systematic incr
ment of the t1 period and the collected 2D data se
s(t1 ,t2) is Fourier transformed with respectd tot1 and
t2 to get the 2D spectrumS(v1 ,v2).
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S 0 0 0 0

1 0 0 1

D 5u00&^00u1u11&^11u1u00&^11u1u11&^00u,

~2!

5I 0
1I 0

21I 1
1I 1

21I 1
1 I 1

2 1I 2
1 I 2

2 . ~3!

The scheme of spectral implementation of on
dimensional~1D! and two-dimensional~2D! NMR is, re-
spectively, given in Figs. 1~a! and 1~b!. We start with the
thermal equilibrium density matrixI z

01I z
11I z

21¯1I z
N and

in the preparation period we create density matrix of
form I z

0I 0
1I 0

2
¯I 0

N , where I z
0I 0

1I 0
2
¯I 0

N5(I 0
0I 0

1I 0
2
¯I 0

N

2I 1
0I 1

1I 1
2
¯I 1

N)/2. In this state the lastN21 qubits are simul-
taneously in pseudopure state~PPS! ~Ref. 13! in two distinct
domains of energy levels, in which the observer qubit is
stateu0& and u1&, respectively. Such a state is known as su
system pseudopure state.14 This is further elaborated in Fig
2.

The schematic diagram of the energy levels and
spectrum of the observer qubit in a three-qubit system, wh
the first qubit is the observer qubit, is given in Fig. 2. Figu
2~a! shows the equilibrium deviation populations~popula-
tions in excess of uniform background population! of various
energy levels and Fig. 2~b! the equilibrium spectrum of the
observer qubit obtained after a~p/2! detection pulse. Each o
the spectral lines in the multiplet correspond to the state
the other qubits. The energy level diagram along with
deviation populations after creating the desired initial state
I z

0I 0
1I 0

2 is given in Fig. 2~c!. The corresponding observer qub
spectrum of Fig. 2~d! has a single line, that ofu00&, indicating
that the other qubits are inu00& state.

Typically after computation, the density matrix is of th
form I z

0I 0/1
1 I 0/1

2
¯I 0/1

N , where the subscript 0/1 means that t
particular qubit is either in 0 or 1 state. A subsequent (p/2)y

0

pulse on the observer (I 0) qubit creates single quantum co
-
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FIG. 2. Schematic diagram of the energy levels and the spectrum of
observer qubit at different stages of spectral implementation.~a! Deviation
equlibrium populations. The dotted arrows denote the transitions of obse
qubit. ~b! Equilibrium spectrum of observer qubit shown by stick diagra
Each transition of the spectrum correspond to the state of other qu
which are given above each line.~c! Deviation populations after creation o
u00& subsystem pseudopure state by POPS. Populations of onlyu00& eigen-
state is nonzero in the two distinct domains of energy levels, where obse
qubit is, respectively, in stateu0& and u1&. ~d! Spectrum of observer qubi
after creation of POPS. The dots denote null intensity.~e! Deviation popu-
lations after a typical computation whose output isu11&. ~f! Spectrum of
observer qubit after such a computation.
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herences of the formI x
0I 0/1

1 I 0/1
2
¯I 0/1

N , which gives a single
line in the spectrum corresponding to the output state
other qubits. In the example of three-qubit system given
Fig. 2, let us assume that we start with the initialu00&
pseudopure state of the qubits~other than observer qubit! and
after some computation let the output state beu11&. After
such a computation, the deviation populations and spect
of observer qubit are given, respectively, in Figs. 2~e! and
2~f!.

In some algorithms however, the output is a superpo
tion of multiple states. Then, the output density matrix w
have nonzero populations in all the output states and
coherences between them. The spectrum of the observe
bits will thus have multiple lines, corresponding to all th
output states. For example, in the three-qubit system, if
output state of the work qubits isu00&1u11&, the density ma-
trix is of the form I z

0I 0
1I 0

21I z
0I 1

1I 1
21I z

0I 1
1 I 1

2 1I z
0I 2

1 I 2
2 . After

the (p/2)y
0 detection pulse on the observer qubit the sin

quantum coherences of the termsI x
0I 0

1I 0
2 and I x

0I 1
1I 1

2 will be
detected. The spectrum of the observer qubit will show t
lines corresponding to the states ofu00& and u11& of the other
qubits. The coherences will be converted into multiple qu
tum coherences which are not detected directly in NM
Hence, the spectral implementation gives a measure of
deviation populations or probabilities of each state but d
not measure the coherences, which if required can be m
sured by state tomography.30–32

A two-dimensional experiment for spectral implemen
tion provides the input and output in the same spectrum.
pulse sequence for the two-dimensional experiment of sp
tral implementation is given in Fig. 1~b!. Suppose a compu
tation starts with the input ofu00̄ 0& and end with an outpu
of u11̄ 1& state. After preparation of the initialI z

0I 0
1I 0

2
¯I 0

N

state the application of the pulse sequence of Fig. 1~b! can be
analyzed in the following steps:

I z
0I 0

1I 0
2
¯I 0

N →
~p/2!y

0

I x
0I 0

1I 0
2
¯I 0

N→
t1

I x
0I 0

1I 0
2
¯I 0

N cos~v00̄ 0
0 t1!

→
~p/2!2y

0 ,Gz

I z
0I 0

1I 0
2
¯I 0

N cos~v00̄ 0
0 t1!

→
Comp

I z
0I 1

1I 1
2
¯I 1

N cos~v00̄ 0
0 t1!

→
~p/2!y

0
2t2

I x
0I 1

1I 1
2
¯I 1

N cos~v00̄ 0
0 t1!cos~v11̄ 1

0 t2!,

~4!

wherev00...0
0 andv11...1

0 are, respectively, the frequencies
the u00...0& and u11...1& transitions of the observer qubitI 0,
(p/2)y

0 is a ~p/2! rotation of the observer qubit (I 0) abouty
axis, Gz is the gradient pulse and Comp is the computat
performed on the work qubits. It may be noted that the sig
from the observer qubit is modulated by the frequencies c
responding to both the input and the output states of the w
qubits. A series of experiments are performed with syste
atic increment of thet1 period followed by detection of the
observer qubit’s signal. The collected two-dimensional ti
domain data sets(t1 ,t2) is double Fourier transformed wit
respect tot1 and t2 yielding a two-dimensional frequenc
f
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domain spectrumS(v1 ,v2), which contains alongv1 the
input states of work qubits before computation and alongv2

the output state of work qubits after computation.

III. GROVER’S SEARCH ALGORITHM

Grover’s search algorithm can search an unsorted d
base of sizeN in O(AN) steps while a classical search wou
requireO(N) steps.5 Grover’s search algorithm has been ea
lier demonstrated by NMR.18,19 The quantum circuit for
implementing Grover’s search algorithm on two-qubit sy
tem is given in Fig. 3~a!. The algorithm starts from au00&
pseudopure state. A uniform superposition of all states

FIG. 3. The quantum circuits of various algorithms.~a! Quantum circuit for
implementation of Grover’s search algorithm in a two-qubit system.~b!
Quantum circuit for implementation of approximate quantum counting i
two-qubit system.~c! Quantum circuit for implementation of Berstein
Vazirani problem.~d! Quantum circuit for implementation of Hogg’s algo
rithm in a three-qubit system.
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created by the initial Hadamard gates~H!. Then the sign of
the searched state ‘‘x’’ is inverted by the oracle through th
operator

Ux5I 22ux&^xu. ~5!

An inversion about mean is performed on all the states b
diffusion operatorHU00H, where

U005I 22u00&^00u. ~6!

For anN-sized database the algorithm requiresO(AN) itera-
tions of UxHU00H. For a two-qubit system with four state
only one iteration is required. We have implemented t
algorithm on the two qubits of a three-qubit system with t
third qubit acting as the observer qubit. The three-qubit s
tem chosen for this purpose is 4-fluro 7-nitro benzofu
~dissolved in CDCl3), which comprises of a two proton
(1H) and a flourine (19F). The chemical structure of the mo
ecule along with the equilibrium proton and fluorine spe
trum is given in Fig. 4~a!. We have chosen the fluorine sp
as the observer qubit. The Hamiltonian of the system is

H5(
i 50

2

2pn i I z
i 1(

i . j
2pJi j I z

i I z
j , ~7!

wheren i are the resonance frequencies of various spins
Ji j are the indirect couplings. The experiments were p
formed at a field of 11.4 Tesla in a Bruker DRX500 spe
trometer. At the magnetic field of 11.4 Tesla, the reson

FIG. 4. ~a! Chemical structure and equilibrium spectrum of 4-fluro 7-ni
benzofuran. TheJ-coupling values areJ01523.84 Hz, J0258.01 Hz, and
J1258.07 Hz. The peak denoted by asterisk~* ! belongs to solvent.~b! Spec-
tra after creation of POPS. A Gaussian shaped selective pulse of 50
duration was applied on theu000&↔u100& transition and the resultant spectr
is subtracted from the equlibrium spectra of figure~a! to yield ~b!. @See Fig.
2~c!#.
a

s
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n
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frequency of proton is 500.13 MHz and that of fluorine
470.59 MHz. The frequency difference between the two p
tons is 646 Hz. TheJ couplings areJ01523.84 Hz, J02

58.01 Hz, andJ1258.07 Hz. The1H transmitter frequency
is set at the center of the proton spectrum.

The required initial state ofI z
0u00&^00u was prepared by

the method of pair of pseudopure states~POPS!, originally
suggested by Fung.38,39 The method requires two populatio
distributions,~i! equilibrium populations and~ii ! population
distribution after a selective~p! pulse onu000&↔u100&. Sub-
traction of ~ii ! from ~i! effectively gives the initial state o
I z

0u00&^00u @Fig. 4~b! corresponding to the schematic PPS
Fig. 2~c!#. It might be noted that the method of creation
subsystem pseudopure states from cat states can als
adopted for creation of this initial state.40

The Hadamard gates are implemented by (p/2)2y
1,2(p)x

1,2

pulse ~pulses are applied from left to right!,18 where (u)x
1,2

denotes au-angle pulse~rotation! on first and second qubi
about thex axis. TheU00 operator is a controlled phase ga
which can be implemented by the sequence@(t/2)
3(p)x

1,2(t/2)(p)x
1,2#@(p/2)2y

1,2(p/2)2x
1,2(p/2)y

1,2#, where t
51/2J12.18 The sequence@(t/2)(p)x

1,2(t/2)(p)x
1,2# evolves

the system only under theJ12 coupling and refocuses a
other couplings and proton chemical shifts,37 whereas the
@(p/2)2y

1,2(p/2)2x
1,2(p/2)y

1,2# is a compositez rotation on both
the qubits.41 Similarly, the other phase gates can be co
structed as,18

U015@~t/2!~p!x
1,2~t/2!~p!x

1,2#

3@~p/2!2y
1,2~p/2!x

1~p/2!2x
2 ~p/2!y

1,2#,

U105@~t/2!~p!x
1,2~t/2!~p!x

1,2#

3@~p/2!2y
1,2~p/2!2x

1 ~p/2!x
2~p/2!y

1,2#, ~8!

U115@~t/2!~p!x
1,2~t/2!~p!x

1,2#

3@~p/2!2y
1,2~p/2!x

1,2~p/2!y
1,2#.

The pulses which are simultaneously applied on both
qubits are achieved by hard pulses. However, some g
require selective excitation of qubits. Since the resona
frequencies of the two protons are relatively close to e
other, selective excitation of a particular proton qubit r
quires long low-power pulses, which introduce significa
errors in the computation.17,19 Fortunately, in case there ar
two homonuclear qubits, the selective pulses can be su
tuted by hard pulses and delays using the variation of ‘‘jum
and-return’’ sequence,42 as demonstrated by Jones a
Mosca.43 For example, the pulse sequence ofU01 gate re-
quires (p/2)x

1(p/2)2x
2 at one point. This can be achieved b

using the identity41

~p/2!2y~p/2!6z~p/2!y5~p/2!6x . ~9!

If the proton transmitter frequency is set at the center of
spectrum, thenn152n25n, and a delay of~1/4n! evolves
the two protons under the Zeeman Hamiltonian of 2pn(I z

1

2I z
2) to give the intermediate (p/2)6z rotation of Eq.~9!.

Hence,

~p/2!x
1~p/2!2x

2 5~p/2!2y2~1/4n!2~p/2!y . ~10!

ms
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FIG. 5. ~a! Spectral implementation of Grover’s searc
algorithm by 1D experiment. After computation, the ob
server qubit is detected by a nonselective pulse of
ms. 431024 data points were collected and zero fille
to 831024 before Fourier transform. The observer q
bit’s spectra show only the transition corresponding
the searched state (ux&) with nonzero intensity.~b!
Spectral implementation of Grover’s search algorith
by 2D experiment. A 2D data set of 256316 (t23t1)
was collected and zero filled to 10243256. It may be
noticed that the total size of the raw 2D dataset is of t
same size as that of the 1D experiment. The dou
Fourier transformed spectra gives the input state alo
v1 and output state alongv2 .
,
m

u
er

-
in

io
n
ig

iod

nta-

-

Similarly, the pulse (p/2)2x
1 (p/2)x

2 required forU10 gate,
can be achieved by

~p/2!2x
1 ~p/2!x

25~p/2!y2~1/4n!2~p/2!2y . ~11!

In principle, however, the evolution underJ coupling
during ~1/4n! would lead to some nonideal characteristics44

which is minimal in our system, since the ratio of maximu
J coupling to chemical shift frequency difference;1:80.
This error is significantly less than the error introduced d
to evolution under internal Hamiltonian during low-pow
long duration qubit selective pulses.

After application of the quantum circuit in Fig. 3~a! on
the initial state ofI 0

zu00&^00u, the observer qubit was de
tected by a~p/2! pulse. From the obtained spectrum given
Fig. 5~a!, one can identify the searched state (ux&) directly.
The two-dimensional experiment for spectral implementat
has the added advantage that the input and output ca
identified in a single spectrum. The 2D experiment of F
e

n
be
.

1~b! was carried out, where during the computation per
the quantum circuit of Fig. 3 was implemented onI 1 andI 2 .
The resultant spectrum given in Fig. 5~b!, shows the input
and output in each case. For example, whenux&5u11&, a
cross peak at the frequency ofu00& transition alongv1 to that
of the u11& transition alongv2 identifies the input asu00& and
the output asu11&. The 2D spectra in Fig. 5~b! contains the
initial state ofu00& and the searched state ofu00&, u01&, u10&,
andu11&. In the 1D spectrum of Fig. 5~a!, the initial PPS state
has to be ascertained independently prior to the impleme
tion of search algorithm.

IV. APPROXIMATE QUANTUM COUNTING

The search problem may be thought of as findingk en-
tries out ofN, which satisfy the conditionf (x)51. For the
other, N2k entries, f (x)50. While Grover’s search algo
rithm searches thesek items~one at a time!, quantum count-
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ing finds out the value ofk.9,10 This has extreme importanc
because in case of multiple solutions, the required numbe
Grover’s iteration scales asO(AN/k).12 Hence finding out
the number of existing solutions speeds up the search pr
dure. Moreover, the fact that counting can find out whet
the number of solutions is zero or finite, makes it applica
to the nondeterministic~NP!-complete search problems
where it is important to know whether solution exists for
given search problem.12 Approximate quantum counting ha
been demonstrated using NMR by Jones and Mosca.43 In this
work we provide a spectral implementation of approxim
quantum counting in the three-qubit system of 4-fluro 7-ni
benzofuran, where theI 2 is the target qubit,I 1 the control
qubit, and theI 0 the observed qubit.

The working of counting algorithm, as detailed by Jon
and Mosca,43 is as follows. Counting algorithm can b
thought of as a method for estimating the eige
value of Grover’s iteration G5HU0H21U f , where
U05I 22u00̄ 0&^00̄ 0u and U f transforms ux& to
(21) f (x)11ux&. Starting from the initialu00̄ 0& state, an ini-
tial Hadamard on target qubit creates an uniform superp
tion Hu00̄ 0&5(uc1&1uc2&)/A2, whereuc1& and uc2&
are two eigenvectors ofG.43 These two eigenvectors are wit
eigenvalues ofe6 ifk, where sin(fk/2)5Ak/N. An uniform
superposition of the control qubit is also created. The ap
cation of controlledG produces the result

uc1
1 &5~ u0&1eifku1&)uc1&/A~2!. ~12!

If r iterations are performed, then the state is

uc1
r &5~ u0&1eir fku1&)uc1&/A~2!. ~13!

A second Hadamard gate on the control qubit produc

uc f 1
r &5@~11eir fk!u0&1~12eir fk!u1&] uc1&/2. ~14!

A similar result will happen in the case ofuc2&. At the end,
the final stateuc f& will be an entangled state of the contr
and target qubits, except whenk50 or k5N.9,10,43

Jones and Mosca have implemented the quantum cir
of Fig. 3~b! in a two-qubit system, measured the signal fro
control qubit, thereby tracing the target qubit, and shown t
the signal assumes a sinusoidal behavior withr whose fre-
quency depend onfk .43 We have instead, started from th
initial I z

0u00&^00u state and inferred the result of countin
from the spectrum of observer qubit. For a two-qubit ca
only one Grover’s iteration is sufficient to get the result43

Given in Table I are the countk, their correspondingf, the
U f operators, and final state of the system forr 51. Note that
for k50 the final state isuc f&5u00& and for k5N52 the
final state isuc f&5u10&. For k51 the output states are i
entangled form of all the states,u00&, u01&, u10&, and u11&.

Starting with the initial state ofI z
0u00&^00u, we imple-

mented the quantum circuit of Fig. 4~b!. The controlledU0

and controlledU f 01
have the same operator as that of tw

qubit controlled phase gateU10 implemented in Grover’s al-
gorithm ~Sec. II!, whose corresponding pulse sequence
given in Eq.~11!. U f 10

has the same operator and pulse
quence as that ofU11 in Eq. ~11!. U f 11

is an identity operator
of

e-
r
e

e

s

-

i-

i-

s

it

t

e

-

s
-

and required no pulses.U f 00
required a (p)z

1 rotation. This

(p)z
1 rotation was implemented with hard pulses and evo

tion under Zeeman Hamiltonian,

~p!z
15~1/4n!2@~p/2!2y

1,2~p/2!x
1,2~p/2!y

1,2#. ~15!

During the delay~1/4n! the system evolves under the Ze
man Hamiltonian to acquire a rotation of (p/2)z

1(p/2)2z
2 .

The subsequent compositez pulse was applied on both qu
bits, (p/2)z

1,25@(p/2)2y
1,2(p/2)x

1,2(p/2)y
1,2#, which cancels the

rotation of second qubit but adds to the rotation of first qu
to give an effective (p)z

1 rotation. It may be notied that ther
are two pseudo-Hadamard gates on second qubit which
quire spin-selective pulses sinceh5(p/2)y and h21

5(p/2)2y . However, these pulses can also be performed
hard pulses and evolution under Zeeman Hamiltonian us
the jump-and-return logic.43

~p/2!y
25~p/2!x

1,22~1/8n!2~p/2!2x
1,2~p/4!y

1,2,
~16!

~p/2!2y
2 5~p/2!2x

1,22~1/8n!2~p/2!x
1,2~p/4!2y

1,2 .

After implementing the quantum circuit of Fig. 3~b!, the ob-
server qubit was measured. The observer qubit’s spect
given in Fig. 6~a! shows four lines fork51 ( f 01 and f 10).
For k50 ( f 00) only u00& transition and fork52 ( f 11) only
u10& transition is observed. The 2D-spectrum of Fig. 6~b!
contains correlation of the output state with the initialu00&
pseudopure state, and confirms the same result.

V. BERSTEIN-VAZIRANI PROBLEM

Berstein and Vazirani considered the problem of det
mining a n-bit string ‘‘a’’. 8 Classically each query would
yield one bit of information and hence would requiren que-
ries to the database. However, Berstein and Vazirani sho
that a quantum algorithm can solve the problem with o
quantum query.8 For this purpose, the oracle has to compu

TABLE I. The various possible the countk for a two-qubit system, their
correspondingf, theU f operators, and final state of the systemucoutput&.

k fk U f ucoutput&

0 0 Uf00
5S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D u00&

1 p/2 U f 01
5S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 1

D u00&2u01&1u10&1u11&

1 p/2 U f 10
5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21

D u00&1u01&1u10&2u11&

2 p U f 11
5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D u10&
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FIG. 6. ~a! Spectral implementation of approximat
quantum counting by 1D experiment. 431024 data
points were collected and zero filled to 831024 before
Fourier transform. The observer qubit’s spectra sh
the transitions corresponding to the output state. He
the various cases ofk50 ( f 00), k51 (f 01 and f 01), and
k52 ( f 11) can be easily identified from the spectra.~b!
Spectral implementation of approximate quantu
counting by 2D experiment. A 2D data set of 256316
(t23t1) was collected and zero filled to 10243256.
The Fourier transformed spectra gives the output st
as well as the input state.
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a functionf a(x)5ax. The scheme proposed by Berstein a
Vazirani required an ancillary qubit and determined an-qubit
string with n11 qubits, which has been demonstrated
NMR recently.36 However, Du and his co-workers had sim
plified the scheme such that the ancillary qubit was
required.45 We have implemented the Du scheme, since it
the advantage of determining an-qubit string with n-qubit
system. The quantum circuit of a two-qubit implementati
is given in Fig. 3~c!. Starting fromu0&n, the Hadamard gate
create an uniform superposition

uc1&5
1

2n/2 (
x50

2n21

ux&. ~17!

The Ua operator transformsux&→(21) f a(s)ux&. The unitary
operator Ua can be decomposed into direct products
single-qubit operations45
y

t
s

f

Ua5U1
^ U2

^ ...^ Un,

Ui5I , ai505sz , ai51 ~18!

I 5S 1 0

0 1D , sz5S 1 0

0 21D .

Operation ofUa creates a new stateuc2& of the form,

uc2&5Uauc1&5
1

2n/2 (
x50

2n21

~21!axux&. ~19!

The final state after the subsequent Hadamard operation

uc3&5Huc2&5
1

2n (
x50

2n21

(
x50

2n21

~21!ax~21!xyuy&. ~20!
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FIG. 7. ~a! Spectral implementation of Berstein
Vazirani problem in a two-qubit system. The observ
qubit’s spectra shows the transitions corresponding
the bit string. The stringsa500, a501, a510, anda
511 can be identified directly from the spectra.~b! 2D
spectral implementation of Berstein-Vazirani problem
A 2D data set of 256316 (t23t1) was collected and
zero filled to 10243256 before Fourier transform. The
Fourier transformed spectra gives the bit string agai
the input state in each case.
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However, since(x50
2n21(21)ax(21)xy5da,y ,2 uc3&5ua&.8,43

The algorithm was implemented to determine a tw
qubit string by spectral implementation using three-qu
system of 4-fluro 7-nitro benzofuran. After creating POP
followed by Hadamard pulses, the operatorUa was applied
for ua&5u00&, u01&, u10&, and u11&. U00 is unity operator and
does not require any pulseU10 is sz

1, which requires a (p)z
1

rotation. Once again, the (p)z
1 rotation was implemented us

ing the pulse sequence of Eq.~15!. Similarly, U01 was imple-
mented by

~p!z
25~p!x

1,2~1/4n!~p!x
1,22@~p/2!2y

1,2~p/2!x
1,2~p/2!y

1,2#.
~21!

U11 is sz
1sz

2, which can be achieved by a compositez
pulse of (p)z

1,25(p/2)2y
1,2(p)x

1,2(p/2)y
1,2. After application of

the final Hadamard pulses, the observer qubit was detec
by a ~p/2! pulse. The obtained spectrum given in Fig. 7~a!
clearly determines the two-bit string in each case. The re
-
it
,

on

lt

of 2D experiment is given in Fig. 7~b!. The 2D spectrum
correlates the inputu00& to the output in each case.

The above algorithm was also implemented to determ
a three-qubit string by spectral implementation using a fo
qubit system. The molecule 2-3 diflouro 6-nitrophenol~dis-
solved in CDCl311 drop D2O) has four weakly coupled
spin-1/2 nuclei. The proton of the phenol group is exchang
with the D2O. The two remaining protons and the two flu
rine nuclei constitute the four-qubit system. The equilibriu
spectrum of each nucleus is given in Fig. 8~a!. In a 500 MHz
NMR spectrometer, the chemical shift difference between
two Fluorine spins is 16 kHz while that between the tw
protons is 560 Hz. The couplings range from 19.13 to22.4
Hz.

The operators and pulse sequences required for e
string of a three-qubit system is given in Table II. Since t
chemical shift difference between the two fluorine spins
considerably large~16 kHz!, selective pulses do not intro
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FIG. 8. ~a! Chemical structure and equilibrium spec
trum of 4-fluro 7-nitro benzofuran. TheJ-coupling val-
ues areJ0155.23 Hz, J0258.85 Hz, J03519.1 Hz, J12

59.76 Hz,J13522.4 Hz, andJ2356.81 Hz. ~b! Spec-
tra after creation of POPS. A Gaussian shaped selec
pulse of 500 ms duration was applied on th
u0000&↔u1000& transition and the resultant spectra
subtracted from the equlibrium spectra of figure~a! to
yield ~b!.
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duce significant errors. The pulses on fluorine spinI 3 were
achieved by Gaussian shaped selective pulses of 12.5ms
duration. The proton transmitter frequency was kept at
middle of the spectrum and the selectivez pulses on protons
were applied in similar logic as in the two-qubit case@Eqs.
~15! and~21!#. Hard pulses were applied when both proto
had to be pulsed simultaneously. The algorithm was imp
mented starting from the initial state ofI z

0u000&^000u @Fig.
8~b!# and finally the observed qubit was measured by se
tive Gaussian shaped (p/2)y pulse. The only transition
present in each spectrum given in Fig. 9~a! indicates the
corresponding string. The 2D experimental spectra given
Fig. 9~b! verify the same results, correlating the input state
u000& in each case.

TABLE II. The operators and pulse sequences required for determinatio
each string in a three-qubit system.

String Operator Pulse sequence

u000& I No pulse
u001& sz

3 (p)z
3

u010& sz
2 (p)z

2

u011& sz
2sz

3 (p)z
2(p)z

3

u100& sz
1 (p)z

1

u101& sz
1sz

3 (p)z
1(p)z

3

u110& sz
1sz

2 (p)z
1,2

u111& sz
1sz

2sz
3 (p)z

1,2(p)z
3

e

s
-

c-

in
f

VI. HOGG’S ALGORITHM

Satisfiability ~SAT! problem is one of the nondetermin
istic polynomial~NP! combinatorial search problems.7 SAT
problem consists of a logical formula inn variables,V1 ,
V2 ,...,Vn .7 One has to find an assigment~true or false! for
each variableVi , such that it makes the formula true. Th
logical formula can be expressed in various equival
forms, as conjunction of clauses, where a clause is a disju
tion of some variables. A clause withk variables is false for
exactly one set of values for its variables but true for t
other 2k21 sets. An example of clause fork53 is V1 OR V2

OR V3 , where the clause isfalse for only V15V25V3

5false. Only the assignments which satisfy all the clau
are considered as solutions.7

While the number of steps required by a classical al
rithm increase linearly with the size of the variables,7 Hogg’s
algorithm can solve 1-SAT and maximally constrainedk-SAT
problems in a single step, whatever be the size of
variable.7 Hogg’s algorithm has been succesfully impl
mented by NMR in a three-qubit system.46 Here we demon-
strate Hogg’s algorithm by spectral implementation. T
Hogg’s algorithm starts by creating a uniform superposit
of states by initializing fromuc0&5u0& ^ n and applying Had-
amard gate on all qubitsuc1&5H ^ nuc0&522n/2(sus&. Let m
be the number of clauses in the 1-SAT logical formula. Th
the unitary operationsUR are consecutively applied to yiel

of
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FIG. 9. ~a! Spectral implementation of Berstein
Vazirani problem in a three-qubit system. After comp
tation, the observer qubit is detected by a select
pulse of 12.5ms duration. The observer qubit’s spect
show the transitions corresponding to the bit string. T
eight possible strings ofa5000, a5001̄ a5111 can
be identified directly from the spectra.~b! 2D spectral
implementation of Berstein-Vazirani problem in th
three-qubit case. A 2D data set of 256324 (t23t1) was
collected and zero filled to 10243256 before Fourier
transform. The Fourier transformed spectra give t
various bit strings along with the input state in eac
case.

TABLE III. Logic formulas for m51 or m53 in a three-qubit system, corresponding pulse sequences, and
theoritical solutions~Ref. 45!. Read the order of qubits from right to left.

m Logic formula Reduced pulse sequence Final stateuc f&

V1 (p)x
1(p/2)y

2(p/2)y
3 u001&1u011&1u101&1u111&

V̄1 (p/2)y
2(p/2)y

3 u000&1u010&1u100&1u110&
1 V2 (p/2)y

1(p)x
2(p/2)y

3 u010&1u011&1u110&1u111&

V̄2 (p/2)y
1(p/2)y

3 u000&1u001&1u100&1u101&
V3 (p/2)y

1(p/2)y
2(p)x

3 u100&1u101&1u110&1u111&

V̄3 (p/2)y
1(p/2)y

2 u000&1u001&1u010&1u011&

V3∧V2∧V1 (p/2)x
1,2,3(p/2)2y

1,2,3(p/2)x
1,2,3 u111&

V3∧V2∧V̄1 (p/2)2x
1 (p/2)x

2,3(p/2)2y
1,2,3(p/2)x

1,2,3 u110&

V3∧V̄2∧V1 (p/2)x
1,3(p/2)2x

2 (p/2)2y
1,2,3(p/2)x

1,2,3 u101&
3 V3∧V̄2∧V̄1 (p/2)2x

1,2(p/2)x
3(p/2)2y

1,2,3(p/2)x
1,2,3 u100&

V̄3∧V2∧V1 (p/2)x
1,2(p/2)2x

3 (p/2)2y
1,2,3(p/2)x

1,2,3 u011&

V̄3∧V2∧V̄1 (p/2)2x
1,3(p/2)x

2(p/2)2y
1,2,3(p/2)x

1,2,3 u010&

V̄3∧V̄2∧V1 (p/2)x
1(p/2)2x

2,3(p/2)2y
1,2,3(p/2)x

1,2,3 u001&

V̄3∧V̄2∧V̄1 (p/2)2x
1,2,3(p/2)2y

1,2,3(p/2)x
1,2,3 u000&
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FIG. 10. One-dimensional spectral implementation
Hogg’s algorithm in a three-qubit system. After comp
tation, the observer qubit is detected by a select
pulse of 12.5ms duration. The observer qubits spect
clearly show the output states corresponding to vario
logical formulas of Table III.~a! contains the spectra
corresponding tom51 and~b! to m53.
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the final stateuc f&5URuc1& whereU andR defined as fol-
lows.R adjusts the phases ofus& depending on the conflictsc
of the different assignments in the superposition ofs, ranging
from 0 to m. R is a diagonal matrix of the form

Rss5A2 cos@~2c21!p/4#, for even m

5 i c for odd m. ~22!

The operatorU mixes the amplitudes from different assig
ments with elementsUrs , depending on the Hamming dis
tanced betweenr ands. U is of the form

Urs5Ud~r ,s!

522~n21!/2 cos@~n2m1122d!p/4# for even m

522n/2eip~n2m!/4~2 i !d for odd m, ~23!
whered5ur u1usu2ur ∧su is the Hamming distance betwee
r ands, i.e., number of positions at which their values diffe
U can be decomposed intoHGH whereH is the Hadamard
matrix andG is a diagonal matrix of the form

G rr 5g~r !5gh

5A2 cos@~m22h21!p/4# for even m

5 i he2 ipm/4 for odd m, ~24!

whereh5ur u, and henceG rr depend on the number of 1 bit
in each assignment. For a detailed description of the work
of the algorithm see Ref. 7. Hence the Hogg’s quantum st
with the initial u000& state and reaches the desired outp
stateuc f& by

uc f&5URHu000& ~25!
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FIG. 11. Two-dimensional spectral implementation
Hogg’s algorithm in a three-qubit system. The two
dimensional spectra provides the output states co
sponding to various logical formulas of Table III.~a!
contains the spectra corresponding tom51 and~b! to
m53.
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and the final step is to measure the output stateuc f&. We
have observed the final state through detection of the
server qubit.

The quantum circuit of Hogg’s algorithm for a thre
qubit system is given in Fig. 3~d!. While implementing the
corresponding pulse sequence, the consecutive pulses o
posite phases cancel out, yielding a simplified sequenc46

The m51 and 3 clauses, their logic formulas, and the
duced pulse sequences are given in Table III. Only them
51 and 3 cases are demonstrated here for ease of imple
tation. The selective pulses on fluorine spin were achie
using Gaussian shaped pulses. In protons, the sele
pulses were achieved by hard pulses concatenated with
man evolution@Eqs.~10!, ~11!, and~16!#. For example, while
implementingV1 ,
b-

op-
.
-

en-
d

ive
e-

V1 :@~p!x
1#@~p/2!y

2#@~p/2!y
3#

5@~p/2!2y
1,221/4n2~p/2!y

1,2~p/2!x
1,2#@~p/2!2x

1,221/8n

2~p/2!x
1,2~p/4!y

1,2#@~p/2!y
3#

5@~p/2!2y
1,221/4n2~p/2!y

1,221/8n

2~p/2!x
1,2~p/4!y

1,2#@~p/2!y
3#. ~26!

The spectra obtained by the one-dimensional experimen
given in Fig. 10 while the spectra obtained in 2D experime
is given in Fig. 11. The spectra of observer qubit clea
identifies the desired outputs of Table III. For example, in
case ofV1 , the output has all the states that satisfy the c
dition that first qubit isu1& or false; namely,u001&, u011&,
u101&, and u111& ~read the order of qubits from right to left!.
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Similarly, for V3∧V2∧V1 , the output consists of the sol
answeru111&, which satisfies the condition that all the qub
are in stateu1&.

VII. CONCLUSION

We have demonstrated spectral implementation of s
eral quantum algorithms by one- and two-dimensional NM
Provided future quantum computers run with high fideli
spectral implementation delivers an aphoristic method
readout. Though it requires the use of an observer qubit,
qubit also helps in creating a pseudopure state by nons
able and effective methods like POPS.38 With the essentiality
that the observer qubit has resolved spectrum, the princ
of spectral implementation is applicable to higher qubit s
tems without increasing complexity.
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