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Quantum information processing has been effectively demonstrated on a small number of qubits by
nuclear magnetic resonance. An important subroutine in any computing is the readout of the output.
“Spectral implementation” originally suggested by Z. L. Madi, R. Bruschweiler, and R. R. Elnst
Chem. Phys109, 10603(1999], provides an elegant method of readout with the use of an extra
“observer” qubit. At the end of computation, detection of the observer qubit provides the output via
the multiplet structure of its spectrum. In spectral implementation by two-dimensional experiment
the observer qubit retains the memory of input state during computation, thereby providing
correlated information on input and output, in the same spectrum. Spectral implementation of
Grover’s search algorithm, approximate quantum counting, a modified version of Berstein-Vazirani
problem, and Hogg’s algorithm are demonstrated here in three- and four-qubit systems.

I. INTRODUCTION let spectrum provides the result of the computation carried
out on the work qubits. Such a “spectral implementation” of
In 1982 Feynmann pointed out that it would be morea quantum computer was demonstrated by implementation of
efficient to simulate the behavior of a quantum system usingome logic gates by one- and two-dimensional NFIR.
a quantum, rather than a classical devicBhe idea of a Later, spectral implementation of a complete set of logic
purpose-built quantum computer, which could simulate thegates and DJ-algorithri{, Berstein-Vazirani probler and
physical behavior of a quantum system as well as perforngquantum Fourier transforifihave also been implemented by
certain tasks much faster than classical computer, attracteddMR. In this work we extend this range by spectrally imple-
immediate attentioA The theory of such quantum comput- menting Grover’s search algorithm, approximate quantum
ers is now well understood and several quantum algorithmsounting, a modified version of Berstein-Vazirani problem,
like Deutsch-JozsdDJ) algorithm, Grover’s search algo- and Hogg's algorithm. All the algorithms are implemented
rithm, Shor’s factorization algorithm, Berstein-Vazirani by both one- and two-dimensional NMR.
problem, Hogg's algorithm and quantum counting have been
developed.~1° Il. THEORY
However, building a realistic large-scale quantum com-
puter has been extremely challengiid? Various devices
are being examined for building a quantum information pro-
cessing QIP) device which is coherent and unitdfyAmong
these, nuclear magnetic resonarib®MR) has shown great ‘ ‘ 0
promise by demonstrating several quantum algorithms and 1o=10)(0|= 0o 0/’ I1=[1)(1|= 0o 1/’
other QIP tasks on small-scale devi¢&s?® The last step in

A convenient representation of the density matrices of
pure states in Liouville space can be obtained by the polar-
ization operators for each quh),3>%’

any quantum information processing task is the “readout” of K 0 1 K

the output. Typically in NMR, the readout is obtained by 1% =10)1l= 0 0/’ £ =]1)(0]= 1 0/
selectively detecting spirfs,or by mapping out the full den- (1)
sity matrix3°~2 |t was first pointed out by Ernst and o1 1

co-workers® that it is advantageous from the spectroscopic IX_E(I +Io)= 2 0/’

0

1
viewpoint that quantum states can be assigned to individual

spectral lines, corresponding to transitions between energy Ikzi(lk —1%)= i( 0 1)
levels rather than to the energy levels themsefiddow- yo2ivt 0 2i '
ever, for such an advantage one has to use an extra qubit

called “observer” qubit. After computation the readout is |k:_(|k_|k):}(1 0 )
obtained by detecting only the observer qubit, whose multip- 220 Y20 -1

For example, the density matrix of a pure st@@+|11) can
3DAE-BRNS Senior Scientist. be expressed as
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FIG. 1. Experimental protocol for spectral implementa-
90, tion of quantum algorothms(Ref. 33. (a) One-
dimensional experiment. The first stage is to create an
subsystem pseudopure state of the tyPeh2 1Y,
A followed by computation oh®---IN qubits. Finally the
v v A4 transitions of the observer qubft are detected by a 90
V pulse. (b) Two-dimensional experiment. After the cre-
. ation of initial 191312 -1} subsystem PPS, the observer
I'.1 N T qubit is flipped by 90 pulse to transverse magnetization
and allowed to evolve for a timg,. During t;, the
transitions of the observer qubit modulate with the fre-
quencies characterized by the input state of the dther
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sub--system tat Computation
PPS y I Output states back to longitudinal direction. The computation is per-
90, 20., 90, formed on thd *---IN qubits. The transitions of the ob-
server qubit are finally detected by a,9fulse. A series
tl tZ of experiments are performed with systematic incre-
0 , . , A ment of thet, period and the collected 2D data set
I i 1 E v A4 s(ty,t,) is Fourier transformed with respectd tpand
! i ! VV t, to get the 2D spectrurf(w; , w,).
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The scheme of spectral implementation of one- 3w
dimensional(1D) and two-dimensional2D) NMR is, re- b ooy
spectively, given in Figs. ® and ib). We start with the
thermal equilibrium density matrif+12+12+---+1Y and (e i o P 9524 2
in the preparation period we create density matrix of the —_____.__________ . B-rlih ! T
forT12|2|3N|§---|N, ~ where |g|g|g---|y:_(|g|g|g--_-|g |'52—1> - Ilﬁ o |1°10>§
=717l --17)/2. In this state the lasd— 1 qubits are simul- ! . | . |
taneously in pseudopure stdfPS (Ref. 13 in two distinct S Io%f Ic%> | %oy i
domains of energy levels, in which the observer qubit is in . /
state|0) and |1), respectively. Such a state is known as sub- [000) j - a_a
system pseudopure stafeThis is further elaborated in Fig. P
2. (e) T S

The schematic diagram of the energy levels and the S Sad FEE | % % _? lE
spectrum of the observer qubit in a three-qubit system, where = N M 0 o |
the first qubit is the observer qubit, is given in Fig. 2. Figure ; 01 1. 10D (119 |
2(a) shows the equilibrium deviation populatioifigopula- Po LA i
tions in excess of uniform background populajiofivarious ! [o0D 019 | %109 |
energy levels and Fig.(B) the equilibrium spectrum of the | O

observer qubit obtained after(@/2) detection pulse. Each of oo

the spectral I|r_1es in the multiplet corr_espond to the s_tate OfiG. 2. schematic diagram of the energy levels and the spectrum of the
the other qubits. The energy level diagram along with thespserver qubit at different stages of spectral implementat@rDeviation
deviation populations after creating the desired initial state ogqulibrium populations. The dotted arrows denote the transitions of observer
|g|%|g is given in Fig. ZC) The Corresponding observer qubit qubit. (b) Equilibrium spectrum of observer qubit shown by stick diagram.

. . . S Each transition of the spectrum correspond to the state of other qubits,
spectrum of Fig. &) has a single line, that ¢®O>’ indicating which are given above each lin@) Deviation populations after creation of

that the other qubits are {00) state. |00y subsystem pseudopure state by POPS. Populations of(@dlgigen-
Typically after computation, the density matrix is of the state is nonzero in the two distinct domains of energy levels, where observer

01 2 .. N ; qubit is, respectively, in stat®) and |1). (d) Spectrum of observer qubit
form 1515ul o+ Lo where the subscript 0/1 means that theafter creation of POPS. The dots denote null intengéyDeviation popu-

; P ; 0
particular qubit is either in 0 or 1 state. A subsequent?), lations after a typical computation whose output|ig). (f) Spectrum of
pulse on the observet ) qubit creates single quantum co- observer qubit after such a computation.



herences of the fornh%l 13,15, which gives a single (a) Grover’s search algorithm
line in the spectrum corresponding to the output state of

other qubits. In the example of three-qubit system given in ) —E}_ _E_

Fig. 2, let us assume that we start with the initj@D) U

pseudopure state of the qubitther than observer qubind

after some computation let the output state |b®. After 0 —E’— —E—- —‘EI
such a computation, the deviation populations and spectrum
of observer qubit are given, respectively, in Figée)2and

2(f).

In some algorithms however, the output is a superposi- () Approximate quantum counting
tion of multiple states. Then, the output density matrix will
have nonzero populations in all the output states and the
coherences between them. The spectrum of the observer qu
bits will thus have multiple lines, corresponding to all the
output states. For example, in the three-qubit system, if the
output state of the work qubits |60y+|11), the density ma-
trix is of the form 121312+ 12112 +1%1112 +191212 . After
the (77/2)3 detection pulse on the observer qubit the single
quantum coherences of the terf$313 and 121712 will be

(c) Berstein-Vazirani problem

detected. The spectrum of the observer qubit will show two 10) H H
lines corresponding to the states|0® and|11) of the other

qubits. The coherences will be converted into multiple quan- U

tum coherences which are not detected directly in NMR. a

Hence, the spectral implementation gives a measure of the |0) H H

deviation populations or probabilities of each state but does
not measure the coherences, which if required can be mea
sured by state tomograpf3:*?

A two-dimensional experiment for spectral implementa-  (d) Hogg’s algorithm
tion provides the input and output in the same spectrum. The
pulse sequence for the two-dimensional experiment of spec- |0) H —
tral implementation is given in Fig.(fh). Suppose a compu-
tation starts with the input do0 --0) and end with an output
of |11:--1) state. After preparation of the initiaf1313: -1} 0 q R U
state the application of the pulse sequence of Fig). dan be 10)
analyzed in the following steps:

(l2)y ty 1) H —
121015+15 — 1IgIE 15— 1151815 cog wgo.ot) . | .
/)0 FIG. 3. The quantum circuits of various algorithni®. Quantum circuit for
(m/2)~ .G, implementation of Grover’s search algorithm in a two-qubit systém.
_ |g| é| g. . -IBICOS{ wgo--otl) Quantum circuit for implementation of approximate quantum counting in a
two-qubit system.(c) Quantum circuit for implementation of Berstein-
Comp 0112 N 0 Vazirani problem(d) Quantum circuit for implementation of Hogg’s algo-
— 1171717 cogwqq..ot1) rithm in a three-qubit system.
(wlz)g—tz
0;1,2 N 0 0
— Il 317 cof wgg . ot1) COS w7y...112),

(4) domain spectrun8(wq,w,), which contains alongvw; the
input states of work qubits before computation and aleng

wherew, ,andw?, , are, respectively, the frequencies of the output state of work qubits after computation.
the |00...0 and|11...D transitions of the observer quhit,
(77/2)8 is a (7/2) rotation of the observer qubit{) abouty
axis, G, is the gradient pulse and Comp is the computation; GrROVER'S SEARCH ALGORITHM
performed on the work qubits. It may be noted that the signal
from the observer qubit is modulated by the frequencies cor-  Grover’s search algorithm can search an unsorted data-
responding to both the input and the output states of the workase of sizé\ in O(y/N) steps while a classical search would
qubits. A series of experiments are performed with systemrequireO(N) steps’ Grover's search algorithm has been ear-
atic increment of the; period followed by detection of the lier demonstrated by NME® The quantum circuit for
observer qubit’s signal. The collected two-dimensional timemplementing Grover’s search algorithm on two-qubit sys-
domain data set(t;,t,) is double Fourier transformed with tem is given in Fig. 8). The algorithm starts from {0)
respect tot; andt, yielding a two-dimensional frequency pseudopure state. A uniform superposition of all states are



(a) 12 NO frequency of proton is 500.13 MHz and that of fluorine is

H 470.59 MHz. The frequency difference between the two pro-
=N, tons is 646 Hz. Thel couplings areJg,=—3.84Hz, Jy,
r H \N/O _=8.01 Hz, and);,=8.07 Hz. The'H transmitter frequency
is set at the center of the proton spectrum.
0 N The required initial state of°|00)(00| was prepared by

the method of pair of pseudopure stat€OPS, originally
suggested by Furtf:** The method requires two population

distributions, (i) equilibrium populations andi) population
distribution after a selectivér) pulse on|000)«|100). Sub-
traction of (ii) from (i) effectively gives the initial state of
19]00)(00| [Fig. 4(b) corresponding to the schematic PPS of

Fig. 2(c)]. It might be noted that the method of creation of
33 =320 Hz 330 Bz subsystem pseudopure states from cat states can also be
adopted for creation of this initial stat@.

(b) The Hadamard gates are implemented by2)™% (),
pulse (pulses are applied from left to righ® where ©)1?
denotes af-angle pulsgrotation) on first and second qubit
about thex axis. TheU, operator is a controlled phase gate
which can be implemented by the sequentér/2)

X ()17 (7/2)(77) V2 (m2) M (mi2)n (77/2) 2], where 7
=1/2J,,.18 The sequenc@(TIZ)(w)x (T/2)(7T) L2 evolves
the system only under th&;, coupling and refocuses all

-330 -320 Bz other couplings and proton chemical shiftswhereas the
1,2 1,2
FIG. 4. (a) Chemical structure and equilibrium spectrum of 4-fluro 7-nitro [(77/2) (5747-1/2) (77/2))/ 2] is & composna rotation on both
benzofuran. Thel-coupling values arey,= —3.84 Hz, Jo,~8.01 Hz, and  th€ qubits. Similarly, the other phase gates can be con-

J1,=28.07 Hz. The peak denoted by asteriskbelongs to solventb) Spec- structed a§8
tra after creation of POPS. A Gaussian shaped selective pulse of 500 ms

duration was applied on tH800—|100) transition and the resultant spectra Uor=[(712)( 77)1’2( 7'/2)(77)>1<’2]

is subtracted from the equlibrium spectra of figaeto yield (b). [See Fig. 12 1 ) 1

20)) X[(m12)23(mI2)5(w12)% (wI2)7),
Uso=[(/2)(m)3 A 712) ()57

created by the initial Hadamard gat@s$). Then the sign of 12 1 5 12

the searched statex™ is inverted by the oracle through the XUml2) =y (wl2) = (ml2)(wl2) 7], ®)

operator U1a=[(7/2)(m)3(712) (7))

Us=1=2]x)(x]. (5 X [(m2)“2(m/2) 2 w2)1).

An inversion about mean is performed on all the states by

diffusion operatoHU g H, where E]’he pulses which are simultaneously applied on both the

qubits are achieved by hard pulses. However, some gates
Ugo=1—2]|00)(0Q. (6)  require selective excitation of qubits. Since the resonance
frequencies of the two protons are relatively close to each
other, selective excitation of a particular proton qubit re-

only one iteration is required. We have implemented th|squ'reS long low-power pulses, which introduce significant

,19
algorithm on the two qubits of a three-qubit system with theETOrs in the computatioH:'° Fortunately, in case there are

third qubit acting as the observer qubit. The three-qubit Systwo homonuclear qubits, the selective pulses can be“substl-
tem chosen for this purpose is 4-fluro 7-nitro benzofuran juted by hard pulses and delays using the variation of “jump-

(dissolved in CDGJ), which comprises of a two protons and return sequenc® as demonstrated by Jones and

(*H) and a flourine ¥°F). The chemical structure of the mol- Mosca /I;or e>/<gmplet the p‘“S‘ta ?riquence;brﬁ gt?te r(ej_b
ecule along with the equilibrium proton and fluorine spec-qulres ( )X(W )*X at one pon IS can be achieved by

trum is given in Fig. 4a). We have chosen the fluorine spin using the identit§/1
as the observer qubit. The Hamiltonian of the system is (m12) _y(712) + (7/2) = (7/2) + 4. 9
2

For anN-sized database the algorithm requis/N) itera-
tions of U,HUyH. For a two-qubit system with four states,

If the proton transmitter frequency is set at the center of the
H= 2 2771/.'#2 27T‘JIJ 22 () spectrum, then;=—v,=v, and a delay of1/4v) evolves
the two protons under the Zeeman Hamiltonian @zvaI

wherev; are the resonance frequencies of various spins and. |2 2) to give the intermediate{/2). , rotation of Eq.(9).
Jij are the indirect couplings. The experiments were peryence,

formed at a field of 11.4 Tesla in a Bruker DRX500 spec- N 5
trometer. At the magnetic field of 11.4 Tesla, the resonant  (7/2)x(7/2)~,=(w/2) .y~ (1/4v) = (m[2). (10)
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Similarly, the pulse €/2),(/2)? required forU,, gate,

can be achieved by

(m12)t (7l2)=(ml2),— (L) —(7]2)_, .

In principle, however, the evolution unddr coupling

FIG. 5. (a) Spectral implementation of Grover’s search
algorithm by 1D experiment. After computation, the ob-
server qubit is detected by a nonselective pulse of 14
us. 41024 data points were collected and zero filled
to 8xX1024 before Fourier transform. The observer qu-
bit's spectra show only the transition corresponding to
the searched state|x) with nonzero intensity.(b)
Spectral implementation of Grover’s search algorithm
by 2D experiment. A 2D data set of 2586 (t,Xt;)

was collected and zero filled to 102256. It may be
noticed that the total size of the raw 2D dataset is of the
same size as that of the 1D experiment. The doubly
Fourier transformed spectra gives the input state along
wq and output state along,.

1(b) was carried out, where during the computation period

the quantum circuit of Fig. 3 was implementedIgrandl ,.

(1D

The resultant spectrum given in Fig(bh, shows the input
and output in each case. For example, wipen=|11), a
cross peak at the frequency|60) transition alongw, to that

during (1/4v) would lead to some nonideal characterisfits, of the|11) transition alongw, identifies the input af0) and
which is minimal in our system, since the ratio of maximumthe output agl1). The 2D spectra in Fig.(6) contains the

J coupling to chemical shift frequency differencel:80.

initial state of|00) and the searched state |60), |01), |10),

This error is significantly less than the error introduced dueand|11). In the 1D spectrum of Fig.(8), the initial PPS state
to evolution under internal Hamiltonian during low-power has to be ascertained independently prior to the implementa-
tion of search algorithm.

long duration qubit selective pulses.

After application of the quantum circuit in Fig(a on

the initial state ofl§|00)(00, the observer qubit was de-
tected by a#/2) pulse. From the obtained spectrum given in

Fig. 5a), one can identify the searched stajr)j directly.
The two-dimensional experiment for spectral implementatiortries out ofN, which satisfy the conditiori(x) =1. For the

has the added advantage that the input and output can l¢her, N—k entries, f(x)=0. While Grover’s search algo-
identified in a single spectrum. The 2D experiment of Fig.rithm searches thedeitems(one at a timg quantum count-

IV. APPROXIMATE QUANTUM COUNTING

The search problem may be thought of as findingn-



ing finds out the value ot.%'° This has extreme importance TABLE I. The various possible the couftfor a two-qubit system, their
because in case of multiple solutions, the required number gerespondings, the U, operators, and final state of the systafupu-
Grover’s iteration scales a(yN/k).*? Hence finding out b U, Voo

the number of existing solutions speeds up the search proce ’
dure. Moreover, the fact that counting can find out whether
the number of solutions is zero or finite, makes it applicable 0
to the nondeterministic(NP)-complete search problems,
where it is important to know whether solution exists for a
given search problertf. Approximate quantum counting has
been demonstrated using NMR by Jones and M8%bathis

work we provide a spectral implementation of approximate 1 2 U, =
guantum counting in the three-qubit system of 4-fluro 7-nitro

benzofuran, where the? is the target qubit]® the control

qubit, and thd°® the observed qubit.

The working of counting algorithm, as detailed by Jones 1 w2y, =
and Moscd? is as follows. Counting algorithm can be w
thought of as a method for estimating the eigen-
value of Grover’s iteration G=HUH U, where
Uo=1-2|00--0)(00--0] and U; transforms |x) to
(—1)f™*+1x). Starting from the initial00 - -0) state, an ini-
tial Hadamard on target qubit creates an uniform superposi-
tion H|00 --0)= |y, ) +|y_))/\2, where|y.) and |y_)
are two eigenvectors @.*® These two eigenvectors are with
eigenvalues ok™ %, where sing/2)=Vk/N. An uniform
superposition of the control qubit is also created. The appli
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=
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and required no pulseialfo0 required a Qr)% rotation. This

cation of controlledG produces the result ()} rotation was implemented with hard pulses and evolu-
tion under Zeeman Hamiltonian,
1\ _ ) oy
If r iterations are performed, then the state is During the delay(1/4v) the system evolves under the Zee-
. ir man Hamiltonian to acquire a rotation ofrf2)(w/2)2,.
[ )=([0) + ")) | ¢ )N(2). (13 The subsequent compositepulse was applied on both qu-

. bits, (m/2);°=[ (w/2)23(w/2)x%(7/2);7], which cancels the

A second Hadamard gate on the control qubit IOrOducesrotation of second qubit but adds to the rotation of first qubit
[t = (14 €7 4)|0)+ (1— el #)|1)] | s )2 (14) to give an effective (r)% rotation. It may be notied that there

are two pseudo-Hadamard gates on second qubit which re-

A similar result will happen in the case py_). Atthe end, duire spin-selective pulses since=(m/2), and h™!

the final statd ) will be an entangled state of the control =(m/2)_,. However, these pulses can also be performed by

and target qubits, except whém0 or k=N.%1043 hard pulses and evolution under Zeeman Hamiltonian using
Jones and Mosca have implemented the quantum circuthe jump-and-return logit?

of Fig. 3(b) ﬁn a two-qubit §ystem, measureq the signal from (77/2)§=(77/2)%'2—(1/8v)—(7-r/2)1;)2<(7-r/4)§’2,

control qubit, thereby tracing the target qubit, and shown that

the signal assumes a sinusoidal behavior witithose fre- (w/2)% = (mI2)5— (18v) — (ml2)y A mwl4)*3 .

43 :
quency depend ory ™ We have instead, started from the After implementing the quantum circuit of Fig(l8, the ob-

initial 19/00)(00| state and inferred the result of counting . -
. . server qubit was measured. The observer qubit’s spectrum
from the spectrum of observer qubit. For a two-qubit case

only one Grover’s iteration is sufficient to get the reddit. Ig:g/relz_l% '(:]lg.)6;)1|Sh|8\(l)\§st:§rl:;itlsgﬁsa?£<f_o;(Efgl(farl)d Llr?l).
Given in Table | are the courk, their corresponding, the 110 transiticg)n i zbserved The 2D-spectrum éf Figﬁb>)/6
U; operators, and final state of the systemrferl. Note that : . ' . -
for k=0 the final state idy;)=|00) and fork=N=2 the contains correlation of the output state with the initia0)
final state is|)=|10). For k=1 the output states are in pseudopure state, and confirms the same result,
entangled form of all the state{§0), [01), |10), and|11).

Starting with the initial state of°|00)(00|, we imple- V. BERSTEIN-VAZIRANI PROBLEM
mented the quantum circuit of Fig(l). The controlledJ, Berstein and Vazirani considered the problem of deter-
and controlledeOl have the same operator as that of tWO'mining an-bit string “a”.® Classically each query would
qubit controlled phase gate;, implemented in Grover’s al- yield one bit of information and hence would requirgue-
gorithm (Sec. 1), whose corresponding pulse sequence isies to the database. However, Berstein and Vazirani showed
given in Eq.(11). Uy, has the same operator and pulse sethat a quantum algorithm can solve the problem with one
guence as that df,; in Eq. (11). U, is an identity operator quantum quer.For this purpose, the oracle has to compute

(16)
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Spectral implementation of approximate quantum
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Vazirani required an ancillary qubit and determineatgubit

plified the scheme such that the ancillary qubit was not |:<1 0

system. The quantum circuit of a two-qubit implementationOperation ofU,, creates a new states,) of the form,
1

a functionf ,(x) =ax. The scheme proposed by Bersteinand U, =U!oU?®...9U",
string with n+1 qubits, which has been demonstrated by U'=|, a=0=0¢,, a=1 (18
NMR recently*® However, Du and his co-workers had sim-
1 0

required*® We have implemented the Du scheme, since it has o 1" 7= ( 0 — 1) .
the advantage of determiningraqubit string with n-qubit
is given in Fig. 3c). Starting from|0)", the Hadamard gates
create an uniform superposition 21

- [92) = Ualgny= o5 2 (= 1)™x). (19

1
o)== 2 %) (17) _ o
2 x=0 The final state after the subsequent Hadamard operation is
The U, operator transformix)— (—1)"a(®)|x). The unitary L 212
operator U, can be decomposed into direct products of )y =H]| i) = — E 2 (—1)(—1)Y]y). (20)
single-qubit operatiorfs 2" 550 %=0
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FIG. 7. (8 Spectral implementation of Berstein-
: . / ; ; 3 ; ; Y . ; ' Vazirani problem in a two-qubit system. The observer
5 ] -5 ~10 Hz 5 0 -5 -10 Hz qubit's spectra shows the transitions corresponding to
the bit string. The stringa=00, a=01, a=10, anda
=11 can be identified directly from the spectta) 2D
spectral implementation of Berstein-Vazirani problem.
b |@y=[00) |ay=101) A 2Df_ﬁaaatsefo(;;<2255ﬁéls gtzxté) was tcoIIe(f:ted aﬂ(\j
(b) OUTPUT OUTPUT zero filled to efore Fourier transform. The

Fourier transformed spectra gives the bit string against
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However, sinceEin:Bl(—l)ax(—l)xy: 5a’y'2 |yg)=|a).843 of 2D experiment is given in Fig.(B). The 2D spectrum
The algorithm was implemented to determine a two-Correlates the inpyo0) to the output in each case.

qubit string by spectral implementation using three-qubit ~ The above algorithm was also implemented to determine

system of 4-fluro 7-nitro benzofuran. After creating POPSa three-qubit string by spectral implementation using a four-

followed by Hadamard pulses, the operathy was applied qubit system. The molecule 2-3 diflouro 6-nitrophefuik-

for |a)=]00), |01), |10, and|11). U is unity operator and solved in CDC}+1 drop D,O) has four weakly coupled

does not require any pu|$_¢10 is O';', which requires aﬁ—)% spin-1/2 nuclei. The proton of the phenol group is exchanged

rotation. Once again, them)! rotation was implemented us- With the D,O. The two remaining protons and the two fluo-

ing the pulse sequence of E35). Similarly, Uy; was imple-  rine nuclei constitute the four-qubit system. The equilibrium

mented by spectrum of each nucleus is given in Figa8In a 500 MHz
B 12 r - 12 1 NMR spectrometer, the chemical shift difference between the
(m)7= (m) A Udv) (m)x = [(wl2) 25 (ml2) A wl2)3). two Fluorine spins is 16 kHz while that between the two
(22) protons is 560 Hz. The couplings range from 19.13-2.4
U is (r;ag, which can be achieved by a composite Hz.
pulse of (7) ;= (m/2)5(m) ¢ A(m/2);%. After application of The operators and pulse sequences required for each

the final Hadamard pulses, the observer qubit was detectiostring of a three-qubit system is given in Table Il. Since the
by a (#/2) pulse. The obtained spectrum given in Figa)7 chemical shift difference between the two fluorine spins are
clearly determines the two-bit string in each case. The resultonsiderably larg€16 kHz), selective pulses do not intro-
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FIG. 8. (a) Chemical structure and equilibrium spec-

trum of 4-fluro 7-nitro benzofuran. Th&coupling val-

ues arely,=5.23 Hz, J,=8.85 Hz, Jy3=19.1 Hz, J;,

=9.76 Hz,J 3= — 2.4 Hz, and),;=6.81 Hz.(b) Spec-

tra after creation of POPS. A Gaussian shaped selective
Hz

pulse of 500 ms duration was applied on the
270 280 Hz 270 -280 |0000+|1000 transition and the resultant spectra is

subtracted from the equlibrium spectra of figuae to

yield (b).
Bz -270 -280

duce significant errors. The pulses on fluorine spirwere  VI. HOGG’S ALGORITHM
achieved by Gaussian shaped selective pulses of 48.5
duration. The proton transmitter frequency was kept at the  Satisfiability (SAT) problem is one of the nondetermin-
middle of the spectrum and the selectwpulses on protons istic polynomial(NP) combinatorial search problemsSAT
were applied in similar logic as in the two-qubit cd&sys.  problem consists of a logical formula in variables,V,
(15) and(21)]. Hard pulses were applied when both protonsV,,...,V,.” One has to find an assigmefttue or falsé for
had to be pulsed simultaneously. The algorithm was impleeach variabléV,, such that it makes the formula true. The
mented starting from the initial state d)$|000><00q [Fig. logical formula can be expressed in various equivalent
8(b)] and finally the observed qubit was measured by selecforms, as conjunction of clauses, where a clause is a disjunc-
tive Gaussian shapedw(2), pulse. The only transition tion of some variables. A clause wittwariables is false for
present in each spectrum given in FigaQindicates the exactly one set of values for its variables but true for the
corresponding string. The 2D experimental spectra given imther X— 1 sets. An example of clause foe=3 isV; ORV,
Fig. Ab) verify the same results, correlating the input state ofOR V3, where the clause ifalse for only V;=V,=V;
|000) in each case. =false. Only the assignments which satisfy all the clauses

are considered as solutiohs.

While the number of steps required by a classical algo-

TABLE Il. The operators and pulse sequences required for determination ofithm increase linearly with the size of the vanabTeHogg S
each string in a three-qubit system.

algorithm can solve 1-SAT and maximally constraike8AT

String Operator Pulse sequence problems in a single step, whatever be the size of the
1000 | No pulse variable’ Hogg's algorithm has been succesfully imple-
1002) P (m)? mented by NMR in a three-qubit systéfhHere we demon-
010 o2 (m)2 strate Hogg's algorithm by spectral implementation. The
|012) olo; (m)3(m); Hogg's algorithm starts by creating a uniform superposition
1100 o2 (m): of states by initializing from,)=|0)*" and applying Had-
E?g Zigg (72:)(1”2)2 amard gate on all qubits,)=H®"| o) =2""2%|s). Letm

112 Uifrg;g (ﬂ_)%,z(zﬂ_)g be the number of clauses in the 1-SAT logical formula. Then

the unitary operations/R are consecutively applied to yield
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FIG. 9. (a) Spectral implementation of Berstein-
Vazirani problem in a three-qubit system. After compu-
tation, the observer qubit is detected by a selective
pulse of 12.5us duration. The observer qubit's spectra
show the transitions corresponding to the bit string. The
eight possible strings ai=000,a=001--a=111 can

be identified directly from the spectréb) 2D spectral
implementation of Berstein-Vazirani problem in the
three-qubit case. A 2D data set of 26B4 (t,Xt;) was
collected and zero filled to 102456 before Fourier
transform. The Fourier transformed spectra give the
various bit strings along with the input state in each
case.

TABLE Ill. Logic formulas form=1 or m=3 in a three-qubit system, corresponding pulse sequences, and

theoritical solutiongRef. 45. Read the order of qubits from right to left.

m

Logic formula

Reduced pulse sequence

Final state

VASVASVA
V3OV, 0V,
V5OV,0V,
V3IV,0V,
VSOV,0V,
V30V,0V,
ValVoLV,
V50OV,0V,

(m)x(ml2)3(ml2)5
(ml2)5(ml2)3
(m12)y(m)i(ml2);
(ml2)y(ml2)3
(m12)y(wl2)5(m)5
(wi2);(ml2)?

(ml2)y X (wl2) 2 (wl2)y 3
(ml2)t (w1223 wl2) 2 wl2)y*3
(w2)e X (l2)2 (712) 25X (wl2)>*
(wl2) (w23 (wl2) 2K (wl2)y 3
(ml2)y A w12)2 (wl2) 2 wl2)5 3
(ml2)23(wl2)i(ml2) 5% (wl2)y >
(m12)5(wl2)>3(wl2) 5 ¥ wi2) ™3

(m12) 53X (m12) L5 (m2)5 %

|00 +|01D)+|10D+|111)
|000+|010+|100+|110)
[010+|012)+|110+|111)
|000+]001)+|100+|101)
|100)+|102)+|110+|111)
|000+]001)+]010+|011)

|111)
110
l101)
1100
jo11)
010
j001)
1000




the final statd ¢;) = UR| 1) whereU andR defined as fol-
lows. R adjusts the phases (&) depending on the conflicts
of the different assignments in the superpositios,sdnging

Vi Vi V2 o
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v, Vi v
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T T T i) Ll 1 T T T L} T I 1 1
20 10 0 -10 He 20 10 0 -0 Bz 20 10 0 -10 He FIG. 10. One-dimensional spectral implementation of
Hogg's algorithm in a three-qubit system. After compu-
tation, the observer qubit is detected by a selective
pulse of 12.5us duration. The observer qubits spectra
VAV, AV, Y, AV, AV, AN A VAV, AV, clearly show the output states corresponding to various
hhhhhhhh RN A logical formulas of Table Ill.(a) contains the spectra
§2d438:544 | gE248243 | BEZ2Eid corresponding ton=1 and(b) to m=3.
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from O tom. Ris a diagonal matrix of the form

RSS=/2 co§(2c—1) /4],

=i® for odd m.

for even m

whered=|r|+|s|—|rOs| is the Hamming distance between
r ands, i.e., number of positions at which their values differ.
U can be decomposed intéI'H whereH is the Hadamard
matrix andI’ is a diagonal matrix of the form

Ci=v(r)=vyy
22) =2 co$(m—2h—1)m/4] for even m
:ihe*i’TTm/4 for odd m, (24)

The operatotd mixes the amplitudes from different assign-

ments with elementt),, depending on the Hamming dis-

tanced betweenr ands. U is of the form

Urs:Ud(r,s)

=2"(""V2cod (n—m+ 1—2d) /4]
— anlzei w(nfm)/4( _

i)d

for odd m,

for even m

whereh=|r|, and hencéd’,, depend on the number of 1 bits
in each assignment. For a detailed description of the working
of the algorithm see Ref. 7. Hence the Hogg’s quantum starts
with the initial |000) state and reaches the desired output
state| ) by

(23 |#¢)=URH|000) (29
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(a) FIG. 11. Two-dimensional spectral implementation of
Hogg's algorithm in a three-qubit system. The two-
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and the final step is to measure the output stdte. We Vi:[ ()} [(m2); ][(7-,/2)3]

have observed the final state through detection of the ob-

server qubit. =[(ml2)Y2— Uav—(ml2)y A wl2) [ (w/2) 5~ 1/8v
The quantum circuit of Hogg’s algorithm for a three- 12 1 3

qubit system is given in Fig.(d). While implementing the = (w2 A ml4) A (m/2)3)

corresponding pulse sequence, the consecutive pulses of op- —[(7-,/2)12 14y — (77/2)12 1/8v

posite phases cancel out, yielding a simplified sequé&hce.

The m=1 and 3 clauses, their logic formulas, and the re- _(“/z)xyz(ﬂm)y' ][(”/Z)y]' (26)

duced pulse sequences are given in Table Il Only the The spectra obtained by the one-dimensional experiment is

=1 and 3 cases are demonstrated here for ease of Implemelyq, i Fig. 10 while the spectra obtained in 2D experiment
tation. The selective pulses on fluorine spin were achieve given in Fig. 11. The spectra of observer qubit clearly
using Gaussian shaped pulses. In protons, the selectiygentifies the desired outputs of Table III. For example, in the
pulses were achieved by hard pulses concatenated with Zegase ofv,, the output has all the states that satisfy the con-
man evolutior{Egs.(10), (11), and(16)]. For example, while  dition that first qubit is|1) or false; namely)|001),
implementingV, |101), and|111) (read the order of qubits from right to Igft
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