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ABSTRACT

The solution for a line source of oscillatory strength kept at the
origin in a wall bounding a semi-infinite viscous imcompressible stratified
fluid is presented in an integral form. The behaviour of the flow at far
field and near field is studied by an asymptotic expansion procedure. The
streamlines for different parameters are drawn and discussed. The real
characteristic straight lines present in the inviscid problem arc modified by
the viscosity and the solutions obtained are valid even at the resonance
frequency.

[. INTRODUCTION

IT is well known that the internal waves play an important role in many
atmosphere and geophysical phenomena. Thc internal wayes can be
produced in a stably stratified fluid due to the forced motion of bodies when
the forcing frequency of the body is less than the Brunt Viisila frequency
N of the fluid. The linear theory for inviscid stratified fluids predicts the

presence of internal waves propagating along the straight lines inclined at
an angle sin~! (w/N) to the horizontal. Mowbray and Rarity! have con-

firmed the existence of these waves in a uniformly stratified salt solution

by the ‘Schlieren’ photographs of the phase configuration of the waves.

The two-dimensional internal waves generated by travelling oscillating bodies
have been studied by Lighthill,2 Stevenson and Thomas,® and Rehm and
Radt! The internal waves emitted by stationaiy vibrating bodies in an
inviscid stratified fluid have been investigated by Hurley.5$ So far, very
few have studied the effect of viscosity on internal gravity waves (Yano-
witch? and Thomas and Stevenson)®. An attempt is made'in this note to
study the viscosity effects on a simple model generating internal gravity
Waves.
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In this paper, we study the effect of viscosity on the internal waves
generated by a line source of sinusoidally pulsating strength.  The lineerized
equations are solved and the solution is presented in an integral form.
The usual radiation condition which is necessary to pick a correct solution
in an inviscid problem is not required in the present case. The correct solu-
tion satisfying the radiation condition is produced in the limit of viscosity
tending to zero. The far field and near field behaviour of the flow are
discussed. The streamlines for various values of the parameters are drawn
by evaluating the integral solution by numerical quadrature formula. The
real characteristic discontinuity lines present in the inviscid problem are
seen to be modified by the viscosity.

2. TFORMULATION OF THE PROBLEM

The linearized equations governing the two dimensional propagation
of small disturbances in a stable, density stratlﬁed incompressible viscous
fluid are (Phillips)®

po%—z;-:—-g-f;—#w?u, | )
pogf——b—l—;—png v, | 2)
DP—deg}“ 0 ©)
2 rl=0, Vimgat T | @

where x and y are horizontal and vertical coordinates. The quantities py,
p, P, U, U, & w are respectively, the equilibrium density, perturbation density,
perturbation pressure, horizontal velocity, vertical velocity, accleration due
to gravity and the coefficient of viscosity (a constant), The line source of
-sinusoidally pulsating strength is located at the origin x =y =0 and the
plane y = 0 is a rigid wall and the fluid occupies y »0. The equilibrium
density distribution is given by py = p' exp (— By) where o’y and f are
“constants, |

We introduce the stream function ' (x, y, t) such that the veloc1ty
components are

0’ il ‘ 5)
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Eliminating p from the above equations and using the Boussinesq approxi-
mation (the density variation on the inertia terms is negligible), the stream
function 4’ satisfies

VoW N e = Y )

where N = (— glpy . dpo/dy)"'® is the Brunt-Viisila frequency which is a
constant and v = p/p’, is also a constant. Since the line source is oscillating
with frequency w, we assume the resulting solution as

o' (x, y, t) = Real part of {if (x, y) elt), (7
where ¢ (x, ¥) is a complex valued function and it satisfies

VA = o2 (V2 ) — k* i), ()
where

o =iw/y and  k¥= N* o 9)

Equation (8) is elliptic for all finite a and k. For an inviscid fluid
p =0 (o o0), €q. (8) becomes
(1 — K% by + gy =0, (10)

which is elliptic for k< 1, hyperbolic for k >1 and parabolic for & = 1.
Tn the hyperbolic case, there exist real characteristics which arc straight
lines inclining at an angle sin™ (k%) to the horizontal.

The boundary conditions on the velocites

u, v >0 as y-—>o (1)
and

u=v=0 on y=0, (x#0), (12)
can be written in terms of ¢ (x, ) as

gy Yy —~0 a5 y—roo (13)
and

dy =0, gy=0 on y=0, (x#0) (14)

From first of the conditions (14), it is clear that = constant on y =0,,
x >0, with a similar condition (but a different constant) on y =0, x < 0,
In fact, the difference between the constant values of ¢ on x >0 and x< 0
is just the magnitude of the oscillatory flux generated by the source at the
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origin. Since the problem is linear, without loss of generality, we choose
these constants at will and hence we take

= 41 on y=0.(x2Z0). (15)
Since the flow should be symmetrical with respect to plane x =0, we have
L =Yig =0, on x =0, : o : (16)

We wish to confine our attention to the first quadrant x >0, y >0 and
if (16) is used, then we need only part of (15), namely

p=1 on .y=0,(x>0). (17)
Now the problem is to solve for ¢ the eq. (8) subject to the boundary condi-
tions (13), (14), (16) and (17).

3. SOLUTION FOR THE STREAM FUNCTION AS AN INTEGRAL

By taking Fourier-sine transform of (8) with respect to x, we get,

s _ :
G @ Gl s - ) = (18)

where
Ty = [ (v y)sinhedy. ‘ 19

The condition (16) is used while taking the above transform. 'The solu-
tion of (18) satisfying (13) is

=A@ ePY + B(})ePfY, Real pait of (81, B2) >0 (20)
where _ | |
By={22 4 La2(l + I+ &MY kP =4XKP 21
By={a+ sa2(l — vIFEIP™ | | (22)
By the second condition of (14), we have | -
BO) = — (BufBa) . AN, | @

. Using the inversion formula for Fourier-sine transform, x/x is gwen by

i

E oQ !

%f (/\) {[32 —fsly_/z eﬁy}sm)\xd/\ S (24)
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The only condition left to be satisfied by ¢ is (17) and it is used to deter-
mine. 4 (). By (17)

V0 =] / 4@@ (B — B sin hx i,

.0

Therefore, we have : o

== '--_._wﬁ.z.h_- . 61 ([51 “T ﬁ S :
0 ABy— py)  daly /l .. 7(1 | F26)

Thus the resulting expression for the stream function is:

fv(lfjf (b 0 — By P X @)

Another interesting form of  can be got from (27) after some manipulation
as "

2 et By (B, + B)
h= = —— Sin A ydd — 1L
v Wf 3 sin A xd ff\\/(l i

0 0

X (e FY — ey sin Ax d. - (28)

The results for homogeneous fluid can be obtained in the limit N —0
(k -0). Taking this limit of the eq. (27), we get,

2 LBy g o |
b= ;;;f 17 (Ve — B M) sin dx . (29)

where B2 = A% + o? and this coincides with the expression for ¢ given by
Tuck.® The velocity components can be obtained from the expression
(27) or (28) using (5).  As the exact evaluation of the integrals given in (27)
and (28) is not possible, we have investigated the asymptotic properties
of the flow at far-field and near-field in the following sections. Further
the values of ¢ are obtained easily enough by numerical evaluation of the
integrals. The results obtained by numerical evaluation of the integral are
used to draw the streamlines and they are discussed in section 6.

4. FAR-FIELD BEHAVIOUR OF THE FLOW

The flow far away from the wall should resemble the flow due to a
source in an inviscid ﬂuld That is at a great distance from the wall the
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effect of viscosity is negligible. We obtain a valid asymptotic expansion,
by expanding all the quantities in the integrals for small A which broadly
correspond to large y. Thus, for small A, we have

(I 4+ k%) A2 k& A3
By ~a+ e BNﬂATZan (30)

and the integral occurring in eq. (28) for i becomes

2 2 |
‘/’N;IL“WGZIQ.: (31)
where
L= [ exp[—{ad+ Kk Ay2a2gyy). 2025 g, (32)

0

i f BB o (= o 1 0M)

—exp (- {o; +§;3}y)]sm,\xdx (33)

B, (a, A, k) = an -i- In% + Sor (1 — 2k?)2 4 4(3k4— 2k?2),
9 = (1 — kM2 and ig=i(k*— 1)V2 =4 for k >1.
(34)
The terms of order A* are neglected in the above expansions.

The solutions for an inviscid fluid are obtained from (31) by taking the
limit as @ —> oo and the expressions for ¢ in this case are given by

2 . sin M . .
=" e = d), (35)
: |
=1 — 3 tan—? (ny/x), for k<1, (36)
o, x + Ly
=1 77-‘log(x__ 37 x > Ly,
= o0, x =10y, ) fork >1. (37)
i y+x | |
= 7Tlog(gy_x x< &y
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The solutions (37) for & >1 are similar to the solution for a source in an
unbounded flvid given by Hurley,® and they clearly show that the field
quantities are discontinuous across the two straight lines x = + {y. The
inviscid equations cannot be solved directly to get (37) without the appli-
cation of a radiation condition. Thus the limiting process of getting
inviscid solution from viscous solution avoids the application of a radia-
tion condition.

The integrals in (32) and (33) can be evaluated exactly from the results
given in Magnus ef al.'! in terms of Lommel and hypergeometric functions.
In evaluating the integrals (32) and (33) for & >1, one gets essentially
the integrals of the type

Jp = T £" exp (06 — %) sin yéd¢é, Real part of € >0,
0

n (integer) > — 1, (38)

where y, ¢ are constants. We evaluate the integral in (38) when n =0
and for the other values of n it can be evaluated by integrating or differen-
tiating with respect to the parametel 8. For n =10 (38) is written in thc
form -

oo

o=, [ {expliG +n)l-expli@—nlexp (et dt.  (39)

0

Using the results of Ref. 11 we get

Ir 1 1
J() = 2 [*‘ "{"'}’ '01, SO, 113 (Ul) - 8”___:—'} u]- So: 113 (ul):] ? (40)

where Sy, ;3 s a Lommel function,

— i (5+ y) 2 — (3 — )32
vy =2 {~—-§—1—3——£, Y)} and w, =2 {*‘“‘“"‘3‘“‘13(51; y)_} .

(41)

The expression for J; in (40) remains finite when & = 4y for € >0. But
in the limit ¢ -0, J, becomes infinite when &= 4y as
- lim {’Ul SO, 118 ('Ul)} =1 and 11})]’1 {ul So’ 1.3 (1/(1)} = 1. (42)
9100 14;-»00
We notice from (40) that the integrals in (32) and (33) will no longer be
discontinuous on x = -y even when k =1, when the terms of order A% in
the exponentials are retained. Thus, the real characteristics in the inviscid
fluid get modified by viscosity and they actually appear as free shear layers
in the fluid. Further, the solution for ¢ remains finite in the entire ﬂow
field even at the resonance frequency k=1,

; :
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Evaluating the integrals in (32) and (33) keeping only the important
terms for large y, the approximate expression for ¢ is obtained for k< 1 as

_ 20, 2 00591] [217: sin 201]

o }’1 T
2(1 — 2k¥?cos 36, ] i
(LR o
+ exponentially small terms, 43)
where | |
x=rcosf, y=rsinb,. (44)

In the expression (43) the leading term is interpreted as the solution due to
a source, the second term due to a dipole, the third term due to a quadru-

pole and so on.

“The real valued quzmtity ' given In (7)~bccomcs

' (x, y, 1) = cos wr[ 201 4 < ( )1"’77005 b, +0(r -Jx)]

2 U2 g cos 0 2 2V SIn 20 »
+ sin wf[ (2&) L4y == L0 (r 's)]
(45)

We obtain the results for homogeneous fluids from (45) in the limit k£ —0.
The streamline pattern for k < 1 is qualitatively similar to that of the homo-
geneous fluids which has been discussed by Tuck.?

At 0° phase (wr=0,2),...), the expression for assuming 72w
small, is given by

¥ (50,0 ~1 =2t {y - (%)112 Hroes. @

This shows that the flow at inﬁnity is that due to a source at {0, (2v/2w)"%.
The streamlines are ultimately radial lines emanating fiom this point. Simi-
larly at 90° phase (t=m2, 5n[2,...)

, c 39

V) ~A() B B oy
and the streamlines approximate to ellipses. The computed streamlines
shown in the figures for the case k < 1 confirm the asymptotic ana1y51s
described above, . : \
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Where as for & >1, we observe quite different features: for & > 1
evaluating the integrals by a fm mal procedure the expression for ¢ iakes
the form:

5 =‘cos w,[ e (20))1” { cos </5%ec2¢ + 0(1.2_2)]

/ NI
— SN wl [727 tanl-? (éiV) -+ 2 ( I ) 2 éCO%o sec Zq)

2w ry

+ 0 (1,9 ], for x > ¢y, ’ (48)
_ 2 [ vk {eos o sec 2
= COS wr[w(ﬂ)) F, + 0 (ry )]

_ 2 af X 2 ? {cos ¢ sec 29

sin wt[ tanh~? ( §y) + ( 20)) }:_h
+ 00 ] for x < y, (49)
where
X=1ryc08¢ and  y=r,sing, (50)

At 0° phase, the streamline pattern for far-ficld is given by

o8 ¢ sec 2o
l")

-

== constant, (51)

which rcpresents hyperbolas. At 90° phasc the sticamlines aic app. oxi-
mately given by

2. (X 2 Milcospseed
- tanh (’Z}“,) - (2(») ez CONISTANT, (52)

'y

which are modified hyperbolas. Thus in this case, the streamline pattein
is qualitatively different from the case of homogeneous fluids and the case
k< 1. The lines x = 4 {y me not discontinuous lines in a real fluid,
but they are a sort of internal boundary layers where the viscosity effects are
important. Actually the teim of order A3 in the integrals (32) and (33)
should not be neglected in the asymptotic analysis given earlier. The computed
streamlines shown in figures for k& > 1 do not show any discontinuities along
the lines x = 4 {y, but the streamline pattern shows the behaviour
described in the asymptotic analysis. Similar analysis can be carried out
at the resonance frequency.
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5. NEAR-FIELD BEHAVIOUR OF THE FLOW

In the near field r = (x2 + y¥¥* is small and it is quite difficult to
carry out the detailed asymptotic analysis of the integrals. We obtain the
first few terms of the stream function by expanding the integrand for large
A, keeping \x, Ay bounded. The approximate expression for i is given
by (31) where

- fm exp(—| A - i%-xl@} y)S LAY, (53)
= fli - S5 [ ({4 +10)
— exp (-—{A ’2‘- 42 (28; k2)} y )J sin Ax d. (54)
10
o
" lylooss [0
) >
4.—
2L
- et 'e

Figure 1. Streamlines for k =1 and ot =2,

o, A b
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Pealuatimg the mernabe e vy and (v eypanding some of the exponential
erme il nesled iy the e ol order A we gl

PR P .(1 .’f*) nhi (”Af: N \ oo v )
g (k) ot 4
Gk At 0 l (55)

where o boLr Gk e e ol these piven above are nbhuncd
using the Lt that 0 AAATT T oae i not justified king the limit
k-0 Butab we ch thes linnt formally, 10 abserved the results given
(55) coincude with the tesulte groven tothe same order of .11“»puhun¢l1(m)
for homoepencods s, Tuck b ther the cxpression given in (55) is
valid Tor all the v alue ol A preater than, less than or cqual to one. One
can justity the Aheve sevmptotie b tysis by o more refined and regorous
methods tollowimg e amdyais guen by Tuck

10¢- .
i
4 ‘ o
.
.NW
/":
6 s k‘///
e

Plygure 2, Stroannies fop A - 3 ond o — 0-0,
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6. DISCUSSION OF THE NUMERICAL RESULTS

Introducing the dimensioniess variables
xt=x(wp) pr=ple)t M =20 ) (36)
in (27) and making use of (7), we get (dropping the asterisks)

(o]

: 2 I .
iy, )= - f 52“'_’;_ h? [e'“'-'y {Al sin (wt — byy)
0
+ Ay cos (wf — by p)} — Y {4, sin (wf — b))
Ay cos (or = )] " (57)
where |
1 . ]
(= NG (1 + 16k - 112, h=— /i |
N {(l + 16MEH12 — 1}1/2 (58)
10
T
B 5
0.03
o}
-
4
4
2=
0 | | ! |
0 2 4 6 8
X

Figure 3, Streamiings for k =3 and «f == n/4,
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The integral in (57) is easily evaluated by Simpson’s one-third rule on IBM
360 Computer for different values of the parameter k at different phases
and these computed values are used to draw the streamlines.

The streamlines are drawn for different & at different values of wt lying
between 0 and = and this picture repeats itself for other values. When
wl =0, the maximum out-flow occurs and the flow is fully due to a source.
When wt =, the flow is fully sink-like and the streamlines are identical
with the streamlines at wz =0 with reversed directions. It is noticd that
the streamlines in the case k< 1 at different wt are very much similar to
those for homogeneous fluids and therefore for a detailed discussion of
these graphs one can refer Tuck.l

In an inviscid fluid resonance occurs at e — N (k = 1) and there do not
exist any physically meaningful solution at resonance frequency. When
viscosity is present a meaningful solution exists and the streamlines are

10 "
\'i
..,
~0.26
A |
N—— - ¥=0
0.15
6
>
FA
2
0 ) | ) i 3

0 2 4 6 8
X

Figure 5. Streamlines for & == 3 and wt=3n/4,
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exhibited in figure 1 at phse of ==/2. ASymptotic analysis in this
case gives approximately parabolic streamline pattern which agrees with
the computed results.

The streamline pattern for k >1 is qualitatively different from the
case k< 1. Figures 2 to 5 show the development of the streamline
pattern with time when k = 3. The fully source-like streamlines are given
in figure 2 and they show that there are two regions of closed streamlines
one near y = 0 and the other near x = 0 (y large). Whereas for the case
k< 1 all the streamlines emanate from the origin and end at infinity. As
the strength of the source starts to diminish the two bubble-like regions
(regions of closed streamlines) of circulating fluid grow in size (figure 3).

When =2 phase (figure 4) is reached, the strength of the source is
dropped to zero and no fluid is actually leaving the origin at all. But
there are two masses of circulating fluid, the one near y =0 is circulating
in the clockwise direction and the other in the anti-clockwise direction.

As the time further increases the flow becomes sink-like and we observe
the sreamline ' = 0 splitting into two lines marked in opposite directions
containing in between them a closed circulating fluid (figure 5). At large
distances away from the origin the two lines ' =0 appear to make an
angle sin~! (1/3) approximately to the horizontal. As the velocity along
these lines ' = 0 are in the opposite directions, it becomes zero in some
region between these two lines indicating the existence of a sort of internal
boundary. Actually in an inviscid fluid the stream function becomes in-
finite on the straight lines inclined at an angle sin~* (1 /k) to the horizontal
along which the internal waves propagate. These are observed in real fluids
as internal boundary layers and the viscosity plays a very important role
in that region. Further no such discontinuities can exist in a real fluid.
The computed streamline pattern shown in the figures 2 to 5 confirm this
result.
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