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1. Introduction

In addition to the x-ray emission (Artsimovitch et al 1956, Andrianov et al 1959,
Quin 1959, Lee and Elton 1971, Fukai and Clothiaux 1975) through vacuum
discharge, increasing interest is being taken in the laser induced x-ray emission from
solid targets (Nagel et a/ 1974 and Young 1974), when a CO, laser interacts with a
high density plasma. It is generally believed that the energy absorption takes place
in a narrow layer of density where the plasma frequency equals the laser frequency.
Various theories have been given for the physical mechanisms involved. Nonlinear
parametric instability (Kaw et al 1971, Rosenbluth et al 1972) and linear resonance
model (Godwin 1972, Friedberg et al 1972) have been given as possible mechanisms.
It has also been proposed (Krishan et al 1976), and the results compared with an
experiment (Fabre and Stenz 1974), that a linearly growing instability very soon
enters the nonlinear domain when it is saturated by the perturbation in the particle
orbits. To settle the issue as to which mechanism is the best candidate,
Yablonovitch (1975) controlled the density at and near the critical density. For
obvious reasons gaseous targets were preferred over the solid targets. The experi-
ment was done for pure H,, He-H, mixtures, He nitrogen and argon. In pure
samples of H, the x-ray emission rose sharply from zero at the critical to a maximum
when the pressure was 259 more than the critical pressure. The same behaviour
was more or less true for He. In this paper we shall present the theory that explains
the experimentally observed sharp rise in the x-ray emission in H,.

2. Dispersion relation
We shall first derive the dispersion relation for the electro-magnetic modes pro-
pagating in the plasma system. In the dipole approximation the vector potential of
the laser field is given by

A(t)=A(é, coswt+é, sinwt), ¢}

where ¢, and ¢, are the unit vectors and w the laser frequency. The Hamiltonian for a
particle in the presence of the laser is given by
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where m is the mass of the electron, e the electric charge and ¢ the velocity of light.
The solution of the Schradinger equation for the above Hamiltonian is given by
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It is clear from the form of equation (3) that in the limit of long time averages the
state of an electron in the presence of a laser can be regarded as a superposition of
states labelled by index n. The energy of the state is E, , and the corresponding
probability for being in that state is given by J,2 (ﬁ,, 1) .

The dielectric function for a plasma in the absence of any external field is given by

. wpszms -f; (k+q) _f; (k)
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Here the particles occupy a volume V with density 7, .S is the species index, E,(k) is

the energy and f(k)=e s *IT, wps i the plasma frequency. In the presence of
the laser, equation (5) can be modified by observing the following correspondence
J(K) = f5,2(K), fi(k+q) > /5, (K+0), E(K) > E,(K), f > 2z Y
. n,n’,
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where the last change occurs because of change in the interparticle vertex and f, , =

exp [—E;,(k)/T]. The dispersion relation for the electromagnetic wave therefore
becomes
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where n’=n-I[ has been used. Expanding (6) in powers of é._ and {%:‘f and noting
p

that the total number of particles are equal 2 J,2 (8,,) (k) we get
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where
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N,xZ,o ,..,i,,f:(’ -, and derivatives of J,(Z) with respect to Z have been neglected,
my¢

< as they are small.

In the above derivation the fact that the largest maxima of the Bessel function
occurs for order|n |~ argument of the Besscl function, has been used.  The limit
hq/p <1 is quite obvious for collective oscillations, but /w/T <1 is not so obvious.
However if one is looking for oscillation with Q =~ wl, then from Heisenberg's
uncertainity principle it becomes obvious, in fact, that /Aw/T, is less than 1. We shall
be looking for collective modes with frequence Q o lw.

When the plasma is formed there is a strong tendency for it to avalanche down
towards the low field region. However the electrons being much lighter than the jons,
cascade away much faster, so that at any instant of time, they see a lower field than
the ions. Let us assume for a moment the clectrons and the ions see the same field
and that we are dealing with a situation where the laser is strong enough so that
Z, 2 10%  Such a situation is found in the experiment of Yablonovitch. We are, in
particular, interested in modes for which /~10%  Then it is casy to sec from the
definition of w,,, that ions will not then contribute.  Bul the experiment shows that
i ions also play an equally important role.  As the clectrons cascade away from the
; focal spot faster than the ions, we choose Z, 2.

In order to solve the dispersion relation (7) we shall follow the method of
independent stream model.  Then the ions give rise to a positive encrgy mode under
the condition (Krishan et @l 1975, 1977)
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and the electrons give a negative energy mode for
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In the above ¢; is the dielectric function for the independent stream of ions and e,
that for the electrons, (Q);, ¢;) and (Q,, ¢.) are the corresponding solutions of the
independent ion and electron systems. The expressions e, and ¢; can be easily

identified by looking at equation (7). For two mode coupling, the energy and moment-
um conservation require

(sgnF,) | Q.| +sgnF;| Q,| =0, q.+q,=0. (10)

The two independent dispersion relations for electrons and ions after some straight
forward algebraic steps and using (10) yield

Qo—zﬂ,:ﬁi:le;qu( 1+ 5), (11)
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Taking u~~2x10° cm/sec (from the experiment) and /=3000 we find that the
dominant term in (12) is the first one while the dominant term in (13) is the second
one. This ensures that F;>0 and F,<0.

Now we shall find the growth rate due to interaction between one negative and one
positive energy mode. The important contribution is given by the diagram of

figure 1. The matrix element for interaction which is also the growth rate is
calculated out to be
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We mentioned before the dominant term in F, is the first one which is independent of
density and /; but the dominant term in F, which is the second one depends on density
and . Although the density remains of the order of 10'7/cm3, the Bessel function is
the one that fluctuates with . We can uniquely find a value of / close to 3000 that
makes F, small which turns out to be /=3002. Tbus at critical density

y=3-43x10%[sec (15)
2.1. Saturation level of the mode

We shall now determine the saturation level of the mode which can be done by
using orbit perturbation theory. This can be calculated by introducing the self
energy correction in the Green’s function for particles. One finds that the important
contribution is given by the diagram (Harris 1969, 1975) in figure 2. Thus the non-
linear dispersion relation turns out to be

"‘E 2 ff[a —lo+agu,—8 ]2
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n ’ = (16)
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_27,@(‘3‘0) (‘1 )[ﬂN 1 i(Z)+IN,—11(Z)), N, ~ Z, (17)

8 being the energy of electromagnetic field. In the above the correction to ion

Green’s function has been neglected as it is.small. The solution of equation (16) can
be found and is given by
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Figure 1.
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where Q, =| Q.| and y are given by (11) and (14) respectively and
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Saturation occurs when the imaginatory part of (18) vanishes. This gives
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Evaluating the Bessel functions we find
&=1.43 x10° ergs/cm?.

Hence the fraction of laser energy gone into x-ray production is 7 X 10-5.

3. Conclusions

We note from the density dependence of the last term in (20) that the saturation energy
increases with increasing density. At the critical density (w,,~ w) the cxplicit
value of the density dependent term is just

[1 + MJI ~ [140.32]-L

wzpef QO

Moreover with increasing density the above expression increases until it saturates off
to unity. For debsities lower than the critical the saturation energy will correspond-
ingly decrease. However, this decrease is much more sharp than one might tend to
think. The reason for this is that for densities slightly below the critical, the growth
rate drops sufficiently so as to yield characteristic times of growth greater than the
lasing period. We notice that alieady at the critical density the characteristic growth
rate time is 3X 107X sec whereas the laser pulse time is 5x10-1 sec. Thus for
densities lower than critical the wave will not even get chance to grow so that
saturation for them will not be possible to attain. The energy emitted in the form
of x-rays from these densities, will then be almost unobservable.
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(q,,82)
Figure 3.
(94:820)

Thus the essential behaviour of the saturation energy would be something like this:
for low densities (until about the critical) there is virtually no x-ray generation. Some-
where close to critical density the emission rises rapidly. After this initial sharp rise,
its further increase is relatively slow with tendency to saturate off. In the experiment
of Yablonovitch an initial sharp rise was observed at densities very close to the criti-
cal. However instead of increasing slowly to some limiting value thereafter, the x-ray
emission exhibits a peak (at densities close to the critical) before it saturates off at -
higher densities. Our theory fails to predict this peaking behaviour. The initial
sharp rise and the final levelling-off which were experimentally observed are in accord-
ance with our theory. The aspect in which our theory does not agree with the experi-
ment could be because of the following reasons:

1. The crucial physical parameter u—the quiver velocity—may not be the same at

all densities.

2. There may be density gradients.

3. The dipole approximation may loose its validity.

4. Generation of short wavelengths

It is possible to have wavelengths shorter than 15 A through nonlinear interactions.
The nonlinear mechanism is shown in figure 3, where (gy, Q) refer to the primary
emission of x-rays which has been predicted earlier on the basis of linear theory;
€, is about 2Q, but g, < ¢4; Q; < Qg but ¢, = 2¢,. It can be seen that (Q;, ¢,),
(. g,) are both solutions of linear dispersion relation.

The growth rate due to the nonlinear interaction is of the order of 103/sec. Thus
to detect short wavelength x-rays, one has to expose the film many times as was done
in the experiment. The behaviour of the short x-rays with respect to the plasma
density will obviously be the same as for the long wavelengths.
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