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Abstract. This paper deals with development of a seasonal fraction-removal
policy model for waste load allocation in streams addressing uncertainties due to
randomness and fuzziness. A stochastic dynamic programming (SDP) model is
developed to arrive at the steady-state seasonal fraction-removal policy. A fuzzy
decision model (FDM) developed by us in an earlier study is used to compute
the system performance measure required in the SDP model. The state of the sys-
tem in a season is defined by streamflows at the headwaters during the season and
the initial DO deficit at some pre-specified checkpoints. The random variation of
streamflows is included in the SDP model through seasonal transitional probabili-
ties. The decision vector consists of seasonal fraction-removal levels for the efflu-
ent dischargers. Uncertainty due to imprecision (fuzziness) associated with water
quality goals is addressed using the concept of fuzzy decision. Responses of pol-
lution control agencies to the resulting end-of-season DO deficit vector and that of
dischargers to the fraction-removal levels are treated as fuzzy, and modelled with
appropriate membership functions. Application of the model is illustrated with a
case study of the Tungabhadra river in India.
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1. Introduction

River water quality management problems are characterized by various uncertainties at differ-
ent stages of decision making to arrive at optimal allocation of the assimilative capacity of the
river system. The two types of uncertainties that prominently influence decision making are
uncertainty due to randomness and that due to imprecision or subjectivity. Problems of deci-
sion making for utilizing the assimilative capacity of a river without adversely affecting the
water quality are addressed by waste load allocation (WLA) models. A WLA model generally
comprises three components: (i) a multiobjective optimisation model representing goals and
constraints of the water quality management problem; (ii) a water quality simulation model
that provides spatial transport of the water quality constituents in the river system and (iii)
models for addressing uncertainty in the system. The two sets of objectives normally consid-
ered in WLA models deal with maximizing the water quality in the streams, which reflects
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the goal of the pollution control agency (PCA), and minimizing the waste treatment cost to
be borne by the effluent dischargers such as industries and municipal bodies. These two sets
of objectives are often in conflict with each other. Due to seasonal variation of river flow, the
assimilative capacity of the river system also varies within a year. A seasonal fraction-removal
policy has to be specified based on varying assimilative capacity of the river rather than on
a single value of river flow for the entire year. Seasonal waste water discharge programmes
employ different effluent standards during different times of the year to take advantage of the
variation in receiving water susceptibility to adverse conditions.

The problem of seasonal fraction-removal of effluent discharges in the streams has been
addressed by many researchers. Rossman (1989) developed a seasonal waste load allocation
model to achieve the maximum economic benefits without violating water quality standards.
This model describes an approach for designing risk equivalent seasonal discharge limits for
single-discharger stream segments, where risk is defined as the probability of incurring one
or more water quality violations in any given year. Lenceet al (1990) developed risk equiva-
lent seasonal discharge programs for multiple discharger system. This approach is similar to
that of Rossman (1989), but it also accommodates river segments with several dischargers.
Two management objectives are proposed as a surrogate for minimising the seasonally vary-
ing waste treatment effort: the minimum average uniform treatment and the maximum total
discharge objective. The designed seasonal waste load allocation maintains risk equivalence
with a nonseasonal waste discharge program and optimises one of these two objectives. Wot-
ton & Lence (1995) presented a modified seasonal waste discharge program for managing
BOD and DO in river systems that have ice covers during certain periods of the year. The uni-
form treatment levels during the ice covered period are evaluated by simulating water quality
based on reaeration coefficients that are nearly zero. Lence & Takyi (1992) applied a modified
regionalised sensitivity analysis for assessing the effect of unreliable stream records on the
design of seasonal discharge programs. Uncertainty in flow and temperature data at different
times in the year and at different locations in the stream is addressed in their work. They argue
that the degree to which uncertain stream conditions affect the management model outcome
depends on the water quality goals and the length of the seasons examined. To provide robust-
ness to the water quality management models, Takyi and Lence (1996) used the Chebyshev
criteria to develop direct regulation water quality management models that maximise excess
water quality above the water quality goal at all check points along the river. Such models
may be robust (in terms of achieving water quality) to uncertainties in input information. The
methodology of simulation-optimisation has been used in some recent studies in the areas
of surface water quality and quantity management (Dai & Labadie 2001); and water quality
management (Carmichael & Strzepek 2000). A major issue that has been addressed in the
WLA models is uncertainty due to randomness of variables that influence the decision mak-
ing the most. There are three widely used methods for incorporating randomness into a water
quality management model (Takyi & Lence 1999). These are (i) chance-constrained optimi-
sation (e.g. Loucks & Lynn 1966, Lohani & Thanh 1978, 1979, Burn & McBean 1985, 1986,
Ellis 1987, Fujiwaraet al 1986, 1987); (ii) combined simulation-optimisation (e.g., Burn
1989, Takyi & Lence 1994); and (iii) multiple realization based approach (e.g., Burn & Lence
1992, Takyi & Lence 1999). Another type of uncertainty prominent in the management of
stream water quality is uncertainty due to imprecision or fuzziness associated with the goals
related to water quality standards and pollutant abatement. Establishing minimum desirable
and maximum permissible water quality criteria, and minimal pollutant treatment levels is
often subjective and contains an element of imprecision. We (Sasikumar & Mujumdar 1998,
2000, Mujumdar & Sasikumar 2002) have addressed the uncertainty due to imprecision by a



Stochastic dynamic model for stream water quality management 479

fuzzy optimization approach. A brief review of uncertainty concepts used in WLA problems
is given in Mujumdar (2001).

As in many other fields of water resource decision making, optimisation models developed
for water quality management decisions also remain largely restricted to the academic arena
and have not found their way into practice in a significant way. In a discussion on models for
reservoir system operations, Labadie (1997) speculated on some possible causes for the lack
of acceptance and limited implementation of optimisation techniques. The same causes also
may be attributed for lack of acceptance of water quality planning and management models
for practical applications. Some of these are (i) decision makers are unwilling to accept
models that use an unrealistic simplification of physics of the actual problem (e.g. a simplified
BOD-DO model) in order to reach an optimal solution; (ii) most optimisation models are
formulated in a way that do not adequately account for inherent uncertainty (e.g., goals and
aspirations of PCA and dischargers) and, (iii) most applications would require customized
program development since, in many cases generalized software packages are unavailable.
This paper focuses on the second aspect, viz., addressing uncertainty. Two major forms of
uncertainty – randomness and fuzziness – are integrated in the SDP model developed in the
paper. Other general limitations mentioned above are still relevant to the work presented in
this paper also.

Most SDP approaches developed for stream water quality management deal with variation
in space i.e., along the length of the river, with a steady-state assumption on river and effluent
flow. However the state of the system characterised by streamflow, effluent flow and ambient
water quality conditions may change significantly across seasons randomly. Also, the state
of the system changes spatially from reach to reach. A comprehensive optimisation model
should therefore account for both temporal and spatial variations. In this paper, a SDP model
is developed which carries out optimisation across seasons accounting for spatial variation of
the river system.

2. Model features

Figure 1 shows the outline of the model.

Figure 1. Schematic representation of the model.
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The stochastic dynamic programming (SDP) model, on solution, specifies the steady-state
fraction-removal policy, for dischargers in a river system. Steady-state fraction-removal policy
refers to optimal seasonal effluent treatment levels that should be applied every year for a given
state of the system. A river system with randomly varying seasonal streamflow is considered
in the model. The time horizon over which the decisions need to be made is taken as one year.
Seasons are considered as stages. In each season, the possible state of streamflow is represented
by a finite number of discrete flow values. Steady-state is assumed within a season. The state
of the system is characterised by beginning-of-season DO deficitK at some pre-specified
checkpoints, and streamflow during the season at the headwaters,I . The decision variables are
the fraction-removal levels for the dischargers. The state transformation of the river system
from the beginning-of-season DO deficit vector,K , to the end-of-season DO deficit vector,L ,
is obtained using a water quality simulation model, for a given set of fraction-removals. The
desirable and the permissible concentration levels of the water quality indicators (e.g., DO
deficit) are subjectively fixed by the decision makers. Specifications of these levels depends
on the perceptions of the decision makers. These concentration levels are, in general, different
for different pollutants and checkpoints. For modelling purpose, they can be generalised to
be different for different seasons. This generalisation is necessary because the river water
may be used for different purposes during different seasons, and therefore, the allowable and
desirable levels of the water quality indicators could be quite different across the seasons.

Imprecision associated with the goals of the pollution control agencies and dischargers is
addressed using the concept of fuzzy decision (Bellman & Zadeh 1970). Response of pollution
control agencies to the resulting end-of-season DO deficit vector,L , and that of dischargers
to the applied fraction-removal level vector,X, are treated as fuzzy. A fuzzy decision model
(FDM) (Sasikumar & Mujumdar 1998) is used to compute the system performance measure
required for the SDP model. The output of the fuzzy decision model is the fuzzy decision
corresponding to the goals of PCA and dischargers for a given state of the system. This fuzzy
decision is used in the SDP model to obtain optimal seasonal fraction-removal levels.

3. Stochastic dynamic programming (SDP) model

In this section, details of the stochastic dynamic programming (SDP) model to derive the
steady-state fraction-removal policy are discussed. System performance values associated
with a given state of the system required in the SDP model for a specified set of fraction-
removal levels are provided by a second level, fuzzy optimization model. The state of the
system in a season is defined by head water flow during a season and initial DO deficits at the
check points. The random nature of the streamflows is addressed through the seasonal tran-
sition probabilities, assuming the seasonal streamflow to follow a one-step Markov Chain. A
steady-state water quality simulation model provides the system response to a given pollutant
loading from point sources.

3.1 Description of the river system

A general river system as shown in figure 2 is used to explain the model details. The river
reaches,re, along the river are defined in such a way that the physical and hydraulic properties
(such as flow depth, discharge and channel roughness) within a reach remain unchanged.
The confluence of a tributary, presence of a point source of pollution or a marked change
in the river cross-section typically defines a new reach. The river system consists of a set of
dischargers,d, that are allowed to release the pollutants into the river after removing some
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Figure 2. A general river system used in the model.

fraction of the pollutants. These fraction-removal levels are necessary to maintain acceptable
water quality condition in the river as prescribed by the pollution control agency. A common
practice of the pollution control agency to ensure an acceptable water quality condition is
to check the water quality at a finite number of locations in the river, called the checkpoints
(mesh points). The water quality at a checkpoint,c, is described by means of some indicators
called the water quality indicators. The dissolved oxygen deficit (DO deficit) is an example of
a water quality indicator. The concentration level of a water quality indicator at a checkpoint
is affected by controllable as well as uncontrollable sources of pollutants in the river system.
The response of river system to these sources of pollution can be integrated into the SDP model
using an appropriate water quality simulation model (such as the Streeter–Phelps model).
The concentration level of a water quality indicator is expressed as a function of the fraction-
removal levels which form the decision variables in the SDP model. In figure 2, the random
variation of streamflows entering into the river system at the headwater elements,h, across
seasons is represented by transition probabilities,P t

ihjh
.

3.2 State variables

In a hydrologic system, variables influencing a decision are of such a wide range that it
becomes computationally impossible to include all of them as state variables in a SDP model,
because of the ‘curse of dimensionality’ associated with dynamic programming. It is, there-
fore, necessary to choose only those variables that influence the decision process the most,
to define the state of the system. Keeping this in view, the following are considered as state
variables in the SDP model: (i)K , the dissolved oxygen deficit (DO deficit) vector, represent-
ing the initial DO deficit at the beginning of reaches containing checkpoints at the beginning
of the seasont and, (ii) I , the streamflow vector, representing streamflows at the headwaters
during the seasont . The vectorK consists of initial DO deficits at the beginning of reaches
containing checkpoints, and may be written as,K = {k1, k2, . . . , kNC}, wherekc is the initial
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DO deficit class interval at the beginning of the reach containing the checkpointc and NC
is the number of checkpoints. There can be more than one checkpoint in each reach. In that
case, the DO deficit vectorK will have number of elements equal to number of checkpoints
with equal values ofkc for checkpoints belonging to the same reach. However, other influ-
encing parameters such as the time of travel of streamflow from the beginning of the reach to
different checkpoints in the same reach may vary. If a reach does not contain a checkpoint,
that reach is not included in the state vector. Similarly, the vectorI consists of streamflows
at the headwaters during the seasont , and may be written as,I = {i1, i2, . . . , iNH }, whereih
is the streamflow class interval at the headwaterh during the seasont and NH is the number
of headwaters. As the number of headwaters and checkpoints increases, the model dimen-
sion also increases. To ensure computational tractability, therefore, the model application is
limited to only upto about four or five check points and four or five head waters.

The state variables are discretised for use in the SDP model. Discretisation of a state variable
is carried out by dividing the entire range of the variable into a number of class intervals,
not necessarily of equal length. All values of the variable falling into a particular class are
represented by a single value within the class which is taken to be the representative value
of that class interval. As the number of class intervals increases for a state variable, a better
approximation of the result would, in general, be achieved, but the computational requirements
will also increase. On the other hand, a coarse discretisation of the state variables may result
in trapping states(same states being successively visited many times). Therefore, a good
criterion to choose the number of class intervals for the different state variables is to avoid
trapping states in operation while ensuring computational tractability. This requires a trial
and error approach before finalising the state discretisation scheme. In addition, discretisation
of the decision variable (fraction-removal level) must be done in conjunction with the state
variable discretisation to ensure that different feasible combinations of the state variable
intervals lead to different decisions. It must also be noted that the effect of discretisation on
the resulting decisions depend on the signifcance of the particular state variable in the water
quality management process. For example, the head water discretisation may have a more
significant impact on the optimal decisions compared to that of the DO deficit.

3.3 Decision variable

Since the river water quality is primarily influenced by the streamflows, which change signifi-
cantly across seasons, fraction-removal decisions need to be specified for every stage (season).
In the SDP waste load allocation model, seasonal fraction-removal levels are considered as
decision variables. That is,Xt , the effluent treatment vector, representing the fraction-removal
levels for each discharger in the seasont is the decision vector. The vectorXt consists of sea-
sonal fraction-removal levels for each discharger, and is written as,Xt = {x1t , x2t , . . . , xNDt},
wherexdt is the effluent treatment level class interval for the dischargerd in seasont and ND
is the number of dischargers.

3.4 Stochastic nature of streamflows

Streamflow is the most important hydrologic variable influencing the waste load allocation
decisions. It affects the downstream water quality to a significant extent. The streamflow
in any seasont is not known with certainty in advance; only the probability distribution
of the streamflow can be estimated. In the SDP formulation (Louckset al 1981), it is
assumed that the seasonal streamflows constitute a simple (or one-step) Markov process.
The assumption of a one-step Markov process, which may not strictly be valid for all
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hydrologic variables, is nevertheless a good approximation that makes the computations sig-
nificantly simpler than with assumption of higher order dependence. The conditional proba-
bility P [Qjht+1 = jh/Qiht = ih], that is the probability of streamflow in seasont + 1 being
in statejh given that it is in stateih in seasont , is the one-step transition probability and is
denoted byP t

ihjh
. For a given class intervalih, the streamflow in periodt + 1 should belong

to one of the class intervalsjh, so that the sum of the transitional probabilitiesP t
ihjh

over all
possible values ofjh should equal to unity.

Another important assumption made in the SDP models is that the streamflow series is
a stationary stochastic process. This implies that the transition probability matrix does not
change from year to year. This assumption assures a steady-state fraction-removal polic from
the model.

3.5 Development of the recursive equation

Let λ denote a measure of the system performance whose expected value must be optimised
in the SDP model.λ is a function of the initial DO deficit vectorK , streamflow vectorI , and
the treatment vector (decision vector)X in seasont . For given values of initial DO deficit
vectorK , streamflow vectorI and the treatment vectorX and seasont , λ is evaluated using a
fuzzy decision model.

λ is the fuzzy decision corresponding to the goals of pollution control agencies and efflu-
ent discharging bodies. It is obtained for a givenK , I andX from the fuzzy decision model,
discussed subsequently. It is interpreted as the level of satisfaction among conflicting objec-
tives, and thus, a higher value ofλ would be desirable (see for a detailed discussion, Kindler
1992, and Mujumdar & Sasikumar 2002). The objective function of the stochastic dynamic
programming model is written as

maximise E[λ(K , I , X, t)] ∀ K , I

{feasible X} (1)

whereE is the expectation operator. For convenience in writing,λ(K , I , X, t) is written asλt .
Following Louckset al(1981), a backward recursive relationship is developed, starting with

the last season in some arbitrary yearS in future. Let NP be the number of periods (seasons)
remaining till the end of the yearS, andf NP

t (K , I ) represent the total expected value of the
system performance measure withNP periods to go, including the current periodt , given
that the initial DO deficit vector isK at the beginning of the seasont and streamflow vector
is I during the seasont .

In order to formulate the general recursive relationship for the SDP model, consider two
adjacent time periods,t andt + 1. For known values ofK andI in periodt , the system per-
formanceλt is determined from the fuzzy decision model, for the particular decision vector
X being examined in the optimization. The expected value of the system performance for
the subsequent periodt + 1, is determined from the state transformations:K to L , which is
determined by the water quality simulation model and,I to J, which is random and governed
by streamflow transition probabilities. SinceI andJ represent streamflows at the headwaters
in seasonst andt + 1 respectively, the transition fromI to J is to be interpreted as follows:I
represents streamflows at each of the headwaters in seasont . For a headwaterh, the stream-
flow transits from a stateih in seasont to statejh in seasont + 1 randomly. The probability
of transition from a stateih in seasont to statejh in seasont + 1 is given by streamflow
transition probability,P t

ihjh
. It is assumed that the streamflows at a headwater isstochasti-

cally independentof streamflow at other headwaters. This assumption is valid only when
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the streamflows entering the headwaters in the river stretch under study, are generated from
hydrologically different regions. Theindependenceassumption can be verified from the his-
torical streamflow data at the headwaters. When theindependenceassumption is not valid,
then joint probabilities have to be used in the recursive relationship, which renders the model
extremely complex. Assuming that the seasonal transitions of streamflows at the headwaters
are independent of each other, the product of seasonal transition probabilities of all the head-
waters is used in the recursive relationship to obtain the transition from vectorI to vectorJ.
The general recursive relationship for a seasont corresponding to the stage NP is written as,

f NP
t (K , I ) = Max

{feasibleX}

[
λt +

∑
J

NH∏
h=1

P t
ihjh

f NP−1
t+1 (L , J)

]
∀ K , I . (2)

In (2), the summation over vectorJ should be interpreted as follows: the streamflow state
during the seasont, ih at headwaterh transits to a statejh in seasont + 1 with a probability,
P t

ihjh
. Once the new state of streamflows(jh) at all headwaters is known in seasont +1, vector

J is defined. The summation is carried over all possible values ofJ to get the expected value of
the system performance over the remaining periods. In (2),t is reckoned to be 1, 2, . . . , T in
the forward direction and NP which denotes the stage number, 1, 2, . . . is reckoned backwards
from the last period. Use of both indices facilitates tracing of the stage by stage movement of
the DP algorithm.

Starting at some period in the future and using the seasonal transition probabilities of the
streamflow, it is possible to arrive at values of vectorL for each time periodt as a function of
the state variables DO deficit vector,K and streamflow vector,I . When the recursive equations
are solved for each period in successive years, the policyX∗(K , I , t) will relatively quickly
repeat itself in each successive year for all periodst . The steady-state policy is said to have
reached, when this occurs for all periodst , implying that the expected annual performance
[f NP+T

t (K , I ) − f NP
t (K , I )] is constant for all statesK , I and all periodst within a year.

This steady-state condition is ensured because the performance measureλt and the inflow
transition probabilitiesP t

ihjh
do not change from year to year.

The optimal treatment vector,Xt
∗ = {x∗

1t , x
∗
2t , . . . , x∗

NDt }, is thus obtained for a given
initial DO deficit vectorK = {k1, k2, . . . , kNC} and streamflow vectorI = {i1, i2, . . . , iNH }
for each periodt , by solving the stochastic dynamic programming formulation. The following
section discusses the fuzzy decision model which is used to compute the system performance
measureλ.

4. Fuzzy decision model

The fuzzy decision model (FDM) used in this study is adapted from Sasikumar & Mujumdar
(1998). This section describes the salient features of the model, as adapted for the problem
addressed. The system performance measure required for the SDP model is expressed in
terms of the goals of pollution control agency and effluent discharging bodies. The fuzzy
decision model evaluates the system performance measure for a given state of the system.
For a known intial state of the system defined by beginning-of-season DO deficit vector,K
and streamflow vector,I , a suitable water quality model gives the end-of-season DO deficit
vectorL for a specified treatment vectorX. Since the goals of pollution control agency and
dischargers are expressed in terms of DO deficit vectorL and treatment vectorX, the response
of the pollution control agency and dischargers to each element ofL andX is considered a
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fuzzy set and appropriate membership grades are assigned to each of such fuzzy sets. The
FDM evaluates the fuzzy decision corresponding to the fuzzy goals and constraints to give
the system performance measure required for the SDP model. The next subsection discusses
the fuzzy goals for water quality management.

4.1 Membership functions for the fuzzy goals

The only pollutant considered in the system is the BOD waste load released from the discharg-
ers. The water quality indicator of interest is the DO deficit at a finite number of checkpoints,
due to these point sources. The value of the DO deficit at a checkpoint can be expressed in
terms of fraction-removal levels of BOD associated with various dischargers located upstream
of the checkpoint. The transfer function that expresses the DO deficit at a checkpoint in terms
of concentration of point-source of BOD and the fraction-removal levels are obtained using
the one dimensional steady-stateCamp-Dobbinsmodifications to the Streeter–Phelps (1925)
BOD-DO equations.

The response of the pollution control agency and the dischargers to each element of the
DO deficit vector,K , and the treatment vector,X is treated as a fuzzy set with an appropriate
membership function. The response of the water quality in the river system, in terms of DO
deficit (i.e.,L ), as a result of the treatmentX applied for knownK andI is determined from the
water quality simulation model. In the SDP model, search is made for the particular treatment
vectorX in periodt which miximizes the expected value of the system performance measure,
λ for givenK andI . The fuzzy response of the pollution control agencies and dischargers to
the resulting DO deficit vector,L and the decision vectorX is used appropriately to compute
the system performance measureλ, using the fuzzy decision model, defined as,

λ(K , I , X, t) = minimum
[
µEc

(lc)
⋂

µFd
(xd)

]
, (3)

whereµEc(lc) is the fuzzy membership grade of the response of the pollution control agency
to end-of-season DO deficit class intervallc at the checkpointc andµFd

(xd) is the fuzzy
membership grade of the response of dischargerd to the effluent treatment class intervalxd .
Ec andFd are the goals of PCA and dischargers with respect to water quality at check point
c and fraction-removal level at dischargerd respectively, and are expressed as fuzzy sets.
Equation (3) is a mathematical statement of the definition of fuzzy decision (Bellman & Zadeh
1970), which states that the fuzzy decision of a set of goals and constraints is the intersection
of the corresponding fuzzy sets. Intersection of fuzzy sets is given by the minimum among all
the membership functions of the fuzzy sets.λ is interpreted as the minimum goal satisfaction
in the system, and its expected value is maximized in the SDP.λ(K , I , X, t) as obtained from
(3) is used in the SDP recursive equation (2).

The membership functions of the fuzzy sets are subjective statements of the perceptions of
the decision makers. For example, the membership function for the DO deficit indicates the
decision maker’s perception of the degree oflow quality, to a given DO deficit. The lower and
upper bounds of the membership functions are also subjective, and in general depend on the
particular problem being solved. To address such uncertainty in the lower and upper bounds of
the membership functions the fuzzy membership functions themselves may be treated as fuzzy
in the model and may be modelled using interval gray numbers. This, however, is not done in
the paper. It may be noted that allowing the lower limits of the fuzzy membership functions
to be less than the normally used standard values such as 5 mg/L for DO, and shaping the
membership functions with respect to biological information on DO requirements for aquatic
life, for example, would be a useful application of the methodology presented in the paper.
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4.2 Solution of the recursive equation

With all the values required for the recursive equation ready, (2) is solved repeatedly, starting
with NP = 1 whent = T , till a steady-state policy is reached. For each feasible combination
of K , I andX, a value ofλt and an associated vector ofL for a given time periodt is obtained
from the fuzzy decision model to evaluate the recursive functionf NP

t (K , I ).
The iterations are continued till the optimal policyX∗(K , I ) attains a steady-state for allt

in a year. This occurs when the expected annual performance [f NP+T
t (K , I ) − f NP

t (K , I )]
becomes constant for all values ofK andI for all t . The final valuesX(K , I ) for each time
periodt define the optimal operating policy and are denoted byX∗(K , I , t).

5. Application to a case study

The model is applied to a stretch of the Tungabhadra river system in South India, shown in
figure 3. Tungabhadra is a perennial river formed by the confluence of the rivers Tunga and
Bhadra. Downstream of the Bhadra Headwaters (Lakavalli), industries are located along the
bank of the river. Similarly, towns are located downstream of the Tunga river. Downstream
of the junction of the Tunga and Bhadra rivers, both industries and towns are located along
the west bank of the river. The river receives the waste loads from four major effluent points
which include two industrial and two municipal bodies. The model is applied to a river stretch
of 131 km that comprises the two head waters (Tunga and Bhadra) and four point loads (two
industrial and two municipal effluent loads). To keep the application simple to demonstrate
major features of the model, incremental flow and withdrawal along the streams are neglected.
The water enters the system, therefore, in the form of only fresh water flows through the head
waters or effluent flows through the point loads.

The river is discretised into a number of reaches which are defined such that model input
parameters or coefficients (physical, chemical, and biological of type) remain constant within
a reach. Whenever a new junction is encountered or a significant change in the model input
coefficients occurs, a new reach is defined from that location. Accordingly, the 131 km long
stretch of the river is divided into nine reaches of varying lengths.

All the four dischargers discharge BOD effluents to the river. The water quality indicator
of interest is DO deficit at four checkpoints due to these point sources of BOD, as shown in
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Figure 3. Schematic diagram of the river system.
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Table 1. Relevant data of river reaches.

Temperature(◦C)

Reach Width Length Manning’s Longitudinal
no. (m) (km) coeff. slope Mean Std. dev.∗

1 200·00 4 0·0500 0·000035 26·91 1·85
2 143·12 3 0·0440 0·000076 25·90 2·21
3 75·00 20 0·0800 0·000050 25·97 2·21
4 216·22 20 0·0160 0·000025 26·77 2·04
5 250·00 20 0·0400 0·000190 27·77 1·93
6 250·00 20 0·0400 0·000190 27·77 1·93
7 245·00 10 0·0655 0·000054 27·77 1·93
8 215·12 14 0·0700 0·000600 27·77 1·93
9 215·12 20 0·0700 0·000600 27·77 1·93

∗Std. dev.: Standard deviation

figure 3. At most one checkpoint is considered in a reach in order to reduce the computational
effort. The data required for the simulation model is collected from government sources (e.g.,
Karnataka State Pollution Control Board, Water Resources Development Organisation) and
a few industries. This data includes: (i) details of discharges, and DO, BOD concentrations of
both head water and effluent flows; (ii) details of river geometry, and (iii) temperature details
of the waste load and the river flow. Table 1 gives the data pertaining to the geometrical details,
Manning’s roughness coefficient and initial values of temperature for various reaches. A
geometrical cross-section of rectangular shape is considered for the river. The four checkpoints
are located at the end of reaches 2, 3, 5 and 9. These checkpoints are chosen based on their
critical locations in the river for water quality considerations. Mean time of travel of the flow
from the beginning of a reach to a checkpoint, if present in that reach, or to the end point
of the reach if there is no checkpoint in the reach, is given in table 2. Effluent flow data is
provided in table 3. Effluent flow data is considered to be constant across seasons.

Table 2. Time of travel from beginning of a reach to a check-
point / end of the reach.

Time of travel

Reach Checkpoint End point
no. (day) (day)

1 - 0·323
2 0·123 0·123
3 1·343 1·343
4 - 0·572
5 1·483 1·483
6 - 0·951
7 - 0·376
8 - 0·039
9 0·281 0·281
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5.1 Discretisation of state and decision variables

The state variables in the SDP model are beginning-of-season DO deficit at the four check-
points and streamflow during the season at the two headwaters. The state vector thus consists
of six variables. For use in the SDP model, these variables are discretised into a number of
class intervals. Details of discretisation of these state variables are presented in the following
subsections.

5.1a Discretisation of headwater flow:For each headwater, seasonal average discharge is
used to compute the transition probabilities. The seasonal average discharge at each headwater
is first discretised into four class intervals for each season. Table 4 gives the discretisation
of seasonal average discharge at the two headwaters for the three seasons. Since there are
two headwaters and four classes for each headwater flow, total number of streamflow states
of both headwaters together, is 16. Seasonal transitional probabilities of streamflows at the
two headwaters are computed using relative frequency approach. The seasonal transition
probabilities for both headwaters are presented in table 5.

5.1b Discretisation of DO deficit: The possible range of DO deficit at each checkpoint is
divided into a number of class intervals. Each such class is represented by its representative
value, usually the midpoint of the class interval. The minimum value of DO deficit at each
checkpoint in all seasons is taken as zero and the maximum permissible DO deficit as 6.0 mg/L.
This range, 0–6, is divided into six equal classes, defined to be the same for all checkpoints
in all the three seasons. Since DO deficit at each checkpoint can be in one of the six classes
and there are four checkpoints, total number of elements in vectorK will be 64 = 1296.
The total number of combinations of state variables (DO deficit and streamflow) is thus,
1296× 16 = 20736. For each such combination of state variables, optimal decision vector
(vector of fraction-removal levels,X) is obtained from SDP model.

5.1c Discretisation of fraction-removal levels:The decision variable,X, which is the vector
of fraction-removal levels at the four dischargers is also discretised into a number of classes.
A minimum fraction-removal level of 30% and a maximum fraction-removal level of 90%
are assumed for the dischargers. Nine equal discrete states of fraction-removal levels are
considered within this range. Table 6 gives the discrete state values of fraction-removal level
considered for all dischargers in all seasons.

Table 3. Effluent flow data.

Effluent flow data
BOD DO

Discharger Location conc. conc. Mean Std. dev. Value used
no. (reach no.) (mg/L) (mg/L) (m3/s) (m3/s) (m3/s)

1 1 1000 2·0 0·705 0·154 0·727
2 2 440 2·0 0·308 0·077 0·318
3 3 300 2·0 0·026 0·002 0·027
4 4 900 2·0 0·436 0·109 0·450

Note: No.= number; conc.= concentration; std. dev.= standard deviation
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Table 6. Discrete states of fraction-removal levels.

Class 1 2 3 4 5 6 7 8 9

Rep. value 0·30 0·38 0·45 0·53 0·60 0·68 0·75 0·83 0·90

Since the value of fraction-removal level for each discharger can be one among the nine
discrete states, and there are four dischargers, total number of elements in the decision vector
X is 94 = 6561. For each combination of state variables, a search is therefore made over
6561 possible values of decision vectorX to arrive at the optimal decision vector in the SDP
model. It is to be noted that the water quality simulation and the fuzzy decision models are
invoked 1296×16×6561 times to get the response of the system in terms of DO deficit vector
L and the system performance measure for each stage. This is repeated for all stages until
the steady-state condition is achieved. It thus involves a very large computational effort. On
a high-speed IBM workstation, the CPU time required for achieving the steady-state policy
was around four hours. It must however be noted that this is a one-time requirement, and
once the policy is derived, implementation of the policy requires negligible computational
effort.

The recursive method proposed by Fugiwara et al (1986) is used with minor modifications,
for modelling the BOD-DO transport in the river. The method is referred to in this paper as
the influence coefficient recursive method (ICRM). Table 7 gives the coefficients required to
compute the resulting DO deficit at a checkpoint forK = {1, 1, 1, 1} andI = {4, 4} in all

Table 7. ICRM coefficients forK = {1, 1, 1, 1} andI = {4, 4}.

(−1)× Coefficient of
Checkpoint Constant
no. term x1 x2 x3 x4

Season 1

1 1·1073 0·2799 0·0169 0·0000 0·0000
2 1·9617 0·8242 0·1578 0·0086 0·0000
3 0·3512 0·0802 0·0161 0·0007 0·0421
4 0·1972 0·0701 0·0143 0·0008 0·0501

Season 2

1 6·9275 5·9575 0·6655 0·0000 0·0000
2 13·4338 10·6289 2·5346 0·1537 0·0000
3 0·2848 0·0888 0·0217 0·0013 0·1725
4 0·2676 0·0832 0·0203 0·0013 0·1627

Season 3

1 5·5284 4·7035 0·4510 0·0000 0·0000
2 12·1431 9·6511 2·1765 0·1286 0·0000
3 0·5162 0·1893 0·0439 0·0027 0·2802
4 0·3018 0·1107 0·0257 0·0016 0·1638
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seasons. A sample of the ICRM coefficients to obtain the DO deficit vector,L , in terms of
the fraction-removal levels,X, for a knownK andI is given in table 7. As an illustration, for
K = {1, 1, 1, 1} andI = {4, 4}, the DO deficit at the checkpoint 2 in season 1 is calculated
as:

1·9617− 0·8242x1 − 0·1578x2 − 0·0086x3 − 0x4. (4)

5.2 Model solution

The goals of the pollution control agencies and the dischargers are considered fuzzy sets.
For the sake of simplicity, linear membership functions are defined for the fuzzy sets. The
desirable concentration level and maximum permissible concentration level of the DO deficit
at the checkpoints are presented in table 8. The aspiration levels and the maximum acceptable
fraction-removal levels for the dischargers are presented in table 9. These parameters define
the linear membership functions. As an illustration, membership function for response of
PCA to end-of-season DO deficit at checkpoint 1 in season 2 is shown in figure 4. Similarly,
membership function for the response of discharger 1 to fraction-removal level in season 2 is
shown in figure 5. FDM calculates the system performance measureλ (K , I , X, t) for each
possible input state. Table 10 gives a sample output of FDM for a resulting vector,L for some
combinations ofK andI when minimum fraction-removals are applied (i.e.,X = {1, 1, 1, 1}),
in season 1.

The values obtained from the fuzzy decision model,λ(K , I , X, t) are used in the recursive
equation (2) to arrive at the steady-state fraction-removal policy. The steady-state policy is
obtained after three annual cycles. It gives the values of optimal fraction-removal levels for

Table 8. Membership function parameters for goals of PCA.

Desirable level (AD
wc) Max. permissible level (AH

wc)
Checkpoint (mg/L) (mg/L)

Season 1

1 0·0 5·5
2 0·3 5·7
3 0·2 5·4
4 0·5 5·8

Season 2

1 0·5 5·5
2 0·4 5·7
3 0·6 5·4
4 0·3 5·8

Season 3

1 0·6 5·8
2 0·7 5·9
3 0·5 6·0
4 0·9 5·7

Note:w = water quality indicator, DO deficit;c = checkpoint
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Table 9. Membership function parameters for goals of dischargers.

Discharger Aspiration level (xAs
wdn) Max. permissible level (xM

wdn)

Season 1

1 0·30 0·80
2 0·30 0·85
3 0·35 0·90
4 0·33 0·88

Season 2

1 0·30 0·90
2 0·35 0·85
3 0·40 0·80
4 0·30 0·80

Season 3

1 0·35 0·90
2 0·40 0·90
3 0·38 0·88
4 0·30 0·90

Note:w =water quality indicator, DO deficit;n =pollutant, BOD;d =discharger

a givenK and I in each season. Table 11 gives a sample output from the SDP model and
specifies optimal fraction-removal levels for all seasons for someK andI .

In season 1, the fraction-removal levels are generally low due to high streamflows. The
fraction-removal levels in season 3 (Summer) are quite high compared to season 1 (Monsoon),
due to low streamflows in the Summer season. It must be noted, however, that significant
information – pertaining to random variation in streamflow, initial state of the system and
fuzzy goals of the management problem – is used in arriving at these fraction-removal levels,
and thus, the implication of such a policy of fraction-removal levels is very difficult to assess
based on these summary results. A comparison of the implications of these fraction-removal
levels (in terms of total treatment cost, reliability of quality, resileince resulting from the
policy and other performance indicators) must be studied separately.

wcmg/L0.5A
wc
D = 5.5mg/L aA

µ

wc
H =

1

0
Figure 4. Membership function for goals of
PCA w.r.t. DO deficit at checkpoint 1 in sea-
son 2.
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wdnx As
wdn x

wdn
M = X0.9=

1

0

µ

0.3
Figure 5. Membership func-
tion for goals of discharger 1 w.r.t.
fraction removal level in season 2.

6. Conclusion

A stochastic dynamic programming model is developed to obtain a steady-state optimal
fraction-removal policy which specifies the optimal fraction-removal levels in a season for
given values of initial DO deficit vector and streamflow vector in seasont . Initial DO deficit
at the beginning of reaches containing the checkpoints and streamflows at the headwaters are
the state variables in the SDP model. Streamflows at the headwaters are treated as random
variables, and their transitions from one season to the next are modelled using seasonal tran-
sition probabilities. The procedure presented in the paper for arriving at a seasonal fraction-
removal policy, includes a fuzzy decision model as a means of addressing uncertainty due
to imprecision and subjectivity in specifying water quality and fraction-removal goals of
the pollution control agencies and the dischargers. These goals are treated as fuzzy and are
modelled with appropriate membership functions. Although for the case study, only linear
membership functions are used, use of nonlinear membership functions poses no difficulty
because the optimization algorithm (SDP) imposes no restrictions on linearity of the objective
function.

Other sources of uncertainty (such as the model uncertainty in the water quality simulation
model and random variations of variables other than streamflow)are not considered in the
model, keeping computational tractability in view.

The model does not limit its application to any particular pollutant or water quality indicator
of the river system. Appropriate water quality simulation model can be integrated with the SDP
model to model the state transformation of the river system. For example the QUAL2E and the
WASP6 models developed by the Environmental Protection Agency (EPA) may be integrated
into the SDP model as transport models. However, in such cases the discretisation of the state
variables plays a crucial role, as it may have a significant effect on the optimal decisions.
Like all SDP models, the present model also suffers from limitations due to discretisation of
the state and decision variables. The one-step Markov chain assumption for seasonal flows is
generally valid in flows with pronounced annual cyclicity, and therefore use of the stochastic
dynamic programming to derive seasonal fracion removal levels is justified in most cases.
It is desirable to compare the results of policy implications with respect to other policies in
practice, but this is not done in the present study, due to lack of adequate data on the case
study. A limitation of the example problem presented in the paper is that non-point source of
pollution is neglected because of lack of data.
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Table 11. Optimal fraction-removal policy (sample results).

Initial DO deficit vector,K Streamflow vector,I Optimal treatment vector,X∗

Season c = 1 c = 2 c = 3 c = 4 h = 1 h = 2 d = 1 d = 2 d = 3 d = 4

1 1 1 1 1 4 4 2 2 3 3
1 1 2 2 2 4 4 4 5 5 5
1 2 1 1 1 4 4 4 4 5 4
1 3 2 2 2 4 4 5 6 7 6

2 1 1 1 1 4 4 7 7 6 6
2 1 4 2 2 2 4 7 6 6 6
2 1 6 1 4 3 2 8 7 7 6
2 3 2 2 2 4 4 7 6 6 5

3 1 2 2 2 4 4 6 7 6 6
3 2 3 1 1 4 4 7 7 6 6
3 3 1 1 1 3 4 8 8 7 7
3 4 1 1 2 2 4 7 7 7 6

Note:c = checkpoint;h = headwater;d = discharger

List of symbols

Ad
wc desirable level of DO deficit;

AH
wc maximum permissible level of DO deficit;

c checkpoint;
d discharger;
h headwater;
I streamflow vector,{i1, i2, . . . , iNH } in seasont ;
ih class interval of the in flow during seasont at the headwaterh;
J streamflow vector,{j1, j2, . . . , jNH } in seasont + 1;
jh class interval of the in flow during seasont + 1 at the headwaterh;
K DO deficit vector{k1, k2, . . . , kNC} at the beginning of seasont ;
kc class interval of the DO deficit at the beginning of reach containing the check-

point c at the beginning of seasont ;
L DO deficit vector,{l1, l2, . . . , lNC} at the end of periodt ;
lc class interval of the DO deficit at the beginning of reach containing the check-

point c, at the beginning of seasont + 1;
NC number of checkpoints;
NH number of headwater elements;
ND number of dischargers;
P t

ihjh
seasonal transitional probability i.e., the probability of stream flow at the

headwater elementh in periodt +1 being in statejh given that it is in state
ih in periodt ;

t season or time period;
w water quality indicator;
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Xt treatment vector,{x1, x2, . . . , xND} in periodt ;
xAs

wdn aspiration level of fraction removal for dischargerd;
xM

wdn maximum acceptable fraction removal level;
λ(K , I , X, t) system performance measure for knownK , I and applied decisionX in

periodt .
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