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Abstract. It is shown that for an abrupt bimetallic interface a hydrodynamic 
solution for interface plasmons does not exist. It appears that this result is valid 
irrespective of the choice of of the additional boundary condition, thereby suggesting 
a careful look at the use of usual hydrodynamic equations for a bimetallic interface. 
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1. Introduction 

It is well-known (Stern and Ferrel 1960; Kunz 1966) that a bimetallic interface 

supports surface plasmons with frequency %I = 2 where %1, 9 are 

plasma frequencies of the two media. This result is obtained by using a local 
dielectric model for the electron gas. It is also well established that when hydro- 
dynamic model is used, the surface plasmons along a metal-vacuum interface become 
dispersive and the frequency % v  is given as (Fuchs and Kliewer 1971) 

_ ~ p l  1 + + . . .  (1) 
 i-6/ - -  ' ~Opl 

where v F is the Fermi velocity. Hence, using the usual (Fuchs and Kliewer 1971) 
hydrodynamic model when instead of metal-vacuum interface a metal-metal interface 
is chosen, one expects a dispersion of the surface plasmons, which have frequency oJsi 
in the local limit. The main aim of this paper is to show that an abrupt bimetallic 
interface does not support any hydrodynamic solution of surface plasmons. 

2. Dispersion relation 

The linearized equations governing the hydrodynamics and electrostatics of electron 
gas in a metal are: 

0n_ + no die v = 0, (2) 
Ot 
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av -- e E ~: . . . .  V n, (3) 
~ t  m n o 

V " E =  - - 4 1 t e n ,  (4) 

p = m ~ n, (5) 

where n is the electron density, v the velocity, p the pressure, E the electric field and 
/3: = (3/5) v~, v F being the Fermi speed. 

Considering the time dependence as exp(--ioJt) and taking E = -  grad if, 
equations (2) -- (5) give 

V4~ + k : v : ~  = 0, (6) 

where, k ~ = (,o2-~,,~)/#~, (7) 

and o)~ = 47r n o e2/m is the plasma frequency. 
Taking the medium I to be x < 0 and medium 2 to be x > 0 lying in the plane y-z  

the solutions of (6) for media I and 2 are; (the y dependence is neglected and z-depen- 
dence along the interface is taken as exp (ilz)), 

~x = a exp (12--k~) I/2 x Jr C exp (Ix), x < O, 

~ba = B exp -- (F--k~)  1/2 x q- D exp ( - - Ix) ,  x > O. (8) 

The electrostatic boundary conditions are: (i) ~ must be continuous, (ii) a~/Ox 
must be continuous, (iii) The normal component of j, the current density i.e. n o e v x 
must be continuous, and (iv) (/32/oJ~) nm must be continuous. The fourth boundary 
condition was derived by Forstmann and Stenschke (1977) from the continuity of 
the normal component of the energy current density. 

From (4) 

1 [ ' d : ~ _ p ~ ]  (9) 
n = ~ e e  . ~  

and from (3) we get 

- - i cov  x mLdx o~ \dx  a 

Applying the boundary conditions to the solutions (8) and n and v x we get the 
dispersion relation: 

1 

m l  

oJ2 ~ o)~1 

o)~1 

oJ 2 m I 

1 - -1  --1 

1 m: 1 

0 - (o): - o)~0 0 

l oJ~l o)2 m~ I oJ~0 

(11) 
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where 

3. Discussion of the dispersion equation 

Equation (11) can be written as follows: 

2 / 2 
(12) 

where a = lfll / tO,1 , CO ~ (tO/tOp1), ~ -~- (4~. I W~1 and ~ = ~) I ~ are the interface 
parameters. 

We note that when ~, -* 0, (since ~ = 0 (~,4/~)), (12) reduces to 

[ ,~ - (<o~ - 1 ) ] ~  ( ~  - 1) = ~, (13)  

which is the same as that derived by Fuchs and Kliewer (1971; oq. (18)) for metal- 
vacuum interface. Squaring both sides of (13) we get the exact expression for ~ as 

+ ( ~  + 2) 1/~ 
,o = , (14) 

2 

which for small a gives the well-known expression (1) 

o-- rl +( 3 
V~L ~I ~ j  

Now, we shall show that the dispersion equation (12) does not possess any real 
root a, for a given value of ~ except the roots ~ = y which represent the bulk modes 
in the two media. For this we shall write (12) as 

x(o~) [ ( ~  - (~o~ - 1)]1/8 + a ( o )  [(~* - (o~ - ~ ) & ) ]  = c (o~) ~. (15)  

Since A (w) and B(w) change sign at w ~ = 1, o~e = ~, and m s = (1 + ~,) / 2 we dis- 
cuss the roots of (15) in the four regions (a) 0 <: w e < y. (b) ~, < oJ ~ < (1 -F y) / 2, 
(c) (1 + ~,) / 2 < oJ 2 < 1 and (d) 1 < w ~ < oo. Without loss of generality we shall 
choose 7 < 1. 

In region (a) it can easily be shown that A(a,) [~  + 1 -- oJ~] l/~ > C(oJ) a, hence (15) 
is always positive. In region (b) we can show that B(w) [a ~ -- (oJ ~ -- y)/~]l/, _ C(oJ) 
is negative, making (15) negative for all a. In region (c) we note that for real room 
to exist the value of  a must be greater than ami n, given by %a,, = [( <°s -- ~,)/~]i/~. 
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Hence taking into consideration that ~ > amin, we can show that A(oJ) [at--(o~ ~ -  1)] vz 

< C(o,)¢ for all a > amin, thus making (15) negative for this range of oJ t also. In 

region (d) it can be easily shown that the asymptotes to the right side curves are 
greater than the straight line on left side, thus making (15) positive in this region 
ofoJ. 

4. Conclusion- 

The above analysis shows no roots for (12), hence there is no possibility of electro- 
static wave propagation at the interface of two metals when hydrodynamic effects 
are taken into consideration. The only root admitted by (12) is a = 0, oJ z = (1 +y)/2 
which are the electrostatic oscillations when local dielectric model is taken into 
account. Hence, we note that in the presence of the second metal boundary the 
hydrodynamic correction, unlike the case when the medium is bounded by vacuum, 
does not introduce any dispersion to the electrostatic oscillations. 

We would like to point out that in the above analysis we have chosen effective 
masses of the electrons in both the media to be equal. However, it is easy to show 
that the above conclusions remain valid even in the case when the effective masses 
are different. 

Das Sarma and Quinn (1977) treated the problem of collective modes at a bimetal- 
lic junction including the effects of hydrodynamic dispersion. Though they do not 
specifically discuss the problem of non-existence of hydrodynamic solution for inter- 
face plasmons, they do state that in the ease of abrupt bimetallic junction, dispersion 
relation obtained by standard boundary conditions (which differ from those in Forst- 
mann and Stenschke 1977) turns out to be inconsistent with the assumption of a 
localized excitation whenever the compressibility of the electron gas is finite. This 
suggests that the non-existence of hydrodynamic solution for the interface plasmons 
is independent of the choice of the boundary conditions. 

Doubts have been cast upon the applicability of the hydrodynamic approximation 
to the surface-plasmon problem (Harris 1971; Kleimann 1973). The discussions 
in this paper and the fact that the interfacial plasmon dispersion at a metallic surface 
has been calculated by Feibelman (1971) using the random-phase approximation 
(which gives the interface plasmon frequency OJsi in the local limi0, suggests that the 
use of usual hydrodynamic equation should be looked into carefully. The study of 
hydrodynamic solution of plasmons at the bimetallic interface employing an improved 
theory of hydrodynamics on similar lines as in Kleinman (1973) will form the topic 
for a separate paper. 
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