Quantum transport using the Ford-Kac-Mazur formalism
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The Ford-Kac-Mazur formalism is used to study quantum transpoff)irelectronic and(2) harmonic
oscillator systems connected to general reservoirs. It is shown that for noninteracting systems the method is
easy to implement and is used to obtain many exact results on electrical and thermal transport in one-
dimensional disordered wires. Some of these have earlier been obtained using nonequilibrium Green function
methods. We examine the role that reservoirs and contacts can have on determining the transport properties of
a wire and find several interesting effects.

[. INTRODUCTION tion of oscillators which are initially in equilibrium. The res-
ervoir degrees of freedom are then eliminated, leading to
There is considerable current interest in the problem ofiuantum Langevin equations for the remaining degrees of
transport through various nanoscale devices both from theedom(the system Thus the reservoirs can be viewed as
fundamental and from applied points of view. In this connecProviding sources of noise and dissipation into the system.

tion, Kubo's transport formulas have to a large extent beer] '€ FKM formalism is thus very direct to interpret and, as

superseded by different formalisms in the spirit of Bardeen's"® shall demonsirate, is more straightforward to apply than

tunneling modet. The Landauer formufa (LF) and the other methods of treating open quantum systems such as the

: : : Caldeira-Leggett! Keldysh!® and scattering theoriés.
*
ggidcys%zrtriﬁrllgguaéﬁguzgwg:alﬁggge\sltnaggﬁggoﬁior)‘?‘l%g{é% Quantum Langevin equations have earlier been used in the

_context of transport in mesoscopic systems and have helped

have been developed, allowing one to study systems it ihe understanding of some experimental ddfaThe
steady state arbitrarily far from the linear region where Ku-pxm approach was also used earlier by O’'Connor and

bo’s formula is applicable. There is also considerable experit ehowitz? in studying classical heat transport in disordered
mental activity involving resistive elements, such as quanharmonic chains and our analysis here closely follows theirs.
tum dots, scanning tunneling microscof@TM) tips, single-  Here we use the FKM approach to make a detailed study of
walled nanotubes, and insulating nanowires, often coming Uguantum transport in disordered electronic and phononic sys-
with unexpected physics® _ tems. For very general reservoirs we obtain exact formal
The most popular alternative to Kubo's formulas is theexpressions for currents and local densities in the nonequi-
LF, proposed |n.195?S|nce_ then, several derivations of the |iprium steady state. We find that for a special type of reser-
LF have been givefi and this has led to a good understand-yoir the ideal Landauer resultvhere the conductance is
ing of the formula. A large number of experiments are inter-expressed in terms of the transmission coefficient of one-
preted successfully on the basis of the LF. The quantum ofimensional plane wavisollows exactly, while for general
conductances?/h has been understood as a contact resisreseryoirs they need to be modified. We examine in some
tance which arises due to the squeezing of the reservoir detetail the effect on transport properties that the choice of
grees of freedom into a single chanfiet? While a physi-  reservoirs can have and find a number of interesting effects.
cally careful statement of the conditions for validity of the For example in the electron case we find that imperfect con-
LF can be found in Ref. 13, we believe that a detailed mathtacts can lead to an enhancement of conductivity. In the pho-
ematical theory of the r0|e of reserVOirS a.nd the nature of th?lon case we find the Surprising resu|t’ earlier noted for clas-
coupling between the wires and reservoirs does not exiskjca| systems, that the heat currehin a long disordered
The role of the idealized reservoirs has been to serve agire decays with system si2z¢asJ~ 1/N® wherea depends
perfeCt sources and sinks of thermal electrons. This Clearlbn the |OW_frequenCy Spectra| properties of the reservoirs.
will not be satisfied in all experimental conditions, and itis  The paper is organized as follows: In Sec. | we present the
necessary to have a better microscopic understanding of réfsrmalism and results for transport in the one-dimensional
ervoirs and contacts. There has been some %dtk*'%in (1D) Anderson model. In Sec. Il we present the formalism

this direction but, to our knowledge, a detailed understandingng resuits for transport in disordered harmonic chains. We

of the role of reservoirs is still lacking. end with a discussion in Sec. IlI.

In this paper we adapt a formalism that was developed by
Ford, Kac, and Mazdr (FKM) and model reservoirs as in- Il. TRANSPORT IN THE ONE-DIMENSIONAL
finite noninteracting systems. This method was originally de- ANDERSON MODEL

vised to study Brownian motion in coupled oscillatGrand

was later extended to a general study of the problem of a
quantum particle coupled to a quantum mechanical heat The setup: we wish to study conduction in a disordered
bath?® In this approach reservoirs are modeled by a collecfermionic system connected to heat and particle reservoirs

A. Formalism and main results
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through ideal 1D lead$see Fig. 1L We consider a tight- The equations at the boundary sites involve reservoir opera-
binding model, and for simplicity we take the system andtorsc, andc, . Using the equations of motion of the reser-
leads to be 1D while the reservoirs are quite general. We useoir variables we can replace these reservoir operators by
the following notation: the indicesm denote points on the Langevin-typagerms. The equations for the left reservoir are
system or leads, greek indicksy or \’,u’ denote points on given by (for t>7)

the left or right reservoirs, respectively, and finallyg de-

note points anywhere. Theg(I =1,2, ... N) denotes lattice c,=—iT,,C, N#a),
fermionic operators on the(system + lead, and
Cy, C (MN'=1,2,... M) denotes operators on the left c,=—iT,,C,+ivyc,. 2

and right reservoirs. The,s’ satisfy the usual anticommuta-
tion relations{c,,cq}=0, {c},ctt=0, and{c],c4}=5,q-
Out of theN= Ng+ 2N; sites, the first and ladt, sites refer
to the leads while the middid sites refer to the system. The o
Hamiltonian for the entire system is given by=H°+V c (=i g{v(t—f)cy(r)—J dt'g,y (t—t")[yci(t")]
+Vint, Where v 4

This is a linear set of equations with an inhomogeneous part
given by the terniyc, and has the general solution

where
N—1 N
HO=— > (cleipateliien+ 2 vicle . -
= = 95, (0==102 ya() g7 (v)e .
A 1. ~ T ; . . . .
+E T\,C)C,+ 2 T,/,/C/Cpr; Here ¢, (\) is the single-particle eigenstate of the left reser-
v A voir, with energye,, andn runs over all states. We need

c.(t) which we note has two parts. The firsh(t)
V=—ry(clc,+cle)— v (clea +clep). =iZ,g’ (t—7)c,(7), is like a noise term whose statistics is
determined by the initial conditions of the reservoir. Initially
The first part ofH® refers to the system and leads, while the reservoirs are in thermal equilibrium and the normal

andT’ describe the two reservoirs. The contact between th&odes €, =2,C\¢y(N) satisfy — (ci(7)cy (7))
reservoirs and leads is given by the interconnection Wart =y f(€n,1,8), where f is the Fermi distribution,
The interaction par¥/;,, can be added perturbatively, and we =1[ef(~#) + 1], and(O)=Tr[Op], wherep is the reser-
return to its inclusion later in the paper. We will consider avoir density matrix at timer and “Tr” denotes a trace
system with on-site disorder and so choose the on-site enegver reservoir variables. The second part of(t),
giesv;, I=N;+1,... N+Ng, from some random distri- ¢ (t), —yfZdt'g} (t—t')c,(t'), is dissipative in nature.
bution. At sites belonging to the Ieacﬂi;=1,2, ... NN, Defining the Fourier transforms Cp(w)
+Ng+1,... N], assumed to be perfect conductors, we setz(l/zﬂ)ffwdtcp(t)eiwt' g (w)=/7.dtg} (t)e'!, and
v,=0. At some timet<r in the remote past, the two reser- h(w)=(1/2m) [~ dth(t)e“', and taking the limitsMl — o
voirs are isolated and in equilibrium at chemical potentials 54—, — o, we get

andu’ and inverse temperaturgsand ', respectively. At

t= 7, we connect the reservoirs to the two leads and evolve c(w)=h(w)— Yg;a(w)cl(w),

the system with the HamiltoniaH. We study the properties

of the nonequilibrium steady state, reached after a long time. <hT(w)h(w’)>= (w)d(w—w"),

The Heisenberg equations of motion for the operators of

the system and leads are given (gr t>7) [(w)=py(o)f(w),
. . . . 2
ci=iC,—iv.Cit+iyc,, o ()= |¢n(_a)| Cimp, 3

n W €p

C=i(C-1FCg)~iviG (2<I<N-1), where p,=3,|¥n(a)|?8(w—€,) is the density of states at

) site . The third equation above is a statement of the
Cny=liCny_1—lvnNCNTIY Cur e (1)  fluctuation-dissipation theorem. Similarly for the right reser-



voir we getca,(w)zh’(w)—y’g;,a,(w)cN(w), with the i 0
noise statistics oh’ () determined by’ and3’ . Also h (in= _ZJ_wd“’ Im

r:ElN i (0)Z M)l (o)
andh’ are independent so thé'(w)h’(w'))=0. We now '

Fourier transform the system equations and plug in the forms o "y "y
of ¢, (w) andc, () to get the following particular solution: <J|u>:2f dolm 2, Zi B (o) 2 (o)l (w)|, (7)
e Bt
N ot wherel ;= %2l andly=17'2l". In the case of the heat current
& ffocdwz'm (@)hm(@)e we takel to be on the leads so that=0. Using the various

identities stated earlier we can show, as expected, that these
5 —d, +A are independent dfand reduce to the simpler expressions
Im™ *¥im Im »

D=8 mr1— .m1t ()= ©) 8 m, (n= fldw\](w)[f(w)—f'(w)],

A= 8,0l Y29 @) 81,17 729 41 (@) 81 ], [
G- | dowd@ifw)~1 (@),
hi=yh(w)d 1+ 7" (@) d n- 4

. . . i where
With this formal solution and the known properties of the

spectral functioni(w), h'(w), g,,(w), andg,, ,(w), we J0)=27Y*Y"2po(@)por(@)|Y1n|?.
can now compute various physical quantities of interest. Spe1-_
cifically we shall be interested in the electrical and thermal unction G*(w)=(w+ie—H)"L This satisfiesG'=g"

currents and the local particle and energy densities. The op= 5> bl . -1
erators corresponding to particle and energy densities art%g .VG whereg™ =(w+ie—H")"". These can be solved

hese can be expressed in terms of the retarded Green'’s

given by give
ﬁ|:C|TC| Gfm:[girm_ V,ZQZ'Q'(gﬁNgIm_gIrNgﬁm)]/Z’
A t T Gﬁm:[gﬁm_ ngza(gflglzm_gﬁlgfm)]/za
U= —(C/Cly1+C11Cp)
where
1
+§(U|CFC|+U|+1CF+1C|+1), 5) z:l_,ngl*nga_y'ZgﬁNg:/a/
~ ~ ’ +

while the corresponding current operatgfsand " are de- + 7Y %0 0090 o (9119NN— I1nON1) -

fined through the conservation equatiofrs gt + 9j"/ 9x=0

. R Let g,,=R€g," ] denote the real part of the system’s
and au/dt+ 9jY/9x=0. We get 9im=ReGin] P Y

Green function. It is easy to see thgfy=gn1=—1/Dy .,

n_ .t + gllz_DZ,N/Dl,N: and gNNz_Dl,N—llDl,N' USing these

Jr=1(C116=¢/C41), and the Jacobi identitg;:gyn—91nOn1=Dan—1/Din We

get 1]Y;n?=Gn yGny; WhereGn* is a modified Green

function obtained fromG* by replacing allsystemGreen

functions by their real part. We then get the particle current

in a form similar to those obtained by Meir and Wingr&en
We now calculate the steady-state averages of these fousing the Keldysh formalism and by Todoret al® using

guantities. We introduce some notation and state a few mathiime-independent scattering theory. Their results differ from

ematical identities. We denote By ., the determinant of the ours in that they are expressed in terms@f instead of

e T : i 13
submatrix ofZ beginning with thelth row and column and GN’. The case of insulating wires treated by Caetlial:
ending with themth row and column. Similarlyp, ,, denotes ~ &/S0 follows from our results.

determinant of the submatrix formed frofn. The following
results can be proved:(i) Yin=Din+¥?0..Dan . _ _ o
+9'29%, Din 1+ 72729595 Doy 1 (ii) Zﬁ\ll Itis instructive to write the currents anq densities in terms
cae T aaZalal AR of properties of the single-particle scattering states of the full
=Yy-1/Yin, Zin =Y/ Yo, and (i) Dip-1Don HamiltonianH (possible when interactions are abgehet
—DypD2p-1=1. () and y'R(w) denote thejth unperturbed wave func-
tions with energyw of the left and right reservoirs, respec-
tively. Let al- andal;® denote the amplitude at sifeof the
The expectation value of the current operators, using Eqgth right- and left-moving states obtained by evolving the
(3) and(21), gives unperturbed levels with the full Hamiltonian. We then get

- ) Ul+1 = 2
Jluz—|(C|T+2C|—C|TC|+2)+T+(J|n+1+JIH)- (6)

2. Scattering states

1. Particle and heat currents



a{L:Kﬁly(/,iaL(w) and a{R:K&lyfwij(w), The currents Wwould also carry current and we would have integrate over
and densities are given by'=i(a},,a—afa 1), N all frequencies We then get the following forms for the

—a*a, etc. Using these we find thd(w) is simply the Particle and energy currents:
total transmitted current for all waves with energy Also 1 (=
the partiCIe denSity is given by <]|n>: Zfo de(k)T(k)[f—f/],

<n|>=f de[p(w)f(w)+pfi(@)f’ ()], 1 s
- <J'|“>=ﬂfodKV(k)e(k)T(k)[f—f’],
wherepr==,|al"|? is the total particle density at a poiht
due to all right-moving waves with energy andp|R is due where
to left movers. Note that the currents and densities do not
have the simple Landauer form sindw) depends not only v(K) = de(k)/ ok =2 sin(k), (11)
on the system but also on bath and contact properties. Theh. .

ich are precisely of the Landauer form.

spectral properties of the baths enter into the expressions in' In order to get the four-probe result we need to find the

nontrivial way and one cannot separate the contributions 0zfactual otential and temperature differences across the sys-
the system and the baths. p p y

tem. We imagine doing this by putting potentiometers and
thermometers at points on the leads &nd B in Fig. 1.
B. Ideal reservoirs and contacts: The Landauer case These measure the local particle and energy density on the

This corresponds to the case wheyey’'=1 and the leads from which one can compute the chemical potential
reservoirs themselves are semi-infinite extensions of the oné@nd temperature. We note that we do not expect local thermal
dimensional leads. This results in reflectionless contacts bequilibration in this noninteracting system and so these are
tween the reservoirs and leads. The reservoir wave functior@nly effectivepotentials and temperatures.
and energy eigenvalues agg,(\)=[2/(M + 1)]"?sin(k\) We start with the general expressions for densit&si-
and e,=—2cosk) where k=nw/(M+1) with n lar to Egs.(7)] and after using the various determinantal
=1,2,... M. The leads are connected at the end of the residentities we get(for points| located on the left legdan
ervoir chains so thar=a’=1. We then get the following integrand which contains a factor §ik(N,—)]. Assuming
reservoir spectral functions: that N, is large and is not too close to the point of contact
with reservoirs this factor can be replaced by 1/2. We then

1 get for the particle and energy densities
|(0)=—[1-w/41"f (0,1, 8), |o]<2,

~ 1 (=
= —| dk{[2-TK)IF+T(K)'D,
(@)=0, |o|>2, (n) ZWfO {[2-T(TF+T(k) '}

+ = _¢k —2<w=— < ~ 1 (=
Guol@)=—€%,  —2<w=-2c0sk)=2, (O)= EL dke(K{[2-TOIF+ T}, (12
= w/2=sgnw)(w?/4-1)"?  |o|>2. - . " . .
(8 Weget similar expressions for densities at points on the right
lead. The expressions in Egd.l) and (12) are identical to
We have similar expressions for the right reservoir. Let ughose obtained from semiclassical arguments, are true for
use the notation that if site¥;+1 andN,+m belong to the ideal contacts, and lead to the usual four-probe formulas. The
system, then we WriteYN|+|,N|+m=y,,m and Dn,+1n+m  results of Egs(11) and (12) have been obtained earlier by
=d, . It can be shown that the transmission probability of aTasak using the theory of* algebra. They can be easily
wave with momentunk across the system is given by extended to the case where the leads are still one dimensional
but the system is of more general form. Thus let the system
4 siré(K) consist ofNg points of which 1 andNg are connected to the
= W (9  two leads. Let us specify the system by the matpi>such
LN that ¢, =v,— @ and ¢,,,= — 1 whenever two distinct points
where | and m are connected by a hopping element. Then all the
above formulas, Eq$11) and(12), for currents and densities
= —elk i2k ) hold provided we evaluate them within the leads and use the
[Van | =[din, — € (don,+dap 1)+ don (10  appropriate expression for the transmission coefficient,
namely,
Note that in this case the transmission factimes notin-
volve properties of the reservoirs and contacts. Also trans- 4 sin(k)?F?
mission is only by propagating modes which can be labeled
by a real wave vectok (in general, nonpropagating modes

T= . . , (13
|din,— e'k(dz,NSJr din-1)+ e|2kdz,Ns— 1f?
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where F denotes the determinant of the submatrix formedthe Hamiltonian of the systertand leadl Hg, contains an
from ¢ by deleting the first row antlsth column whiled is  interacting part and is given by
as before, but now constructed frogn N—1 N N-1

__ + + +
C. Application Hsi 21 (¢ C|+1+C|+1C|)+|2l U|C C|+A|21 NNy,

As an application we show how the experimental resuliSypjje the reservoirs are still taken to be noninteracting. In
of Kong etal” can be understood qualitatively using our hic case Eqs(1) take the form

results by assuming imperfect contacts.
We consider again semi-infinite ideal reservoirs but make
the contacts nonideal by setting=y'=0.9. As system we
take a wire with a single impurity at site(thusvs#0). The
linear response conductance is then given 6y
=[”_ doJ(w)f(w)[1-f(w)]. We evaluate this numeri-

b1=i02—ivlcl—iAn201+i'yCa,

Ci=i(Ci_1+Cir)—ivig—iA(n_1+n1)C,

<|s<N-
cally at different temperatures fad¥=100, s=10, anduvg 2<IsN-1,
=0.2 (Fig. 2. We see the following featurega) a rapid - " . .,
oscillation of the conductance due to resonances with stand- Cn=iCN—1~TUNCN = TANN-_1CNFi Y Car s (14

ing waves in the wire(b) a slower oscillation due to stand- and, being nonlinear, can no longer be solved exactly. How-
ing waves formed between boundary and impurity, éch  ever, it is straightforward to obtain a perturbative solution
washing away of the oscillations with increasing temperayyhich, schematically, has the formc(w)=2 1h
e e 2 I o' 'hZ ™2 1 O(47). The operatrs
with increasing temperature is presumably due to scatterir?i%r particle den5|_ty anq particle current remain unchange_d,
by phonons and hence is not seen here. We have also pIottg d we can obt_aln thel_r expectation valu_es_ as a perturbation
in Fig. 2 the conductance as given by thé usual LE. Note tha§ ries using th|§ solution. Ano_ther possmmjcy would be to
o . . S olve Eq.(14) using a self-consistent mean-field theory.
this does not give the oscillatory featureShus imperfect
contacts cannot be treated as resistances in series with the
system. Another rather remarkable effect we see is the en- IIl. HEAT TRANSPORT IN OSCILLATOR CHAINS
hancement of the conductance as a result of the introduction \we now use the FKM method to study heat conduction in
of imperfect contacts. In fact we can see in Fig. 2 that alyyantum-disordered harmonic chains connected to general
certain values of the conductance almost attains the idealheat reservoirs which are modeled as an infinite collection of
value 1/(2r). Similar features are also obtained if we make gscillators. There has been some earlier work on quantum
the contacts ideal but take other forms of reservé&sg.,  wire*2° which follows a similar approach but we give a
rings or two-dimensional baths more clear and complete picture and make some interesting
predictions for experiments.
As in the electronic case we obtain formal exact expres-
For this case the present approach readily yields to a pesions for the thermal current and show that, for a special
turbative treatment. For illustration consider the case wherease, they reduce to Landauer-like forms. We also analyze

D. Interacting systems



the asymptotic system size dependence of the current and
show that, depending on the reservoirs, a long wire can be-
have either like an insulator or a superconductor. Our results
should be useful in interpreting recent experim&mwis heat

transport in insulating nanowires and nanotubes. They are - ,
also of interest in the context of the question of validity of MXN =~ [ X1+ 2XN] KX (17

Fourier’s law in one-dimensional systems, a problem that hagve note that they involve the bath variabks,, . However,
received much attention recentfy/A large amount of work  these can be eliminated and replaced by effective noise and
on classical Hamiltonian systems seems to indicate that Fouissipative terms, by using the equations of motion of the

rier's law is not valid in one-dimensionsal momentum- hath variables. Consider the equation of motion of the left
conserving systems. Our work here shows that this is trugath variables. They have the form

even in quantum mechanical systems.

mll)l(]_: - [ZXl_XZ] + kXp y

mX=—(—X_1+2X—X+1), 1<I<N,

)"(n:_Kth n:#p,
A. Formalism and main results

We consider a mass-disordered harmonic chain containing Xp=~KpiXi+kx. (18)
N particles with the following Hamiltonian: This is a linear inhomogeneous set of equations with the
solution

' (X1 —X1+1)? (X§+Xr%1) 15
=]

i\

HmZam A 2 2 Xo= 2 [Fm(t—r>x|<r>+Gn|<t—r>>'<.<r>

where {x;} and{p,} are the displacement and momentum .

operators of the particles arddn,} are the random masses. +f dt’' Gpp(t—t")kxg(t), (19
Sites 1 andN are connected to two heat reservoitsgndR) T

which we now specify. We model each reservoir by a c:oIIec-Where
tion of M oscillators. Thus the left reservoir has the follow-

ing Hamiltonian:

Fa(t)=0(1) 2 UyUiscogod),

Gu0=00 3 U ).

LR s

= * o s Thus we find thak,, (say appearing in Eq(17) has the form
" Xp(t)=h(t)+kf7dt'Gp(t—t")x,(t"). The first part, given

:E (ns+l/2)wsalas, (16) by h(t):2|[Fp|(t_T)X|(T)+Gp|(t_T)X|(T), is like a

& noise term while the second part is like dissipation. The
noise statistics is easily obtained using the fact that at time
whereK, is a general symmetric matrix for the spring cou- t= 7 the bath is in thermal equilibrium and the normal modes
plings, {X,,P,} are the bath operators, afd,,P,} are the satisfy (al(7)as (7)) =f(ws,BL) Sss - Hereszll(e'B“’jAl)
corresponding normal-mode operators. They are related hig the equilibrium phonon distribution an@O)=Tr{ pO]
the transformation)(,ZESU,J(S where U, chosen to be wherep is the reservoir density matrix and Tr is over the
real, satisfies the eigenvalue equati®K,, U= w?U, for  reservoir degrees of freedom. We define the Fourier

s=1,2,... M. The annihilation and creation operatas transforms x_,(w):(1/27r)f°fwdtx|(t)ei‘“‘, _G;p(w)
and al are given bya,=(Ps—iwXs)/(2w) ™2 etc., and =JZ.dtGyy(t)e', andh(w)=(1/2m) [~ . dth(t)e'“". Tak-
n.=a.a, is the number operator. ing limits M—c and r— — we get
The two reservoirs are initially in thermal equilibrium at N
temperature§, andTg. At time t= 7 the system, which is Xp(w)=h(@)+kGpy(w)X;(w),
in an arbitrary initial state is connected to the reservoirs. We , ,
consider the case where site 1 on the system is connected to (h(w)h(e")=l(w)é(0+ '),
X, on the left reservoir whiléN is connected tX,, on the )b
right reservoir. Thereafter the whole system evolves through l(w)= (w)b(w) ,
the combined Hamiltonian
— ’ 2
Hr=H+H_+Hg—kxX,— K Xy X, - Gifw)=3 zupsz_ib(w)’
S Wg— W

The Heisenberg equations of motion of the system vari-
ables are the followingfor t> 7): where



U 25 B. Ideal reservoirs and contacts: The Landauer case
Pl8(w—wg)— o+ w)]. (20
2wg

b(“’)zzs For the special case when the reservoirs are also one-
o ) ) dimensional chains with nearest-neighbor spring constants
S|m|Ia:Iy for the right reservoir we getX, =h’(w) K, =1 and the coupling constanksk’ are set to unity, we
+k’Gp,p,(w)xN(w), the noise statistics oh’(w) being  have G* =G, ,=e X, where w=2 sin/2) and I(w)

now determined by3’'. The left and right reservoirs are in- =f(w)sinK)/ for |w|<2 andl(w)=0 for |w|>2. In this
dependent so théh(w)h'(w’))=0. We can now obtain the case Eq(23) simplifies further and has an interpretation in

particular solution of Eq(17) by taking Fourier transforms  terms of transmission coefficients of plane waves across the
and plugging in the forms df(w) andh’(w). We then get disordered system. We get

— ” 5-1 i ot 1 2
(0= | Zi oo™ 1= 1| dwsltli-1),
4 -2
2= dim— A, where
with
(Aﬁ (5 +5 )+ (2 25 Ity()]2 4sirf(k)
=- - Mo , w)|*= . .
" e | " § [Din,— e'k(Dz,Ns"’ D1’N5_1)+e'2kD2’NS_1|2
Aim= 81, n[K*G (@) 8 1+K'?Gy, o (@) 8 w1, (24
h(w)=kh() 8 1+K'h’ ()8 . 21) is the transmission coefficient at frequensy We have thus

obtained the Landauer formdléor phononic transport. It is
We can now proceed to calculate the steady-state values ohly in this special case of a one-dimensional reservoir and
the observables of interest such as the heat current and teperfect contacts that we get the Landauer formula. The rea-
perature profile. We first need to find the appropriate operason is that only in this case is the transmission through the
tors corresponding to these. To find the current opefjatee ~ coNtacts perfect, and this requirement is one of the crucial
first define the local energy densityu = p|2/4m| assumptions in t_he Landgqer derivation. Note that in(E4).

+p2, J4m, . 1+ 1/2(¢ — X+ 1)%. Using the current conserva- (i) the transmission coefficiedbes notepend on bath prop-

. A N ) ) erties and(ii) transmission is only through propagating
tion equationdu/dt+dj/9x=0 and the equations of motion \,,44es. For general reservoirs where we need to us€28y.

we then find thatL:(X|x|,1+x|,15<|){2. The steady-state the factorJ(w) involves not just the properties of the wire
current can now be computed by using the explicit solutiorbut also the details of the spectral functions of the reservoirs.

in Eq. (4). We get Thus the conductivity of a sample can show a rather remark-
. able dependence on reservoir properties as we shall see be-
<Jf|>: J da(i ‘")[kzzfll(w)zﬁlm(— o)l (@) !ow. The above Lar!dauer-llke formula h_as earller been stated
—w in Ref. 26 and derived more systematically in Ref. 27. We

051, 51 note that in the high temperature limit T’ —c, Eq. (24)
TK'“Z N(0)Z S n(— o)l ()] (22)  reduces to the classical limit obtained exactly in Refs. 20—

The matrix Z is tridiagonal and using some of its special 22.
properties(see Sec. Il Awe can reduce the current expres-

sion to the following simple form: C. Asymptotic system-size dependences
2112 , In the case of electrical conduction the conductance of a
()= K f w“’b(“’)b (@) (F—f") long disordered chain decays exponentially with system size
: T J-w |Y1,N|2 as a result of localization of states. In the case of phonons the
long-wavelength modes are not localized and can carry cur-
_ " Y rent. This leads to power-law dependences of the current on
fﬁxde(w)(f ), 23 system size as has been found earlier in the context of heat

oo , ) ) conduction in classical oscillator chains. A surprising result
where J(w) =k*k' “wb(w)b’ (w)/7|Y,5|* has the physical s that the conductivity of such disordered chains depends
interpretation as the total heat current in the wire due to all,4t just on the properties of the chain itself but also on those
right-moving (or left-moving scattering states of the full f the reservoirs to which it is connected. It can be sHdwn
Hamiltonian (system + reservoirs. Such scattering states inat the asymptotic properties of the integral in E2p) de-
can be obtained by evolving initial unperturbed states of th?)end on the low-frequencyw= 1/NY?) properties of the in-
reservoirs with the full Hamiltoniarisee end of Sec. 1A tegrand. This means that we will get the same behavior as in
As before we have denoted b, the determinant of the he classical case. We summarize some of the main results.
submatrix ofZ beginning with thelth row and column and (i) The classical case where the reservoirs are themselves
ending with themth row and column. Similarly leD, one dimensional. In this case we pgut k'’ =1 and the spec-

denote the determinant of the submatrix formed frém tral function G;p:G;,p, =e 'K where w=2 sini/2). This



was treated by Rubin and Grétand it was found thaf 0.7
~1/NY2 Thus the ideal Landauer case will also show this
behavior.

T T
| |
| |
(i) The case of reservoirs which giviecorrelated Lange- \ ! s ! |
vin noise corresponds to takifg=k’=1 and G;p=G;',p, ' ~~~ White: 10002 :
=—ivyw. The classical case was first treated by Casher anc WL —-— White:y=1.0 !
LebowitZ%?° and one gets~ 1/N%2 é\)— : : ,E'r’;zdbt;‘;‘:é‘:{;s i
(iii) In general one getd~ 1/N“ wherea depends on the -\‘C/ BETS I | | ]
low-frequency behavior of the spectral functio@,,(w) oV N i
andG,p(w').% B 3
Note that the case<1 leads to infinite thermal conduc- YN o
tivity while a>1 gives a vanishing conductivity. Thus, de- oo B R
pending on the properties of the heat baths, the same wir = T
can show either superconducting or insulating behavior. The
usual Fourier’'s law would predicl~1/N, independent of 0.65 : . ; ' : :
. .- : - 1 2 3 4 5 6 7 8
reservoirs. Thus Fourier’s law is not valid in quantum har- i

monic chains, even in the presence of disorder. This break- o _ o _ _
down of Fourier’s law in 1D systems has been noted in a FIG. 3. Kinetic energy density profile in a pure harmonic chain
number of earlier studies on classical systétmehich have (N=8) attached to reservoirs at equal temperatifresT’=0.2.

looked at the effects of scattering both due to impurities andwo different kinds of reservoirs are considered: one-dimenional
nonlinearities. reservoirdRG) and 5-correlated noise reservoifhite). The exact

equilibrium density profiles for an infinite chaifree) and one with
' fixed ends are also given.
D. Temperature profiles

The local temperature of a particle can be determinegn the classical case where the energy density is a constant, in
from its average kinetic enerdye =(pf/(2m;)). We get the quantum case, this is not always true. It is instructive to
look at the equilibrium properties for the case where the
driving is by ad-correlated noisgcase(ii) discussed earligr
In this case the weak-coupling limit corresponds to taking
R ~ the damping constany<1. The temperature profiles ob-
+K2Z g @) Z (= o)l (0)]. (25  tained from Eq(25) for two different values ofy are plotted
in Fig. 3.

1 (= R n
kel:Ef,wd“’mlwz[kzzfll(w)zﬂll(_ )l(w)

This is Straightforward to evaluate_numerically for given SYS™ e now consider temperature profiles in the nonequilib-
tems and reservoirs. For the special case of heat transmission

through rfect one-dimensional harmonic chain attach d m case T#T'). For the Rubin-Greefor Landauer case,
ough a periect one-dimensional harmonic chain attac el.e., 1D reservoirs, perfect contagtat high temperatures the
to one-dimensional reservoirs through perfect contéiats,

, R local temperature is given bl = 2ke and from Eq.(26) we
k=k’=1), Eq.(25 simplifies(for largeN) to get T,;=(T+T')/2 which is the classical resufi. At low
1 (n temperatures and imperfect contaktk’ # 1 we evaluate the
ke,=8—J dkay[ f(wp) + ' ()], (26)  local kinetic energy profile numerically using E5). As
)= can be seen in Fig. 4 the temperature in the bulk still has the
same constant value. At the boundaries, however, we see a
curious feature noted earlier by Refs. 24 and 29: the tempera-
1 (= Bwy ture close to the hot end Iswer than the average tempera-
kq:ﬂf dkwy cotl‘( T) (27)  ture while that at the colder end égherthan the average.
0 For the case with5-correlated noise, at high temperatures,
Wh|Ch is the expected equ”ibrium kinetic energy density OnWe recover the temperature pI’Ofi|ES Obtained ealier f0r ClaS'
an infinite chain. For weak coupling to the reservoirs, whichsical chains in Ref. 29. At low temperatures we get results
can be achieved by makirigand k'’ Sma”, we expect that similar to those found by Zurcher and Talk?fband there )
the energy density prof”e for the System Sh0u|d Corresponéeem to be some qualltatlve d|ﬁerences from the CIaSS|CaI
to that of a finite chain. We verify this numerically by evalu- temperature profiles, depending on the valueyof
ating Eq.(25) for k=k’=0.1 andT=T"' (Fig. 3). We com-
pare this with the equilibrium kinetic energy profile of a IV. DISCUSSION
finite chain given by

wherew, =2 sink/2). ForT=T', we get

We note that the more popular approach of treating open
1 Bws\ , guantum systems is the Caldeira-Leggett formulation. In that
kei=7 23: wscoth ——= | ¥i(1), (28)  approach, one deals with density matrices and the treatment
becomes complicated. In the context of the present problem
where s(1)=[2/(N+1)]*?sin(k]) and ws=2 sink/2), one is not really interested in the full distribution but rather
wherek=sx/(N+1), withs=1,2,... N. Note that unlike in physical observables like the steady-state currents and




0.985 . . . a system as an intrinsic property, not dependent on the prop-
erties of reservoirs. Imagine making a measurement of the
. thermal conductivity of a wire by putting its ends in contact

0.98 —— Imperfect contacts 1 with heat baths at two different temperatures and measuring
Perfect contact the resulting current. The normal expectation is that the an-
: swer should not depend on the material properties of the heat

0.975 | / . . . :
é\)— y baths. And indeed this expectation holds true quite often.
X One physical way of understanding this is that, as long as the
c\\/l 097 L e SRR, g system(the wire is a strongly interacting system, with good

ergodicity properties, then one can expect that, soon after
contact is made with the reservoirs, the ends of the wire
0.965 - 1 would reach a state of local thermal equilibrium with the
reservoirs. This local equilibrium would be completely deter-
mined by just the temperature of the reservoir and this then
03 5 20 20 60 drives the current in the wire. In the mesoscopic domain,
) however, there are situations when the interactions between
o ) o ] _ the carriers are not strong enough to let the system reach
FIG. 4. Kinetic energy density profile in a pure harmonic cha|n|oca| equilibrium. And then one finds that the conducting
(N=64) attached to onejdimensional reservoir.s at temperaiures properties of a wire is no longer intrinsic to the wire but
=1.0 (left) andT'=0.5 (right), for perfect and imperfect=K" — yoqands on details of the reservoirs. Thus any calculation of
=0.9) contacts. The temperatures considered are not very high, ag ansport properties would require a detailed modeling of the
so the bulk temperature is different from the classically expecte reservoirs. An explicit demonstration of the conditions under
value Ty, =0.75. which reservoir dependence goes away does not seem to ex-
ist at present.
densities and these are basically second moments of the dis- o5 has been shown here the FKM method works as easily
tribution. The FKM formulation is then more appropriate andfor poth electronic transport in disordered fermionic wires
for linear systems one can get exact results. The other apm thermal transport in disordered harmonic chains. In both
proach of treating nonequilibrium systems which has beegases we are able to obtain exact formal expressions for par-
used quite extensively in the mesoscopic context is theicle and thermal currents and these have very similar forms.
Keldysh formalism. This is a perturbative treatment wheregoth depend on details of the reservoir spectral functions.
one writes equations of motion for a set of Green functionsrnhe ysual Landauer case where one writes the current in
and relates them to self-energies through the Dyson equisrms of transmission factor of one-dimensional plane waves
tions. The current is expressed in terms of these Green fungs shown to follow, exactly, for the choice of one-
tions. In special cases the Dyson equations can be solvefimensional reservoirs and perfect contacts. In general, how-
exactly and indeed some of our results can be obtaiié®  ever, one needs to use modified Landauer formulas and this
On the other hand, our method is more transparent and dian pe quite crucial in interpreting experimental data. For
rect. We integrate out the reservoir degrees of freedom to géxample we have shown that the oscillations in conductance
effective Langevin-type equations of motion for the systemggen in the experiments by Korg al. cannot be explained
These are solved and quickly lead to useful results on cufgpjess the contacts and reservoirs are treated quantum me-
rents and densities of both particle and heat which are autQshanically. We also find the rather counterintuitive prediction
matically expressible in terms of unperturbed Green functnat imperfect contacts can enhance the conductance of a
tions. The connection to scattering theory is also immediat§jre |n the phonon case we make a couple of predictions
and explicit. Finally one obtains a nice physical.picture Ofthat are interesting from the experimental point of viiy:
the reservoirs serving as effective sources of noise and digpe large-system-size behavior of the heat current is a power
sipation. Note that our approach makes connections betweggy and the power depends on reservoir properties, (@nd
different approaches such as the Caldeira-Legett, Keldyshemperature profiles in perfect wires show somewhat coun-
scattering theory, and the transfer-Hamiltonian methods.  terintuitive features close to contacts. It would be interesting
The FKM formulation was earlier used in studying heatyy see if our predictions, which are true for strictly one-

transport in classical disordered harmonic chains, and it igimensional chains, can be verified in experiments on
particularly nice that the method can be extended to thegnowires.

guantum mechanical regime. Earlier results on classical
chains are then obtained as limiting cases. The more general
guantum mechanical results can be expressed in forms where
one can see connections with other approaches such as Lan-
dauer, Keldysh, etc. We are grateful to N. Kumar, H. Mathur, T. V. Ramakrish-
The dependence of transport properties of a system on thean, and A. K. Raychaudhuri for useful comments. B.S.S.
reservoir properties is at first glance a surprsing fact and wevas supported in part by Indo French Grant No. IFCPAR/
briefly comment on this. From our usual experience in the2404.1. A.D. acknowledges support from the National Sci-
macroscopic world, one usually thinks of the conductivity of ence Foundation under Grant No. DMR 0086287.
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