Sadhana, Vol. 11, Parts 1 & 2, October 1987, pp. 93-110. © Printed in India.

Fault tolerance in multiprocessor systems

NRIPENDRA N BISWAS and S SRINIVAS

Department of Electrical Communication Engineering, Indian Institute
of Science, Bangalore 560 012, India

Abstract. Multiprocessor systems which afford a high degree of
parallelism are used in a variety of applications. The extremely stringent
reliability requirement has made the provision of fault-tolerance an
important aspect in the design of such systems. This paper presents a
review of the various approaches towards tolerating hardware faults in
multiprocessor systems. It emphasizes the basic concepts of fault
tolerant design and the various problems to be taken care of by the
designer. An indepth survey of the various models, techniques and
methods for fault diagnosis is given. Further, we consider the strategies
for fault-tolerance in specialized multiprocessor architectures which
have the ability of dynamic reconfjguration and are suited to VLSI
implementation. An analysis of the state-of-the-art is given which points
out the major aspects of fault-tolerance in such architectures.

Keywords. Dynamic architecture; fault-tolerance;, fault-tolerant com-
puter architecture; multiprocessor systems; -reconfiguration; system-
level diagnosis; VLSI processor arrays.

1. Introduction

Fault-tolerant computing can be defined as the ability to execute specified
algorithms correctly inspite of the presence of faults. The complexity of
supersystems and the increasing use of such computer systems for critical
applications have called for the consideration of fault-tolerance as one of the most
important issues in the design of such systems.

Real-time computer systems impose the most stringent fault-tolerant require-
ments. A single faulty computation in such systems employed for computation-
critical applications may result in the loss of human life or costly equipment.
Moreover, the delay associated with fault recovery should be extremely small.
Examples of real-time critical applications where fault-tolerant systems have to be
utilized are in avionics computers for dynamically unstable aircraft, in spacecraft,
traffic control, patient monitoring in hospitals and in anti-ballistic missile (ABM)
defence applications. Other applications where fault-tolerant computers play a
major role include long-life applications (e.g. unmanned spacecraft), applications
requiring high availability (e.g. commercial services and telephone switching) and
real-time signal processing. ‘ :

93

94 Nfipendra N Biswas and S Srinivas

From 1970 onwards, attention has been paid towards the technology of
fault-tolerant computing. New theory and techniques for fault detection and error
correction, fault modelling, analysis, synthesis, and architectures for fault-tolerant
systems and their reliability evaluation are being developed; the ultimate gim is to
design robust computers to meet the ever increasing fault-tolerance requirements
in present day systems. One of the first operational computer with self—repa}r
provisions was the JPL-STAR (Avizienis et al 1971). On the other side, the electronic
switching system (ESS) was developed for high availability (Bell Labs 1977; Toy
1978). Two very advanced research machines were developed for commercial
aircraft control under the sponsorship of NASA—the FTMP (fault-tolerant multi-
processor) (Hopkins et al 1978) and SIFT (software implemented fault-tolerance)
(Wensley et al 1978). PLURIBUS (Katuski er al 1978), MICRONET (Wittie 1978) and
TANDEM (Katzman 1978) are examples of other fault-tolerant computer systems
developed for different applications.

The advent of VLSI (very large scale integration) technology has resulted in the
development of multiprocessor systems consisting of an interconnection of
autonomous processing elements. Such multiprocessor systems are superior to
uniprocessor architectures for a variety of real-time applications since they support
highly parallel computations. But at the same time, multiprocessor systems have
added new dimensions to the problem of providing fault-tolerance. The large
number of processors in the system increase the system’s probability of failure.
Correspondingly, complex mechanisms have to be incorporated for dealing with
the effects of failures and providing greater system reliability. Further, the
complexity of large multiprocessor systems dictate the need to develop complex
fault models and methodologies for achieving the required level of fault-tolerance.

Two approaches for hardware fault-tolerance in multiprocessor systems can be
outlined: (1) static redundancy techniques; (2) diagnosis techniques. Fault-
tolerance through static redundancy is achieved by replicating the processors. Each
processor takes the same input and feeds a voter, which votes the majority of the
outputs as the output of the processors. Thus faults occurring in a certain number of
processors are, in effect, masked by this method. The latter approach involves a
systematic sequence in which tests are applied to locate the faulty processors with
consequent isolation of the faulty processors and recovery of the processes.
Depending upon the diagnosis method, the faulty processors may be replaced by
spares in which case the system’s throughput remains the same as before. On the
other hand, spares may not be used and the system continues execution with
performance degradation. These principles have been established by research over
the past decade and several survey papers have appeared (Avizienis 1978; Rennels
1980, 1984; Friedman & Simoncini 1980; Avizienis & Kelly 1984; Siewiorek 1984,
Kuhl & Reddy 1986) which either examine a specific aspect of fault-tolerance or
give an overview of fault-tolerance techniques in a restricted class of systems. In
this paper, we present a survey of the methods for obtaining fault-tolerance in
multiprocessor systems. Fault-tolerance through diagnosis of faults has been an
active area of research and new models, techniques and methods for diagnosis are
being reported. We present a fairly in-depth and state-of-the-art survey of
system-level diagnosis. Further, we also consider the various strategies for
fault-tqlerance in specialized multiprocessor architectures which have the ability of
dynamic reconfiguration and also those which are suited for VLSI implementation.

»

Fault tolerance in multiprocessor systems 95

The multiprocessor system under consideration consists of autonomous proces-
sor modules connected by an interconnection system (bus, direct links or sWitching
networks). Each processor is equipped with a local memory which it can access by a
local bus. The local memory of one processor module is accessible by other
processor modules. A fault is assumed to manifest as a failure of the processors,
while a fault in an interconnection facility is attributed to the failure of one or more
processors which make use of that facility. Both distributed and centralized
architectures are considered.

2. Static redundancy techniques

As mentioned earlier, in the context of multiprocessor systems, the utilization of
extra hardware in a static redundancy scheme is at the processor level, with
fault-tolerance being achieved by the replication of processors. A popular scheme
used is the Triple Modular Redundancy (TMR) shown in figure 1. Here three
identical processors take the same input and feed a common voter. The voter takes
a majority vote to provide the correct output when a major number of processors
are fault-free. It is seen that the TMR scheme can mask faults in any one of the
processors.

The TMR scheme can be extended to the NMR (n-modular redundancy) scheme,
where n identical processors feed a common voter. Since the voter has to take a
majority decision, the number of processors 7 should be odd. In this case, faults in
upto (n—1)/2 processors can be tolerated.

The main advantage of the TMR/NMR scheme is that it can mask errors
instantaneously allowing programs to execute without interruption since there is no
need for an error detection and fault recovery procedure. Hence it is used in
systems employed for computation critical applications where even a small delay
due to the occurrence of a fault can jeopardize the entire operation.

However, the scheme can be viewed as a rigid and expensive way of achieving
fault-tolerance. The power consumption is considerable since all the redundant
processors need to be powered. Further, the voter has to be designed to provide
very high reliability, since the failure of the voter can cause system failure. To
overcome this problem, a redundant voter scheme is sometimes adopted (Su &
Hsieh 1982) where the voter is also replicated. ‘

Many variations to the TMR/NMR scheme have been suggested to suit specific
fault-tolerant requirements. One such scheme (Losq 1976) makes use of the

PROCESSOR 1

INPUT OUTPUI

Figure 1. Triple modular redundancy.

96 Nripendra N Biswas and S Srinivas

threshold voter in place of the majority voter. The voter output is 1 only if the
weighted sum of its inputs is equal to or greater than its threshold M. Thus upto M
faulty processors can be tolerated. The C.vmp (Siewiorek et al 1978) utilizes the
TMR scheme with bidirectional voters. Su & DuCasse (1980) present a scheme for
tolerating multiple faults. In this method, a 5MR system will automatically
reconfigure into a TMR system when two modules fail simultaneously, and thus it is
more efficient than the ordinary 5SMR scheme.

Another new technique is the (N, K) concept fault-tolerance (Krol 1986) which
makes it possible to choose the ratio between memory and processor redundancy so
as to minimize the total amount of hardware.

3. Diagnosis techniques

In contrast to the replication in hardware with consequent masking of fauity
processors, another method of obtaining fault-tolerance in multiprocessor systems
is by the automatic diagnosis of faulty units followed by system reconfiguration and
a recovery of the processes, thus providing safe operation. This scheme removes
the inflexibility of the static redundancy scheme inasmuch as it makes possible the
repair or replacement of the faulty units or allows the system to work in a gracefully
degraded fashion. But the trade-off for this advantage is the requirement of a
technique for rapidly detecting and locating the faults. Almost all techniques for
fault diagnosis consider the system to be partitioned into a number of subsystems,
or units, and aim at unambiguously identifying malfunctioning subsystems upto a
given multiplicity. What follows here is a brief survey of the theories, models and
algorithms for system-level fault diagnosis. The techniques are presented with the
view of any computer system in general and are applicable to multiprocessor
systems, where our notion of each subsystem or unit refers to an autonomous
processing element.

3.1 System-level diagnosis

Preparata et al (1967, PMC hereafter) proposed one of the first models for system
diagnosis. The system is partitioned into a number of disjoint subsystems under the
assumption that each subsystem or unit can be completely tested by some
combination of other units. Each test so defined involves the controlled application
of stimuli to the unit under test and the analysis of the ensuing responses resulting
in the evaluation of the tested wqit as being fault-free or faulty. The PMC model
utilises a diagnostic graph in which the » units (uy, Uy, . . . ,u,,) of the system S are
represented as nodes and the edges of the graph represent the connection
assignment that assigns each unit to test a subset of other units. The outcome ofa
test in which u; tests u; is denoted by a;;, where a; = 1 if unit u; finds unit u; faulty
and a; = 0 otherwise. If u; itself is faulty, a; is unreliable. Given the set of test
outcomes {a;}, known as the syndrome, the problem is to identify all the faulty
units in S. The PMC model gives the condition under which this is possible assuming
that the system has atmost ¢ faulty units. This has led to a measure called
t-diagnosability. Further, all the ¢ faulty units may be located under the application
of a test set only once or under the application of the test set in a sequence of k
steps, with some of the faulty'modules being located and repaired at each step.

Fault tolerance in multiprocessor systems 97

More specifically, a system is t-fault diagnosable without (with) repair if one test
routine is sufficient to identify all (at least one) faulty units provided the number of
such units does not exceed ¢, The t-fault diagnosability without repair (with repair)
is also referred to as one-step diagnosability (sequential diagnosability). Preparata
et al (1967) showed that if a system of n units is one-step f-fault diagnosable, then
n=2t+1, and each unit must be tested by at least ¢ other units. For example, figure
2a shows a 1-fault diagnosable system. It can be verified that any single faulty unit
can be located from the syndrome, but the presence of two faulty units makes the
syndrome unreliable. The optimal connection assignment for a 2-fault diagnosable
system is given in figure 2b. PMC also gave optimal assignments for sequential
diagnosis procedures. Hakimi & Amin (1974) showed that the conditions of PMC
are sufficient if no two units test each other in the system. They also give a
necessary and sufficient condition for a general system (which does not have the
above restriction) to be r-diagnosable. Based on the PMC model, researchers laid
emphasis on three main problems of system diagnosis: (a) determination of
necessary and sufficient conditions under which a system is ¢-fault diagnosable. In
other words, this is the problem of synthesis—to determine the set of tests given a
predetermined value of diagnosability; (b) determination of the diagnosability of
the system given the set of tests—the problem of analysis, and (c) development of
efficient algorithms for diagnosis. '

In order to overcome the .shortcomings of the PMC model and also to suit
different environments, many generalizations were made in the graph model.
Russell & Kime (1975a,b) formalize the model in terms of faults, tests and the
relationships between them and represent the system of n units as
S={%,9,F,G} where F = {f,fa,... ofn} is the set of n possible faults,
T ={t,n,...,t,} istheset of p tests, F = {F',F?, ... F?'} is the set of all fault
patterns and G is a 2" #p array called the Generalized fault table having Gf = 0, 1
or X, if for fault pattern F¥ present, test t; is known to always pass, always fail or
has an unknown result. In contrast to the PMC model where each test completely
checks exactly one unit [single unit per test (SUPT)] and is invalidated by exactly

FAULTY NODES SYNDROME .
Q)2 Az3 Q34 Qe Qs (b)
Uy X 0 0 0 1
Uy U; X x 0 0 1
(a)

Figure 2. Optimal connection assignment for (a) 1-fault diagnosable system' (X represents
unreliable output) and (b) 2-fault diagnosable system. :

98 Nripendra N Biswas and S Srinivas

one unit [single invalidation per test (SIPT)], the Russell-Kime model relaxes these
assumptions and allows for multiple units per test (MUPT) and multiple invalida-
tions per test (MIPT). This removes the restriction placed by the PMC model on the
communication paths being fault-free. (The abbreviations SUPT, SIPT etc. were
introduced by Holt & Smith 1981.)

A simpler version of the PMC model, claimed to be more realistic, was introduced
by Barsi et al (1976). The PMC model assumes that the test outcome is not
predictable whenever the testing unit is faulty. This implies that if a faulty unit
performs a test, a fault-free unit could be judged faulty or a faulty unit could be
judged fault-free. This type of test invalidation is called symmetric invalidation.
Barsi er al (1976) assumed that all invalidation takes the form of a correct unit being
judged faulty, that is, if both the testing and the tested units are faulty, the test
* outcome is necessarily ‘1°. This is called asymmetric invalidation. In this model, the
tested unit is unambiguously fault-free whenever the outcome is 0, and this leads to
simpler diagnosis algorithms. The following table gives the test outcomes for both
types of invalidations. '

Test outcome

Symmetric Asymmetric
u 7 invalidation invalidation
Fault-free Fault-free 0 0
Fault-free Faulty 1 1
Faulty Fault-free Oorl Oorl
Faulty Faulty Dorl 1

Holt & Sniith (1981) give the conditions for t-diagnosability with and without
repair for systems with asymmetric invalidation. The other models for system
diagnosis include the two-level model (McPherson & Kime 1979) which disting-
uishes the fault level at which testing is performed and the part level at which
diagnosability is defined. Thus it removes the restriction that the level of replacable
units be the same as the level of functional units. Kime (1979) defines a model
which gives a mathematical interpretation and encompasses the previous models. A
model in which propagation of faults is considered for diagnosis has been proposed
recently (Huang & Chen 1986). McPherson & Kime (1984) analyse a model for
fault diagnosis where immediate repair of faulty units is not assumed and thus
diagnosis is performed in the presence of faults which have already been
determined by previous tests. Maheshwari & Hakimi (1976) take into account the
probabilistic nature of the occurrence of faults, thereby removing the assumption
that all faults are equiprobable. They present necessary and sufficient conditions
for a system to be probabilistically ¢-diagnosable.

For fault diagnosis with repair, Friedman (1975) proposes a new measure called
t-out-of-s (t/s) diagnosability which assumes that some good units are also replaced.
A system is #/s diagnosable if a set of f= ¢ faulty units can be located and repaired
by replacing atmost s units. Chwa & Hakimi (1981) give a characterization of ¢/t
diagnosable systems. ;

A number of efficient algorithms based on the above models and measures have
been given: Meyer & Masson (1978) (one-step ¢-fault diagnosability with symmetric

Fault tolerance in multiprocessor systems 99

invalidation); Smith (1979) and Butler (1981) (algorithms for /s diagnosability);
Ciompi & Simoncini (1979) (algorithm for -fault diagnosability with repair) Meyer
(1981) (algorithm for asymmetric invalidation) and Hayes (1976). Dahbura &
Masson (1984) have exploited the graph theoretic properties of the graph model
and have given an O(n*?) algorithm, which is the least complex as compared to
other algorithms, for identifying faults in a t-diagnosable system. In an improve-
~ment of this work, they have identified a new class of systems, called
self-implicating systems (Dahbura et al 1985). If a system is identified to be
self-implicating, the diagnosis algorithm can be greatly simplified. Narasimhan &
Nakajima (1986) give an algorithm for analysing the diagnosability of a system with
asymmetric invalidation.

So far, the faults in the system were considered to be of the permanent type.
Mallela & Masson (1978) studied the diagnosis capabilities of systems with
intermittent faults. They show that in contrast to a permanent fault diagnosable
- system, there exists only a single type of intermittent fault diagnosable system—a
t-intermittent fault diagnosable sysiem both with and without repair must satisfy
the same necessary and sufficient conditions. They have extended this work to in-
clude hybrid fault situations (Mallela & Masson 1980) which specifies bounded
combinations of permanently faulty and intermittently faulty units in the system.
Dahbura & Masson (1983) tackle the problem of intermittent faults and hybrid
fault situations by a procedure called ‘greedy diagnosis’. Intermittent faults are
diagnosed by a comparison syndrome, which is obtained by assigning each job to
two units and comparing the outcomes of the two units. For hybrid fault situations,
the procedure aims at diagnosing units as faulty as soon as they satisfy certain
conditions. But the diagnosis procedure may become complicated in certain cases.

3.1a Adaptive diagnosis: Nakajima (1981) proposed a new approach to system
diagnosis called adaptive diagnosis. Instead of the normal procedure in which the
test results are used to identify all the faulty units, this approach aims at identifying
a fault-free unit first and then using this unit as a tester to identify all faulty units.
Hakimi & Nakajima (1984) show that for systems with symmetric invalidation, a
fault-free unit can be identified after the application of at the most (2:—1) tests.
This implies that at the most (n—1) + (2t—1) tests are sufficient to identify all
faulty units. An optimum adaptive algorithm has been presented for asymmetric
invalidation also. The major limitation of adaptive system diagnosis is that every
unit must be capable of testing every other unit. However, the number of tests
required is reduced compared to conventional methods.

3.1b Distributed diagnosis: In most of the above methods, it was assumed that a
central unit which forms the hardcore of the system executes the fault diagnosis
algorithm and determines the faulty units from the set of test outcomes obtained
from other units. But in large multiprocessor systems, a central unit may not be
available for coordinating the fault diagnosing procedures. Even if a central facility
is possible, this unit could pose a reliability bottleneck. This has led to the
development of distributed diagnosis algorithms for such systems by which all the
fault-free nodes can independently produce correct diagnoses of the condition of all
the other units. Typically in such systems, diagnostic messages which contain
information concerning test results are allowed to flow between nodes and such
messages may reach non-neighbouring nodes by passing through one or more

100 Nripendra N Biswas and S Srinivas

. intermediate nodes. A message passing through a faulty node may be altered or
destroyed. This makes the diagnosis problem more complicated in distributed
systems. Once all the fault-free nodes of the system produce correct diagnoses, they
can stop interacting with the faulty nodes and thus such units are logically isolated
from the system. This concept of distributed fault-tolerance was introduced by
Kuhl & Reddy (1980). Diagnosis algorithms for distributed systems are given in
Kuhl & Reddy (1981) and Hosseini ef al (1984). The main feature of the algorithms
is that a diagnostic message is passed in such a way as to ensure its reliability.
Specxflcally, a node u; will accept a dia gnostlc message from a neighbour y; only if u;
is a tester of u; and is certain that u; is fault-free. In this way, valid diagnostic
information ﬂows backward along paths of the diagnostic graph. A diagnosability
measure for distributed diagnosis is given (Hosseini et al 1984) and using this
measure, sufficient conditions are given for a system employmg the algorithm to
achieve a given level of diagnosability.

Holt & Smith (1985) follow a different approach by relaxing the requirement that
all good units be able to determine the location of all faults. Methods for diagnosis
for repair and diagnosis for graceful degradation are considered. In the former
case, identification of one faulty unit is sufficient and the diagnosis-repair cycle is
repeated until the entire system is working. In the latter case, the goal is to identify

" some good sets of units that can remain in operation. The ‘roving diagnosis’
concept of Nair (1978) is useful for distributed diagnosis in which one portion of the
system not performing computations at that time is utilised to diagnose another

portion, while the remainder of the system continues normal operation. The

processors which are diagnosed as fault-free in turn diagnose the other processors.

Thus algorithm execution and system diagnosis can take place simultaneously.

3.2 Recovery

Following fault detection and diagnosis, the system undergoes a reconfiguration so
that faulty processor nodes are purged out and replaced by spare nodes or the
system continues to operate in a degraded mode. Recovery is the scheme for
dealing with the damage caused by a fault (Kim 1979). All affected processes must
be backed up or rolled back to a state which is fault-free. This scheme, known as
backward error recovery, provides for recovery points (RP) for each process in the
system. At each recovery point, all the necessary information about the current
state of the process is saved. When applied to multiprocessor systems with many
intercommunicating processes, the setting-up of proper recovery points poses a
problem. To visualize this, consider the following example.

Figure 3 shows three communicating processes in a system. The dashed lines
between processes indicate points of interprocess communication. The left brackets
([) represent the recovery points. If a fault was detected at point x in process A,
only one recovery-action needs to be done to back up to rAs. If an error was
~ detected at point y in process B, then process B has to backup to 7B3 and process A

has to backup to r7A,, and not rA s, since A communicates with B between rA, and
rA;. If an error at point z in process C is detected, then process C has to backup to
rC5 and process B to rB,. This causes process A to backup to rA ,, and then process
C has to backup to rC,. Eventually, all three processes A, B and C have rolled back
to their starting point. This phenomenon is called the domino effect of recovery.

T R e

Fault tolerance in multiprocessor systems 101
-
PROCESS A : [: ! /[1/[
f X
: I'A1 : [l FA2 :&3_—
I I 1 ! !
| o |
PROCESS B| 1 r Cl [
T C > Ty
| ; rBy : rBo : 1By
|
[' | ‘
roo ;
PROCESS C|!T ! [[|
0 %
' rta 3 . . .
N\ Figure 3. Recovery points assign-
. PRESENT PPN ,
TIME ment and the ‘domino effect’.

The amount of roll-back for each of the situations depicted above is shown by the
curved lines, called recovery lines. To prevent the domino effect, proper recovery
points should be established. For example, if we had a recovery point at 2’ (before
process B communicates with process C) then we can form a recovery line from rA,
to rBy' to rCs. The selection of appropriate recovery points forms an important
problem in multiprocessor systems with a large number of communicating
processes.

A roll-back recovery mechanism using hardware recovery blocks has been given
by Lee & Shin (1984). Each processor module consists of a number of state-save
units controlled by a monitor switch. At regular intervals, each module saves its
state and executes a diagnostic test. If the processor is fault-free, then the current
state is considered as the recovery point for the next interval. Otherwise, the faulty
processor is purged out and the associated process will roll back to one of the
previously saved states. Analytical results indicate that proper partitioning and
allocation of tasks are necessary to reduce the probability of multistep roll-back and
the domino effect.

4. Reconfigurable architectures

The ability of a multiprocessor system to reconfigure dynamically in order to purge
out the faulty nodes is one of the aspects to be considered while designing the
system. In addition to enhancing fault-tolerance capabilities, reconfiguration can
also be used to restructure the system to suit the specific task being executed. This
type of functional reconfiguration can increase the throughput of the system by
matching the architecture to the algorithm. Many reconfigurable multiprocessor/
multicomputer architectures have been proposed and implemented, some of which
have both functional and fault-tolerant reconfiguration capabilities (Kartashev &
Kartashev 1980; Snyder 1982; Pradhan 1985b; Rucinski & Pokoski 1986), while
some architectures are designed mainly to handle fault-tolerant reconfiguration
(Negrini et al 1986; Raghavendra et al 1984; Pradhan & Reddy 1982; Pradhan
1985a; Clarke & Nikolaou 1982). We discuss important methods adopted to obtain
reconfiguration in some of the proposed architectures. Reconfiguration aspects
pertaining to VLSI array architectures will be discussed in §5.

The reconfiguration methodology adopted for fault-tolerance may serve two
purposes. In one case, the reconfiguration may be able to disconnect the faulty

102 Nripendra N Biswas and S Srinivas

processors and simultaneously bring in spare processors so that the system will
continue to work with the same throughput. In the other case, spares may not be
used and the system may be reconfigured so that faulty nodes are effectively
removed and the connectivity of the system is not lost. Here the system will
continue to work with a degraded performance. Certain reconfiguration strategies
may adopt a combination of the above two types, with spares being used to replace
critical processors (which have a high probability of failure), the remaining
processors being designed for graceful degradation.

Two types of reconfiguration may be outlined: one is the logical reconfiguration,
where no switching mechanism is employed and the processors are connected by
direct links. The internode communication is established by logically routing the
information so that the faulty processors are avoided. The second type is the
hardware or physical reconfiguration, which makes use of a switching network to
establish different connections. .

Any reconfiguration method should satisfy the following requirements. First, the
time for reconfiguration should be minimal. Second, the bit size of the routing code
required to route the information to various nodes under faulty conditions should
also be minimal. Third, fast internode communication should be possible. This
implies that the switching network used for reconfiguration should not introduce a
large delay. Another important measure of the effectiveness of the methodology is
the number of faulty nodes that can be reconfigured out of the system without
losing the system’s connectivity.

Pradhan & Reddy (1982) and Pradhan (1985a) propose reconfigurable fault-
tolerant multiprocessor network architectures. The context of fault-tolerance
considered here is that of direct link networks designed for performance
degradation with logical reconfiguration. The networks are established by algebraic
properties and exploiting the algebraic structure of the network yields optimality in
terms of routing distance with faults, number of connections per node and the
number of faulty nodes that could be tolerated. For example (Pradhan & Reddy
1982), for a network with n = r™ nodes, any two nodes i and j are connected

if iy =jor, l<w<m-1,
or iw =jw+17 O=sws m'—zy

where (iy—1...111p) and (jm—1...J1jo) are the radix-r representations of i and j
respectively. This network has nr—(r*>+7r)/2 data links and can tolerate upto
(r—1) faulty nodes. The architectures adopt self-diagnosis for use in a distributed
environment. Pradhan (1985b) has proposed a similar architecture but with the
added advantage of supporting functional reconfiguration.

Raghavendra et al (1984) consider fault-tolerant reconfigurations in binary tree
architectures. The scheme utilises one spare node per tree level and a number of
redundant links which are connected by means of decoupling networks. Hardware
reconfiguration is performed by setting switches in the decoupling networks by a
host computer. One faulty node per level can be tolerated by this method. Another
scheme for fault-tolerance with performance degradation is also given. In this case,
the neighbour of a faulty node acts as a spare and makes use of redundant links for
communication with the children of the faulty node. Hassan & Agarwal (1986)
suggest a modular approach for fault-tolerant binary trees which uses redundant
blocks. Each block consists of four nodes connected in such a manner that if ‘any

Fault tolerance in multiprocessor systems 103

one node goes faulty, the remaining three nodes can be restructured to form the
binary subtree. This scheme removes some of the drawbacks of the method of
Raghavendra et al (1984) by having localized switching control, less redundant links
and higher reliability.

4.1 Dynamic architectures

An interesting class of reconfigurable multiprocessor/multicomputer parallel
architectures, called dynamic computer architectures (Kartashev & Kartashev
1980), is now under development. These architectures can be reconfigured to give
variable width computers so that dynamic adaptation to varying degrees of
instruction and data parallelism can be achieved. Another attribute of the dynamic
architecture is its capability to function as a multicomputer/multiprocessor network
characterized by different topological configurations among its computers. The
high degree of parallelism and adaptability afforded by the dynamic architectures
makes it suitable for real-time applications, like radar signal processing (Davis et al
1982).

One of the widely used computing structures of the dynamic architecture class is
the reconfigurable binary tree. Kartashev & Kartashev (1981) have developed an
efficient reconfiguration technique for a binary tree structure organized using the
Dynamic Computer Group where each tree node is an autonomous computer
element (CE) consisting of a processor element (PE), memory element (ME) and 1/0
element (GE). With this technique, a binary tree structure with K nodes is
established by providing an n-bit reconfiguration constant (n = log, K) called bias
to all the tree nodes. For this purpose, each tree node is provided with an »-bit shift
register called shift register with variable bias (SRVB) (see figure 4) which stores the
position code of the node. When a bias B is given, each node N generates the
position code of its successor node N* by the following operation:

N*=1[N] @ B, (1)

where 1[N] represents a one-bit noncircular left shift of N and @ represents mod 2
(EX-OR) addition. Thus N establishes connection with N*. For example, figure Sa
. shows a configuration of a binary tree of eight nodes (0,1, . .., 7) when it receives
bias B = 001. By changing the bias to B = 010, we get'a new tree configuration as
shown in figure 5b. With an #-bit bias, it is possible to generate 2" different trees by
this method.

The fast reconfiguration technique and the availability of 2” configurations can
serve as a powerful tool for enhancing the fault-tolerance of a binary tree with

0

Figure 4. A 3-bit shift register with variable bias.
a,a,a, is the position code of the node. A,A A is
the position code of the successor node obtained
A, - Ay Ao by application of bias b,b,by.

104 Nripendra N Biswas and S Srinivas

Figure 5. Two configurations of a 8-node reconfigurable
binary tree structure; (a) for bias B = 001, and (b) for
bias B = 010

(b)

multiple faults. Kartashev & Kartashev (1983) have suggested fast reconfiguration
techniques by which all the faulty nodes in the tree can be purged out and the
binary tree continues to work in a gracefully degraded fashion. Consider the 4-level
binary tree with bias 14 and root 10 as shown in figure 6a. Suppose, during the
course of the system operation, nodes 0,2,4,6 and 8 are found faulty. Then, by
applying bias 3, the tree can be configured as shown in figure 6b, in which all the
faulty nodes have been purged into the leaves positions. Now the binary tree can
continue to work as a 3-level tree so that the connectivity of the fault free nodes is
not lost. This type of gracefully degraded tree (GDT) is called 1-truncated GDT.

Consider a second example (figure 7a) in which we have faulty nodes in both the
leaf and nonleaf positions. Now the tree can be configured as shown in figure 7b, in
which all the faulty nodes have been purged out into a 2-level end subtree. This
type of GDT in which the faulty nodes form an i-level end subtree is called an
i-truncated GDT. Kartashev & Kartashev (1983) have shown that finding the bias
for a 1-truncated GDT can be done by a single mod-2 addition (one clock period).
- For the case of the i-truncated GDT, the bias can be fouind by a sequence of (i—1)
mod 2 additions. Once the bias has been found, reconfiguration can be performed
by (1) during the time of a single clock period.

@ FAULTY
BIAS 3

Figure 6. (a) A 4-level binary tree with faulty nodes. (b) 1-truncated GDT.

Fault tolerance in multiprocessor systems 105

Figure 7. (a) A 4-level tree with faulty leaves and non-leaves. (b) 2-truncated GDT with a
2-level end subtree.

5. Fault-tolerant VLSI processor arrays

Fault-tolerance considerations in VLSI/WSI multiprocessor systems have received a
lot of attention lately. Processor arrays which afford high parallelism are
well-suited to VLSI or WsI implementation because of the regularity of their
architecture and the locality of their interconnection structure. When a processor
array is implemented on a single chip or wafer, the provision of fault-tolerance
poses many extra problems not encountered in multichip or non wafer-scale
architectures. First, the chip area should be utilised very efficiently. It has been
shown (Mead & Conway 1980) that the probability of finding a fault-free circuit on
chip decreases exponentially with the chip area. Hence excessive increase in chip
area due to the introduction of fault-tolerance circuits may actually decrease the
reliability of the system rather than enhancing it. Another consequence of an
increase in area is a possible reduction in wafer yield (Koren & Breuer 1984).
Hence the fault-tolerance circuits should be simple and regular and should occupy
less area but, at the same time, should support a variety of fault-tolerance
algorithms. The importance of maintaining a small chip area is evidenced by the
fact that many fault-tolerance models (for e.g., Rosenberg 1985) measure the
suitability of the design in terms of the area occupied. Second, ordinary fault
models do not suffice in the VLSI environment. A physical defect, which may have
occurred at production time, may render a large block of logic as faulty. Hence the
fault model should be able to take care of such cluster distribution of faults also.
Third, faulty processors on chip cannot be repaired or replaced. The alternative is
to utilise spare processors and dynamically reconfigure the array to bring in the
spares and purge out the faulty modules or allow for graceful degradation of the
system. In the case of reconfiguration, the locality of the interconnections should
be maintained and simple routing techniques should be adopted. Further, each
processor should have self-testing circuits and it should be able to transmit its state
(as faulty or fault-free) to its neighbouring processors by a single bit code.
Negrini et al (1986) propose a number of reconfiguration algorithms for
two-dimensional VLSI processor arrays which vary in terms of the probability of

106 Nripendra N Biswas and S Srinivas

survival to a given number of processor faults and the complexity of the
reconfiguration-controlling circuits. To understand the basic principles involved in
such algorithms, consider the 5#5 VLSI processor array shown in figure 8a. In
addition to the 16 processors active under fault-free conditions, it has an extra row
and an extra column of processors. In the event of multiple faults occurring in the
array (figure 8b), the reconfiguration algorithm restructures the array into the
fault-free array with the faulty cells by-passed. Variations to the straightforward
restructuring in the above example include the “fixed fault stealing” and “variable
fault stealing” algorithms (Sami & Stefanelli 1986) which are more complex but
show an increased probability of tolerance to faults. Algorithms to deal with cluster
distribution of faults is given in Negrini & Stefanelli (1985). Rucinski & Pokoski
(1986) propose a reconfigurable architecture for executing systolic algorithms. The
grid of processors is restructured to tailor the architecture to the algorithm being
executed. The upper layer of processors monitors the structure and enables the
system to reorgamze itself in case of faults.

Koren (1981) gives distributed algorithms for structuring arrays and trees on a
grid of processors in the presence of faults. In particular, he addresses the problem
of embedding a binary tree on the grid under fauity conditions. In this method, all
processors in the row and the column of a faulty processor are configured as
connecting elements thus isolating the faulty processor. Though the structuring
algorithm is relatively simple, the technique results in many fault-free processors
acting as connecting elements, and thus they are underutilized.

Many fault-tolerant array architectures (Manning 1977; Fussell & Varman 1982),
in addition to the one discussed above, have internal switching mechanisms inside
each processor and the processors perform all the switching necessary to establish
connections. Snyder (1982) suggested the CHiP (Configurable, Highly Parallel)
computer in which the switches are segregated from the PE. The CHIP architecture
consists of a collection of PE, a swiiching lattice and a controller. Each switch
contains memory which stores several configuration settings which enable it to

Figure 8. (a) A VLSI array with faulty processors (shaded cells are faulty). (b)
Reconfiguration of (a) to the fault-free array by utilization of spare processors.

-

TS

Fault tolerance in multiprocessor systems 107

establish connections among its incident data paths. The controller loads the switch
memory with the configuration codes. In the event of a faulty processor being
detected, a configuration code is broadcast to route around the faulty processor.
This scheme utilises the fault-free processors adequately but the reconfiguration
algorithms are complex.

The Diogenes strategy (Rosenberg 1983) is a new approach for realizing testable
fault-tolerant arrays with 100% utilization of fault-free processors. In this method,
the processors are laid out in a line, with global busses running above the line. The
connection of each processor to the bus is through switches which are controlled by
control lines. For example, in the case of a linear array, only one control line
(GOOD;) is sufficient (see figure 9) for each processor. GOOD; = 1 if the processor is
fault-free, and 0 otherwise. Thus, when the array of processors is scanned, only
those processors with GOOD; = 1 get connected while others are just by-passed.
Thus it combines the advantages of having external switches and also simple and
fast dynamic reconfiguration. But the global busses have to be fault-free and may
thus pose a reliability bottleneck. Rosenberg (1983) also gives layouts for a binary
tree, a pyramid and a rectangular grid. All these layouts aim at linearizing the
topology to utilize the principle of the Diogenes strategy.

So far, fault-tolerance with the utilization of spares has been considered. An
alternative scheme is to allow for graceful degradation. Fortes & Raghavendra
(1985) suggest schemes for graceful degradation of processor arrays wherein both
the processor array and the algorithm in execution are simultaneously reconfi-
gured. They have shown that any algorithm executable in a processor array can be
reorganized to suit the reconfiguration properties and executed in the degraded
array.

A new method for fault-tolerance in a mesh-connected processor array is the
algorithm-based fault-tolerance (Huang & Abraham 1984; Bannerjee & Abraham
1986). In contrast to the reconfiguration techniques, this method aims at obtaining
reliable results from computations by on-line detection and correction of faults.
The algorithm is redesigned to execute encoded data and produce encoded results
which can be used for fault detection. Both permanent and transient faults can be
tolerated but the method is not applicable to a general computational environment.
To visualize the basic principles involved in such a scheme, consider a matrix
multiplication operation performed on a multiple processor system. Suppose

GOOD;
Imm GLOBAL BUS
PROCESSOR; Figure 9. The processor layout in the Diogenes
approach.

108 Nripendra N Biswas and S Srinivas

— |91 01.2 R = [b1y by — A+B = cu Cr2
4 [‘lzl 022]’ B [b:ll bzz] and ‘C Ax [021 €22 .

We form augmented matrices

, |9 . |b11 biz bus
Al = a1 Gn\ , and B' =
a3, dzp b21 b22 b23 .

A’ has an additional row which contains the column checksum (that is,
a3 = @i+ 01} A3y = a;p+4ax) and B’ has an additional column which contains
the row checksum (that is, byz = b1+ b1a; baz = bay+by). Now

C11 Ci2 C13
[o |
A'*B' = C = [Cg1 €92 Co3

C31 C32 C33].

It can be verified that ¢35 = €11+ C12; €23 = Ca1+Cx; €31 = €11+ €15 €32 = Cra+C
and ¢33 = €13+ Cy3. In other words, the matrix multiplication operation has
-preserved the checksum property. The multiplication is executed on a processor
array as shown in figure 10 and the results of the computation are stored in the
corresponding processors (processor Pj; stores the result c;). Now the row
checksum and column checksum are calculated and compared with the result
obtained in the checksum row and the checksum column. If any single processor Pj;
is faulty and has given an erroneous result, it will result in the checksum in the ith
row and the jth column disagreeing with the calculated value. Thus the faulty
processor can be located at the intersection of the ith row and the jth column and
the result can be corrected (by adding the difference of the correct checksum and
the obtained checksum to c;). It has been shown that the checksum property is
preserved for other matrix operations like scalar product, addition, LU decomposi- .
tion and transpose. Algorithm-based fault-tolerance is also being investigated for
-other applications like the solution of Laplace equations. The overhead required in
terms of the hardware redundancy and time for checking consistency is small
compared to other schemes.

b2y b22 b23
bn - bn2 b3

arz an| —Cn Ci2 Ci3
1 1 |
azz axn| —Cax Ca2 Caa—
l [|
a — Cqy C c
932 3 31 32 33 Figure 10, Checksum matrix multiplication in a

]] i mesh-connected processor array.

Fault tolerance in multiprocessor systems 109

6. Conclusions

Though a number of techniques for achieving fault-tolerance have been and are
being developed, fault-tolerant technology has continued to pose many challenges
to researchers. The increasing complexity of present day computer systems and the
very high reliability requirements of the applications for which they are employed
have resulted in a diversified approach towards fault-tolerance. There is as yet no
comprehensive and universal method for fault-tolerance in multiprocessor systems.
Future research should aim at designing a multiprocessor architecture which adapts
to computational and reliability requirements by exercising both functional and
fault-tolerant reconfiguration. In addition, the architecture should be suitable to
VLSI implementation.

References

Avizienis A 1978 Proc. IEEE 66: 1109-1125

Avizienis A, Gilley G C, Mathur F P, Rennels D A, RohrJ A, Rubin D K 1971 JEEE Trans. Comput.
C-20: 1312-1321 ‘

Avizienis A, Kelly J P J 1984 Computer 17: 67-80 :

Banerjee P, Abraham J A 1986 IEEE Trans. Comput. C-35: 296-306

Barsi F, Grandoni F, Maestrini P 1976 IEEE Trans. Comput. C-25: 585-593

Bell Labs 1977 Bell Syst. Tech. J. 56: 1015-1331

Butler J T 1981 IEEE Trans. Comput. C-130: 590-596

Chwa K, Hakimi S L 1981 IEEE Trans. Comput. C-30: 414-422

Ciompi P, Simoncini L 1979 IEEE Trans. Comput. C-28: 362-365

Clarke E M, Nikolaou C N 1982 IEEE Trans. Comput. C-31: 771784

Dahbura A T, Masson G M 1983a IEEE Trans. Comput. C-32: 777-782

Dahbura A T, Masson G M 1983b IEEE Trans. Comput. C-32: 953-957

Dahbura A T, Masson G M 1984 IEEE Trans. Compur. C-33: 486-492

Dahbura A T, Masson G M, Yang C 1985 IEEE Trans. Comput. C-34: 718-723

-Davis C, Kartashev S P, Kartashev S I 1982 Proc. 1982 AFIPS Conf. (Montvale, NJ: AFIPS Press) 51:
167-185

Fortes J A B, Raghavendra C S 1985 IEEE Trans. Comput. C-34: 1033-1044

Friedman A D 1975 Proc. 1975 Int. Symp. Fault-tolerant Computing (Silver Spring, MD: IEEE Comput.
Soc. Press) pp. 167-169

Friedman A D, Simoncini L 1980 IEEE Comput. 13: 47-53

Fussell D, Varman P 1982 Proc. 9th Int. Symp. Comput. Architecture (Silver Spring, MD: IEEE Comput.
Soc. Press)

Hakimi S L, Amin A T 1974 IEEE Trans. Comput. C-23; 86-88

Hakimi S L, Nakajima K 1984 IEEE Trans. Comput. C-33: 234-240

Hassan A 8 M, Agarwal V K 1986 IEEE Trans. Comput. C-35: 356-361

Hayes J P 1976 IEEE Trans. Comput. C-25: 875-884

Holt C S, Smith J E 1981 IEEE Trans. Comput. C-30: 679-690

Holt C S, Smith J E 1985 IEEE Trans. Comput. C-34: 19-32

Hopkins A L, Smith T B, Lala J H 1978 Proc. IEEE 66: 1221-1239

Hossieni S H, Kuhl J G, Reddy S M 1984 IEEE Trans. Compur. C-33: 223-233

Huang K H, Abraham J A 1984 IEEE Trans. Comput. C-33: 518-528

Huang K H, Chen T 1986 IEEE Trans. Comput. C-35: 1082-1086

Kartashev S I, Kartashev S P 1980 IEEE Trans. Compur.. C-29: 1114-1132

Kartashev S P, Kartashev S I 1981 Proc. 1981 Int. Conf. on parallel processing (Silver Spring, MD: IEEE
Press) pp. 131-141

Kartashev S P, Kartashev S I 1983 Proc. 1983 AFIPS Conf. (Montvale, NJ: AFIPS Press) 53: 595-610

Katuski D, Elsam E S, Mann W F, Roberts E S, Robinson J G, Skowrolski F S, Wolf E W 1978 Proc.
IEEE 66: 11461159

110 Nripendra N Biswas and S Srinivas

Katzman J A 1982 in Computer structures: principles and examples (eds) D P Siewiorek, C G Bell, A
Newell (New York: McGraw Hill)

Kim'K H 1979 Proc. Ist Int. Conf. on Distributed Computer Systems (Silver Spring, MD: IEEE Comput.
Soc. Press) pp. 284-295

Kime C R 1979 [EEE Trans. Comput. C-28: 754767

Krol T 1986 IEEE Trans. Comput. C-35: 339-349

KorenI 1981 Proc. 8th Annual Symp. on Computer Architecture (Silver Spring, MD: IEEE Comput. Soc.
Press) pp. 425-442

Koren I, Breuer M A 1984 IEEE Trans. Comput. C-33: 21-27

KuhlJ G, Reddy S M 1980 Proc. Seventh Annual Symp. on Computer Architecture (Silver Spring, MD:
IEEE Comput. Soc. Press) pp. 23-30

KuhlJ G, Reddy S M 1981 Proc. /1th Int. Symp. on Fault-Tolerant Computing (Silver Spring, MD: IEEE
Comput. Soc. Press) pp.. 100-105

Kuhl I G, Reddy S M 1986 Computer 19: 56-67

Lee Y, Shin K G 1984 IEEE Trans. Comput. C-33: 113-124

Losq T 1976 IEEE Trans. Comput. C-25: 569-578

Maheshwari S N, Hakimi S L 1976 IEEE Trans. Comput. C-25; 228-236

Mallela S, Masson G M 1978 IEEE Trans. Comput. C-27: 560-566

Mallela S; Masson G M 1980 IEEE Trans. Comput. C-29: 461-470

Manning F B 1977 IEEE Trans. Compui. C-26; 536-552

McPherson J A, Kime C R 1979 IEEE Trans. Comput. C-27: 16-27

McPherson J A, Kime C R 1984 IEEE Trans. Comput. C-33: 943-947

Mead C, Conway L 1980 Introduction to VLSI systems (Reading, MA: Addison-Wesley)

Meyer G G L 1981 IEEE Trans. Compur. C-30: 81-83

Meyer G G L, Masson G M 1978 IEEE Trans. Comput. C-27: 1059-1063

Nair R 1978 Diagnosis, self-diagnosis and roving diagnosis in distributed digital systems, TR-823,
Coord. Sci. Lab. Univ. Illinois, Urbana

Nakajima K 1981 Proc. 19th Annu. Allerton Conf. Commun. Contrib. and Comput. (New York: IEEE
Press) pp. 697-706

Narasimhan J, Nakajima K 1986 IEEE Trans. Comput. C-35: 1004-1008

Negrini R, Sami M, Stefanelli R 1986 Computer 19: 78-87

Negrini R, Stefanelli R 1985 Proc. Int. Conf. Circuits and Systems (New York: IEEE Press) pp. 190-196

Pradhan D K 1985a JEEE Trans. Comput. C-34: 33-45

Pradhan D K 1985b IEEE Trans. Comput. C-34: 437-447

Pradhan D K, Reddy S M 1982 IEEE Trans. Comput. C-31: 863-870

Preparata F, Metze G, Chien R 1967 IEEE Trans. Electron. Comput. EC-16: 848-854

Raghavendra C S, Avizienis A, Ercegovac M D 1984 IEEE Trans. Comput. C-33: 568-572
Rennels D A 1980 IEEE Comput. 13: 55-65

Rennels D A 1984 [EEE Trans. Comput. C-33: 1116-1129

Rosenberg A L 1983 IEEE Trans. Comput. C-32: 902-910 |

Rosenberg A L 1985 IEEE Trans. Comput. C-34: 578584

Rucinski A, Pokoski J L 1986 Proc. 1986 Int. Conf. Distributed Comput. Systems (Silver Spring, MD:
IEEE Comput. Soc. Press) pp. 175-182

Russell J, Kime C R 1975a IEEE Trans. Comput. C-24: 1078-1089

Russelt J, Kime C R 1975b IEEE Trans. Comput. C-24: 1155-1161

Sami M, Stefanelli R 1986 Proc. IEEE 74: 712-722

Siewiorek D P 1984 Computer 17: 9-18

Siewiorek D P, Kini V, Mashburn H, McConnel S, Tsao M 1978 Proc. IEEE 66: 1178-1220 ‘ ,

Smith J E 1979 IEEE Trans. Comput. C-28: 374-378 .

Snyder L 1982 IEEE Comput. 15: 47-56

Su S Y H, Du Casse E 1980 IEEE Trans. Comput. C-29: 254-257

Su S Y H, Hsieh Yu-I 1982 in Designing and programming modern computers and systems (eds)
Kartashev S P, Kartashev S 1 (Englewood Cliffs, NJ: Prentice Hall) vol. 1

Toy W N 1978 Proc. IEEE 66: 1221-1239 ‘

Wensley J H, Lamport L, Goldberg J, Green M W, Levitt K H, Smith P M M, Shostak R E, Weinstock
C B 1978 Proc. IEEE 66: 1240-1255

Wittie L 1978 Simulation 31(11): 145-153

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf

